mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 03:59:54 +07:00
e99f8e7f88
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293
("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Ido Schimmel <idosch@mellanox.com>
Tested-by: Ido Schimmel <idosch@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
273 lines
7.5 KiB
C
273 lines
7.5 KiB
C
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
|
|
/* Copyright (c) 2018 Mellanox Technologies. All rights reserved */
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include "spectrum.h"
|
|
#include "core.h"
|
|
#include "reg.h"
|
|
#include "resources.h"
|
|
|
|
struct mlxsw_sp2_kvdl_part_info {
|
|
u8 res_type;
|
|
/* For each defined partititon we need to know how many
|
|
* usage bits we need and how many indexes there are
|
|
* represented by a single bit. This could be got from FW
|
|
* querying appropriate resources. So have the resource
|
|
* ids for for this purpose in partition definition.
|
|
*/
|
|
enum mlxsw_res_id usage_bit_count_res_id;
|
|
enum mlxsw_res_id index_range_res_id;
|
|
};
|
|
|
|
#define MLXSW_SP2_KVDL_PART_INFO(_entry_type, _res_type, \
|
|
_usage_bit_count_res_id, _index_range_res_id) \
|
|
[MLXSW_SP_KVDL_ENTRY_TYPE_##_entry_type] = { \
|
|
.res_type = _res_type, \
|
|
.usage_bit_count_res_id = MLXSW_RES_ID_##_usage_bit_count_res_id, \
|
|
.index_range_res_id = MLXSW_RES_ID_##_index_range_res_id, \
|
|
}
|
|
|
|
static const struct mlxsw_sp2_kvdl_part_info mlxsw_sp2_kvdl_parts_info[] = {
|
|
MLXSW_SP2_KVDL_PART_INFO(ADJ, 0x21, KVD_SIZE, MAX_KVD_LINEAR_RANGE),
|
|
MLXSW_SP2_KVDL_PART_INFO(ACTSET, 0x23, MAX_KVD_ACTION_SETS,
|
|
MAX_KVD_ACTION_SETS),
|
|
MLXSW_SP2_KVDL_PART_INFO(PBS, 0x24, KVD_SIZE, KVD_SIZE),
|
|
MLXSW_SP2_KVDL_PART_INFO(MCRIGR, 0x26, KVD_SIZE, KVD_SIZE),
|
|
MLXSW_SP2_KVDL_PART_INFO(TNUMT, 0x29, KVD_SIZE, KVD_SIZE),
|
|
};
|
|
|
|
#define MLXSW_SP2_KVDL_PARTS_INFO_LEN ARRAY_SIZE(mlxsw_sp2_kvdl_parts_info)
|
|
|
|
struct mlxsw_sp2_kvdl_part {
|
|
const struct mlxsw_sp2_kvdl_part_info *info;
|
|
unsigned int usage_bit_count;
|
|
unsigned int indexes_per_usage_bit;
|
|
unsigned int last_allocated_bit;
|
|
unsigned long usage[]; /* Usage bits */
|
|
};
|
|
|
|
struct mlxsw_sp2_kvdl {
|
|
struct mlxsw_sp2_kvdl_part *parts[MLXSW_SP2_KVDL_PARTS_INFO_LEN];
|
|
};
|
|
|
|
static int mlxsw_sp2_kvdl_part_find_zero_bits(struct mlxsw_sp2_kvdl_part *part,
|
|
unsigned int bit_count,
|
|
unsigned int *p_bit)
|
|
{
|
|
unsigned int start_bit;
|
|
unsigned int bit;
|
|
unsigned int i;
|
|
bool wrap = false;
|
|
|
|
start_bit = part->last_allocated_bit + 1;
|
|
if (start_bit == part->usage_bit_count)
|
|
start_bit = 0;
|
|
bit = start_bit;
|
|
again:
|
|
bit = find_next_zero_bit(part->usage, part->usage_bit_count, bit);
|
|
if (!wrap && bit + bit_count >= part->usage_bit_count) {
|
|
wrap = true;
|
|
bit = 0;
|
|
goto again;
|
|
}
|
|
if (wrap && bit + bit_count >= start_bit)
|
|
return -ENOBUFS;
|
|
for (i = 0; i < bit_count; i++) {
|
|
if (test_bit(bit + i, part->usage)) {
|
|
bit += bit_count;
|
|
goto again;
|
|
}
|
|
}
|
|
*p_bit = bit;
|
|
return 0;
|
|
}
|
|
|
|
static int mlxsw_sp2_kvdl_part_alloc(struct mlxsw_sp2_kvdl_part *part,
|
|
unsigned int size,
|
|
u32 *p_kvdl_index)
|
|
{
|
|
unsigned int bit_count;
|
|
unsigned int bit;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
bit_count = DIV_ROUND_UP(size, part->indexes_per_usage_bit);
|
|
err = mlxsw_sp2_kvdl_part_find_zero_bits(part, bit_count, &bit);
|
|
if (err)
|
|
return err;
|
|
for (i = 0; i < bit_count; i++)
|
|
__set_bit(bit + i, part->usage);
|
|
*p_kvdl_index = bit * part->indexes_per_usage_bit;
|
|
return 0;
|
|
}
|
|
|
|
static int mlxsw_sp2_kvdl_rec_del(struct mlxsw_sp *mlxsw_sp, u8 res_type,
|
|
u16 size, u32 kvdl_index)
|
|
{
|
|
char *iedr_pl;
|
|
int err;
|
|
|
|
iedr_pl = kmalloc(MLXSW_REG_IEDR_LEN, GFP_KERNEL);
|
|
if (!iedr_pl)
|
|
return -ENOMEM;
|
|
|
|
mlxsw_reg_iedr_pack(iedr_pl);
|
|
mlxsw_reg_iedr_rec_pack(iedr_pl, 0, res_type, size, kvdl_index);
|
|
err = mlxsw_reg_write(mlxsw_sp->core, MLXSW_REG(iedr), iedr_pl);
|
|
kfree(iedr_pl);
|
|
return err;
|
|
}
|
|
|
|
static void mlxsw_sp2_kvdl_part_free(struct mlxsw_sp *mlxsw_sp,
|
|
struct mlxsw_sp2_kvdl_part *part,
|
|
unsigned int size, u32 kvdl_index)
|
|
{
|
|
unsigned int bit_count;
|
|
unsigned int bit;
|
|
unsigned int i;
|
|
int err;
|
|
|
|
/* We need to ask FW to delete previously used KVD linear index */
|
|
err = mlxsw_sp2_kvdl_rec_del(mlxsw_sp, part->info->res_type,
|
|
size, kvdl_index);
|
|
if (err)
|
|
return;
|
|
|
|
bit_count = DIV_ROUND_UP(size, part->indexes_per_usage_bit);
|
|
bit = kvdl_index / part->indexes_per_usage_bit;
|
|
for (i = 0; i < bit_count; i++)
|
|
__clear_bit(bit + i, part->usage);
|
|
}
|
|
|
|
static int mlxsw_sp2_kvdl_alloc(struct mlxsw_sp *mlxsw_sp, void *priv,
|
|
enum mlxsw_sp_kvdl_entry_type type,
|
|
unsigned int entry_count,
|
|
u32 *p_entry_index)
|
|
{
|
|
unsigned int size = entry_count * mlxsw_sp_kvdl_entry_size(type);
|
|
struct mlxsw_sp2_kvdl *kvdl = priv;
|
|
struct mlxsw_sp2_kvdl_part *part = kvdl->parts[type];
|
|
|
|
return mlxsw_sp2_kvdl_part_alloc(part, size, p_entry_index);
|
|
}
|
|
|
|
static void mlxsw_sp2_kvdl_free(struct mlxsw_sp *mlxsw_sp, void *priv,
|
|
enum mlxsw_sp_kvdl_entry_type type,
|
|
unsigned int entry_count,
|
|
int entry_index)
|
|
{
|
|
unsigned int size = entry_count * mlxsw_sp_kvdl_entry_size(type);
|
|
struct mlxsw_sp2_kvdl *kvdl = priv;
|
|
struct mlxsw_sp2_kvdl_part *part = kvdl->parts[type];
|
|
|
|
return mlxsw_sp2_kvdl_part_free(mlxsw_sp, part, size, entry_index);
|
|
}
|
|
|
|
static int mlxsw_sp2_kvdl_alloc_size_query(struct mlxsw_sp *mlxsw_sp,
|
|
void *priv,
|
|
enum mlxsw_sp_kvdl_entry_type type,
|
|
unsigned int entry_count,
|
|
unsigned int *p_alloc_count)
|
|
{
|
|
*p_alloc_count = entry_count;
|
|
return 0;
|
|
}
|
|
|
|
static struct mlxsw_sp2_kvdl_part *
|
|
mlxsw_sp2_kvdl_part_init(struct mlxsw_sp *mlxsw_sp,
|
|
const struct mlxsw_sp2_kvdl_part_info *info)
|
|
{
|
|
unsigned int indexes_per_usage_bit;
|
|
struct mlxsw_sp2_kvdl_part *part;
|
|
unsigned int index_range;
|
|
unsigned int usage_bit_count;
|
|
size_t usage_size;
|
|
|
|
if (!mlxsw_core_res_valid(mlxsw_sp->core,
|
|
info->usage_bit_count_res_id) ||
|
|
!mlxsw_core_res_valid(mlxsw_sp->core,
|
|
info->index_range_res_id))
|
|
return ERR_PTR(-EIO);
|
|
usage_bit_count = mlxsw_core_res_get(mlxsw_sp->core,
|
|
info->usage_bit_count_res_id);
|
|
index_range = mlxsw_core_res_get(mlxsw_sp->core,
|
|
info->index_range_res_id);
|
|
|
|
/* For some partitions, one usage bit represents a group of indexes.
|
|
* That's why we compute the number of indexes per usage bit here,
|
|
* according to queried resources.
|
|
*/
|
|
indexes_per_usage_bit = index_range / usage_bit_count;
|
|
|
|
usage_size = BITS_TO_LONGS(usage_bit_count) * sizeof(unsigned long);
|
|
part = kzalloc(sizeof(*part) + usage_size, GFP_KERNEL);
|
|
if (!part)
|
|
return ERR_PTR(-ENOMEM);
|
|
part->info = info;
|
|
part->usage_bit_count = usage_bit_count;
|
|
part->indexes_per_usage_bit = indexes_per_usage_bit;
|
|
part->last_allocated_bit = usage_bit_count - 1;
|
|
return part;
|
|
}
|
|
|
|
static void mlxsw_sp2_kvdl_part_fini(struct mlxsw_sp2_kvdl_part *part)
|
|
{
|
|
kfree(part);
|
|
}
|
|
|
|
static int mlxsw_sp2_kvdl_parts_init(struct mlxsw_sp *mlxsw_sp,
|
|
struct mlxsw_sp2_kvdl *kvdl)
|
|
{
|
|
const struct mlxsw_sp2_kvdl_part_info *info;
|
|
int i;
|
|
int err;
|
|
|
|
for (i = 0; i < MLXSW_SP2_KVDL_PARTS_INFO_LEN; i++) {
|
|
info = &mlxsw_sp2_kvdl_parts_info[i];
|
|
kvdl->parts[i] = mlxsw_sp2_kvdl_part_init(mlxsw_sp, info);
|
|
if (IS_ERR(kvdl->parts[i])) {
|
|
err = PTR_ERR(kvdl->parts[i]);
|
|
goto err_kvdl_part_init;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
err_kvdl_part_init:
|
|
for (i--; i >= 0; i--)
|
|
mlxsw_sp2_kvdl_part_fini(kvdl->parts[i]);
|
|
return err;
|
|
}
|
|
|
|
static void mlxsw_sp2_kvdl_parts_fini(struct mlxsw_sp2_kvdl *kvdl)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MLXSW_SP2_KVDL_PARTS_INFO_LEN; i++)
|
|
mlxsw_sp2_kvdl_part_fini(kvdl->parts[i]);
|
|
}
|
|
|
|
static int mlxsw_sp2_kvdl_init(struct mlxsw_sp *mlxsw_sp, void *priv)
|
|
{
|
|
struct mlxsw_sp2_kvdl *kvdl = priv;
|
|
|
|
return mlxsw_sp2_kvdl_parts_init(mlxsw_sp, kvdl);
|
|
}
|
|
|
|
static void mlxsw_sp2_kvdl_fini(struct mlxsw_sp *mlxsw_sp, void *priv)
|
|
{
|
|
struct mlxsw_sp2_kvdl *kvdl = priv;
|
|
|
|
mlxsw_sp2_kvdl_parts_fini(kvdl);
|
|
}
|
|
|
|
const struct mlxsw_sp_kvdl_ops mlxsw_sp2_kvdl_ops = {
|
|
.priv_size = sizeof(struct mlxsw_sp2_kvdl),
|
|
.init = mlxsw_sp2_kvdl_init,
|
|
.fini = mlxsw_sp2_kvdl_fini,
|
|
.alloc = mlxsw_sp2_kvdl_alloc,
|
|
.free = mlxsw_sp2_kvdl_free,
|
|
.alloc_size_query = mlxsw_sp2_kvdl_alloc_size_query,
|
|
};
|