linux_dsm_epyc7002/drivers/usb/serial/aircable.c
Johan Hovold c23e5fc1f7 USB: serial: remove multi-urb write from generic driver
Remove multi-urb write from the generic driver and simplify the
prepare_write_buffer prototype:

	int (*prepare_write_buffer)(struct usb_serial_port *port,
						void *dest, size_t size);

The default implementation simply fills dest with data from port write
fifo but drivers can override it if they need to process the outgoing
data (e.g. add headers).

Turn ftdi_sio into a generic fifo-based driver, which lowers CPU usage
significantly for small writes while retaining maximum throughput.

Signed-off-by: Johan Hovold <jhovold@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2010-05-20 13:21:42 -07:00

229 lines
6.4 KiB
C

/*
* AIRcable USB Bluetooth Dongle Driver.
*
* Copyright (C) 2010 Johan Hovold <jhovold@gmail.com>
* Copyright (C) 2006 Manuel Francisco Naranjo (naranjo.manuel@gmail.com)
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 as published by the
* Free Software Foundation.
*
* The device works as an standard CDC device, it has 2 interfaces, the first
* one is for firmware access and the second is the serial one.
* The protocol is very simply, there are two posibilities reading or writing.
* When writing the first urb must have a Header that starts with 0x20 0x29 the
* next two bytes must say how much data will be sended.
* When reading the process is almost equal except that the header starts with
* 0x00 0x20.
*
* The device simply need some stuff to understand data comming from the usb
* buffer: The First and Second byte is used for a Header, the Third and Fourth
* tells the device the amount of information the package holds.
* Packages are 60 bytes long Header Stuff.
* When writing to the device the first two bytes of the header are 0x20 0x29
* When reading the bytes are 0x00 0x20, or 0x00 0x10, there is an strange
* situation, when too much data arrives to the device because it sends the data
* but with out the header. I will use a simply hack to override this situation,
* if there is data coming that does not contain any header, then that is data
* that must go directly to the tty, as there is no documentation about if there
* is any other control code, I will simply check for the first
* one.
*
* The driver registers himself with the USB-serial core and the USB Core. I had
* to implement a probe function agains USB-serial, because other way, the
* driver was attaching himself to both interfaces. I have tryed with different
* configurations of usb_serial_driver with out exit, only the probe function
* could handle this correctly.
*
* I have taken some info from a Greg Kroah-Hartman article:
* http://www.linuxjournal.com/article/6573
* And from Linux Device Driver Kit CD, which is a great work, the authors taken
* the work to recompile lots of information an knowladge in drivers development
* and made it all avaible inside a cd.
* URL: http://kernel.org/pub/linux/kernel/people/gregkh/ddk/
*
*/
#include <asm/unaligned.h>
#include <linux/tty.h>
#include <linux/slab.h>
#include <linux/tty_flip.h>
#include <linux/usb.h>
#include <linux/usb/serial.h>
static int debug;
/* Vendor and Product ID */
#define AIRCABLE_VID 0x16CA
#define AIRCABLE_USB_PID 0x1502
/* Protocol Stuff */
#define HCI_HEADER_LENGTH 0x4
#define TX_HEADER_0 0x20
#define TX_HEADER_1 0x29
#define RX_HEADER_0 0x00
#define RX_HEADER_1 0x20
#define HCI_COMPLETE_FRAME 64
/* rx_flags */
#define THROTTLED 0x01
#define ACTUALLY_THROTTLED 0x02
/*
* Version Information
*/
#define DRIVER_VERSION "v2.0"
#define DRIVER_AUTHOR "Naranjo, Manuel Francisco <naranjo.manuel@gmail.com>, Johan Hovold <jhovold@gmail.com>"
#define DRIVER_DESC "AIRcable USB Driver"
/* ID table that will be registered with USB core */
static const struct usb_device_id id_table[] = {
{ USB_DEVICE(AIRCABLE_VID, AIRCABLE_USB_PID) },
{ },
};
MODULE_DEVICE_TABLE(usb, id_table);
static int aircable_prepare_write_buffer(struct usb_serial_port *port,
void *dest, size_t size)
{
int count;
unsigned char *buf = dest;
count = kfifo_out_locked(&port->write_fifo, buf + HCI_HEADER_LENGTH,
size - HCI_HEADER_LENGTH, &port->lock);
buf[0] = TX_HEADER_0;
buf[1] = TX_HEADER_1;
put_unaligned_le16(count, &buf[2]);
return count;
}
static int aircable_probe(struct usb_serial *serial,
const struct usb_device_id *id)
{
struct usb_host_interface *iface_desc = serial->interface->
cur_altsetting;
struct usb_endpoint_descriptor *endpoint;
int num_bulk_out = 0;
int i;
for (i = 0; i < iface_desc->desc.bNumEndpoints; i++) {
endpoint = &iface_desc->endpoint[i].desc;
if (usb_endpoint_is_bulk_out(endpoint)) {
dbg("found bulk out on endpoint %d", i);
++num_bulk_out;
}
}
if (num_bulk_out == 0) {
dbg("Invalid interface, discarding");
return -ENODEV;
}
return 0;
}
static int aircable_process_packet(struct tty_struct *tty,
struct usb_serial_port *port, int has_headers,
char *packet, int len)
{
if (has_headers) {
len -= HCI_HEADER_LENGTH;
packet += HCI_HEADER_LENGTH;
}
if (len <= 0) {
dbg("%s - malformed packet", __func__);
return 0;
}
tty_insert_flip_string(tty, packet, len);
return len;
}
static void aircable_process_read_urb(struct urb *urb)
{
struct usb_serial_port *port = urb->context;
char *data = (char *)urb->transfer_buffer;
struct tty_struct *tty;
int has_headers;
int count;
int len;
int i;
tty = tty_port_tty_get(&port->port);
if (!tty)
return;
has_headers = (urb->actual_length > 2 && data[0] == RX_HEADER_0);
count = 0;
for (i = 0; i < urb->actual_length; i += HCI_COMPLETE_FRAME) {
len = min_t(int, urb->actual_length - i, HCI_COMPLETE_FRAME);
count += aircable_process_packet(tty, port, has_headers,
&data[i], len);
}
if (count)
tty_flip_buffer_push(tty);
tty_kref_put(tty);
}
static struct usb_driver aircable_driver = {
.name = "aircable",
.probe = usb_serial_probe,
.disconnect = usb_serial_disconnect,
.id_table = id_table,
.no_dynamic_id = 1,
};
static struct usb_serial_driver aircable_device = {
.driver = {
.owner = THIS_MODULE,
.name = "aircable",
},
.usb_driver = &aircable_driver,
.id_table = id_table,
.num_ports = 1,
.bulk_out_size = HCI_COMPLETE_FRAME,
.probe = aircable_probe,
.process_read_urb = aircable_process_read_urb,
.prepare_write_buffer = aircable_prepare_write_buffer,
.throttle = usb_serial_generic_throttle,
.unthrottle = usb_serial_generic_unthrottle,
};
static int __init aircable_init(void)
{
int retval;
retval = usb_serial_register(&aircable_device);
if (retval)
goto failed_serial_register;
retval = usb_register(&aircable_driver);
if (retval)
goto failed_usb_register;
return 0;
failed_usb_register:
usb_serial_deregister(&aircable_device);
failed_serial_register:
return retval;
}
static void __exit aircable_exit(void)
{
usb_deregister(&aircable_driver);
usb_serial_deregister(&aircable_device);
}
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_VERSION(DRIVER_VERSION);
MODULE_LICENSE("GPL");
module_init(aircable_init);
module_exit(aircable_exit);
module_param(debug, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Debug enabled or not");