mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
e4bc13adfd
Pull cgroup writeback support from Jens Axboe: "This is the big pull request for adding cgroup writeback support. This code has been in development for a long time, and it has been simmering in for-next for a good chunk of this cycle too. This is one of those problems that has been talked about for at least half a decade, finally there's a solution and code to go with it. Also see last weeks writeup on LWN: http://lwn.net/Articles/648292/" * 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits) writeback, blkio: add documentation for cgroup writeback support vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB writeback: do foreign inode detection iff cgroup writeback is enabled v9fs: fix error handling in v9fs_session_init() bdi: fix wrong error return value in cgwb_create() buffer: remove unusued 'ret' variable writeback: disassociate inodes from dying bdi_writebacks writeback: implement foreign cgroup inode bdi_writeback switching writeback: add lockdep annotation to inode_to_wb() writeback: use unlocked_inode_to_wb transaction in inode_congested() writeback: implement unlocked_inode_to_wb transaction and use it for stat updates writeback: implement [locked_]inode_to_wb_and_lock_list() writeback: implement foreign cgroup inode detection writeback: make writeback_control track the inode being written back writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb() mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use writeback: implement memcg writeback domain based throttling writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes writeback: implement memcg wb_domain writeback: update wb_over_bg_thresh() to use wb_domain aware operations ...
5942 lines
162 KiB
C
5942 lines
162 KiB
C
/*
|
|
* Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
|
|
* Written by Alex Tomas <alex@clusterfs.com>
|
|
*
|
|
* Architecture independence:
|
|
* Copyright (c) 2005, Bull S.A.
|
|
* Written by Pierre Peiffer <pierre.peiffer@bull.net>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public Licens
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
|
|
*/
|
|
|
|
/*
|
|
* Extents support for EXT4
|
|
*
|
|
* TODO:
|
|
* - ext4*_error() should be used in some situations
|
|
* - analyze all BUG()/BUG_ON(), use -EIO where appropriate
|
|
* - smart tree reduction
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/time.h>
|
|
#include <linux/jbd2.h>
|
|
#include <linux/highuid.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/fiemap.h>
|
|
#include <linux/backing-dev.h>
|
|
#include "ext4_jbd2.h"
|
|
#include "ext4_extents.h"
|
|
#include "xattr.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
/*
|
|
* used by extent splitting.
|
|
*/
|
|
#define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
|
|
due to ENOSPC */
|
|
#define EXT4_EXT_MARK_UNWRIT1 0x2 /* mark first half unwritten */
|
|
#define EXT4_EXT_MARK_UNWRIT2 0x4 /* mark second half unwritten */
|
|
|
|
#define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
|
|
#define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
|
|
|
|
static __le32 ext4_extent_block_csum(struct inode *inode,
|
|
struct ext4_extent_header *eh)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
__u32 csum;
|
|
|
|
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)eh,
|
|
EXT4_EXTENT_TAIL_OFFSET(eh));
|
|
return cpu_to_le32(csum);
|
|
}
|
|
|
|
static int ext4_extent_block_csum_verify(struct inode *inode,
|
|
struct ext4_extent_header *eh)
|
|
{
|
|
struct ext4_extent_tail *et;
|
|
|
|
if (!ext4_has_metadata_csum(inode->i_sb))
|
|
return 1;
|
|
|
|
et = find_ext4_extent_tail(eh);
|
|
if (et->et_checksum != ext4_extent_block_csum(inode, eh))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void ext4_extent_block_csum_set(struct inode *inode,
|
|
struct ext4_extent_header *eh)
|
|
{
|
|
struct ext4_extent_tail *et;
|
|
|
|
if (!ext4_has_metadata_csum(inode->i_sb))
|
|
return;
|
|
|
|
et = find_ext4_extent_tail(eh);
|
|
et->et_checksum = ext4_extent_block_csum(inode, eh);
|
|
}
|
|
|
|
static int ext4_split_extent(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path **ppath,
|
|
struct ext4_map_blocks *map,
|
|
int split_flag,
|
|
int flags);
|
|
|
|
static int ext4_split_extent_at(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path **ppath,
|
|
ext4_lblk_t split,
|
|
int split_flag,
|
|
int flags);
|
|
|
|
static int ext4_find_delayed_extent(struct inode *inode,
|
|
struct extent_status *newes);
|
|
|
|
static int ext4_ext_truncate_extend_restart(handle_t *handle,
|
|
struct inode *inode,
|
|
int needed)
|
|
{
|
|
int err;
|
|
|
|
if (!ext4_handle_valid(handle))
|
|
return 0;
|
|
if (handle->h_buffer_credits > needed)
|
|
return 0;
|
|
err = ext4_journal_extend(handle, needed);
|
|
if (err <= 0)
|
|
return err;
|
|
err = ext4_truncate_restart_trans(handle, inode, needed);
|
|
if (err == 0)
|
|
err = -EAGAIN;
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* could return:
|
|
* - EROFS
|
|
* - ENOMEM
|
|
*/
|
|
static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
if (path->p_bh) {
|
|
/* path points to block */
|
|
BUFFER_TRACE(path->p_bh, "get_write_access");
|
|
return ext4_journal_get_write_access(handle, path->p_bh);
|
|
}
|
|
/* path points to leaf/index in inode body */
|
|
/* we use in-core data, no need to protect them */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* could return:
|
|
* - EROFS
|
|
* - ENOMEM
|
|
* - EIO
|
|
*/
|
|
int __ext4_ext_dirty(const char *where, unsigned int line, handle_t *handle,
|
|
struct inode *inode, struct ext4_ext_path *path)
|
|
{
|
|
int err;
|
|
|
|
WARN_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
|
|
if (path->p_bh) {
|
|
ext4_extent_block_csum_set(inode, ext_block_hdr(path->p_bh));
|
|
/* path points to block */
|
|
err = __ext4_handle_dirty_metadata(where, line, handle,
|
|
inode, path->p_bh);
|
|
} else {
|
|
/* path points to leaf/index in inode body */
|
|
err = ext4_mark_inode_dirty(handle, inode);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t block)
|
|
{
|
|
if (path) {
|
|
int depth = path->p_depth;
|
|
struct ext4_extent *ex;
|
|
|
|
/*
|
|
* Try to predict block placement assuming that we are
|
|
* filling in a file which will eventually be
|
|
* non-sparse --- i.e., in the case of libbfd writing
|
|
* an ELF object sections out-of-order but in a way
|
|
* the eventually results in a contiguous object or
|
|
* executable file, or some database extending a table
|
|
* space file. However, this is actually somewhat
|
|
* non-ideal if we are writing a sparse file such as
|
|
* qemu or KVM writing a raw image file that is going
|
|
* to stay fairly sparse, since it will end up
|
|
* fragmenting the file system's free space. Maybe we
|
|
* should have some hueristics or some way to allow
|
|
* userspace to pass a hint to file system,
|
|
* especially if the latter case turns out to be
|
|
* common.
|
|
*/
|
|
ex = path[depth].p_ext;
|
|
if (ex) {
|
|
ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
|
|
ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
|
|
|
|
if (block > ext_block)
|
|
return ext_pblk + (block - ext_block);
|
|
else
|
|
return ext_pblk - (ext_block - block);
|
|
}
|
|
|
|
/* it looks like index is empty;
|
|
* try to find starting block from index itself */
|
|
if (path[depth].p_bh)
|
|
return path[depth].p_bh->b_blocknr;
|
|
}
|
|
|
|
/* OK. use inode's group */
|
|
return ext4_inode_to_goal_block(inode);
|
|
}
|
|
|
|
/*
|
|
* Allocation for a meta data block
|
|
*/
|
|
static ext4_fsblk_t
|
|
ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex, int *err, unsigned int flags)
|
|
{
|
|
ext4_fsblk_t goal, newblock;
|
|
|
|
goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
|
|
newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
|
|
NULL, err);
|
|
return newblock;
|
|
}
|
|
|
|
static inline int ext4_ext_space_block(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 6)
|
|
size = 6;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent_idx);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 5)
|
|
size = 5;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_root(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = sizeof(EXT4_I(inode)->i_data);
|
|
size -= sizeof(struct ext4_extent_header);
|
|
size /= sizeof(struct ext4_extent);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 3)
|
|
size = 3;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
|
|
{
|
|
int size;
|
|
|
|
size = sizeof(EXT4_I(inode)->i_data);
|
|
size -= sizeof(struct ext4_extent_header);
|
|
size /= sizeof(struct ext4_extent_idx);
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (!check && size > 4)
|
|
size = 4;
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
static inline int
|
|
ext4_force_split_extent_at(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path **ppath, ext4_lblk_t lblk,
|
|
int nofail)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
int unwritten = ext4_ext_is_unwritten(path[path->p_depth].p_ext);
|
|
|
|
return ext4_split_extent_at(handle, inode, ppath, lblk, unwritten ?
|
|
EXT4_EXT_MARK_UNWRIT1|EXT4_EXT_MARK_UNWRIT2 : 0,
|
|
EXT4_EX_NOCACHE | EXT4_GET_BLOCKS_PRE_IO |
|
|
(nofail ? EXT4_GET_BLOCKS_METADATA_NOFAIL:0));
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of metadata blocks needed
|
|
* to allocate @blocks
|
|
* Worse case is one block per extent
|
|
*/
|
|
int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
int idxs;
|
|
|
|
idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
|
|
/ sizeof(struct ext4_extent_idx));
|
|
|
|
/*
|
|
* If the new delayed allocation block is contiguous with the
|
|
* previous da block, it can share index blocks with the
|
|
* previous block, so we only need to allocate a new index
|
|
* block every idxs leaf blocks. At ldxs**2 blocks, we need
|
|
* an additional index block, and at ldxs**3 blocks, yet
|
|
* another index blocks.
|
|
*/
|
|
if (ei->i_da_metadata_calc_len &&
|
|
ei->i_da_metadata_calc_last_lblock+1 == lblock) {
|
|
int num = 0;
|
|
|
|
if ((ei->i_da_metadata_calc_len % idxs) == 0)
|
|
num++;
|
|
if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
|
|
num++;
|
|
if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
|
|
num++;
|
|
ei->i_da_metadata_calc_len = 0;
|
|
} else
|
|
ei->i_da_metadata_calc_len++;
|
|
ei->i_da_metadata_calc_last_lblock++;
|
|
return num;
|
|
}
|
|
|
|
/*
|
|
* In the worst case we need a new set of index blocks at
|
|
* every level of the inode's extent tree.
|
|
*/
|
|
ei->i_da_metadata_calc_len = 1;
|
|
ei->i_da_metadata_calc_last_lblock = lblock;
|
|
return ext_depth(inode) + 1;
|
|
}
|
|
|
|
static int
|
|
ext4_ext_max_entries(struct inode *inode, int depth)
|
|
{
|
|
int max;
|
|
|
|
if (depth == ext_depth(inode)) {
|
|
if (depth == 0)
|
|
max = ext4_ext_space_root(inode, 1);
|
|
else
|
|
max = ext4_ext_space_root_idx(inode, 1);
|
|
} else {
|
|
if (depth == 0)
|
|
max = ext4_ext_space_block(inode, 1);
|
|
else
|
|
max = ext4_ext_space_block_idx(inode, 1);
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
|
|
{
|
|
ext4_fsblk_t block = ext4_ext_pblock(ext);
|
|
int len = ext4_ext_get_actual_len(ext);
|
|
ext4_lblk_t lblock = le32_to_cpu(ext->ee_block);
|
|
ext4_lblk_t last = lblock + len - 1;
|
|
|
|
if (len == 0 || lblock > last)
|
|
return 0;
|
|
return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
|
|
}
|
|
|
|
static int ext4_valid_extent_idx(struct inode *inode,
|
|
struct ext4_extent_idx *ext_idx)
|
|
{
|
|
ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
|
|
|
|
return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
|
|
}
|
|
|
|
static int ext4_valid_extent_entries(struct inode *inode,
|
|
struct ext4_extent_header *eh,
|
|
int depth)
|
|
{
|
|
unsigned short entries;
|
|
if (eh->eh_entries == 0)
|
|
return 1;
|
|
|
|
entries = le16_to_cpu(eh->eh_entries);
|
|
|
|
if (depth == 0) {
|
|
/* leaf entries */
|
|
struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
|
|
struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
|
|
ext4_fsblk_t pblock = 0;
|
|
ext4_lblk_t lblock = 0;
|
|
ext4_lblk_t prev = 0;
|
|
int len = 0;
|
|
while (entries) {
|
|
if (!ext4_valid_extent(inode, ext))
|
|
return 0;
|
|
|
|
/* Check for overlapping extents */
|
|
lblock = le32_to_cpu(ext->ee_block);
|
|
len = ext4_ext_get_actual_len(ext);
|
|
if ((lblock <= prev) && prev) {
|
|
pblock = ext4_ext_pblock(ext);
|
|
es->s_last_error_block = cpu_to_le64(pblock);
|
|
return 0;
|
|
}
|
|
ext++;
|
|
entries--;
|
|
prev = lblock + len - 1;
|
|
}
|
|
} else {
|
|
struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
|
|
while (entries) {
|
|
if (!ext4_valid_extent_idx(inode, ext_idx))
|
|
return 0;
|
|
ext_idx++;
|
|
entries--;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int __ext4_ext_check(const char *function, unsigned int line,
|
|
struct inode *inode, struct ext4_extent_header *eh,
|
|
int depth, ext4_fsblk_t pblk)
|
|
{
|
|
const char *error_msg;
|
|
int max = 0;
|
|
|
|
if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
|
|
error_msg = "invalid magic";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
|
|
error_msg = "unexpected eh_depth";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(eh->eh_max == 0)) {
|
|
error_msg = "invalid eh_max";
|
|
goto corrupted;
|
|
}
|
|
max = ext4_ext_max_entries(inode, depth);
|
|
if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
|
|
error_msg = "too large eh_max";
|
|
goto corrupted;
|
|
}
|
|
if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
|
|
error_msg = "invalid eh_entries";
|
|
goto corrupted;
|
|
}
|
|
if (!ext4_valid_extent_entries(inode, eh, depth)) {
|
|
error_msg = "invalid extent entries";
|
|
goto corrupted;
|
|
}
|
|
/* Verify checksum on non-root extent tree nodes */
|
|
if (ext_depth(inode) != depth &&
|
|
!ext4_extent_block_csum_verify(inode, eh)) {
|
|
error_msg = "extent tree corrupted";
|
|
goto corrupted;
|
|
}
|
|
return 0;
|
|
|
|
corrupted:
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"pblk %llu bad header/extent: %s - magic %x, "
|
|
"entries %u, max %u(%u), depth %u(%u)",
|
|
(unsigned long long) pblk, error_msg,
|
|
le16_to_cpu(eh->eh_magic),
|
|
le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
|
|
max, le16_to_cpu(eh->eh_depth), depth);
|
|
return -EIO;
|
|
}
|
|
|
|
#define ext4_ext_check(inode, eh, depth, pblk) \
|
|
__ext4_ext_check(__func__, __LINE__, (inode), (eh), (depth), (pblk))
|
|
|
|
int ext4_ext_check_inode(struct inode *inode)
|
|
{
|
|
return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode), 0);
|
|
}
|
|
|
|
static struct buffer_head *
|
|
__read_extent_tree_block(const char *function, unsigned int line,
|
|
struct inode *inode, ext4_fsblk_t pblk, int depth,
|
|
int flags)
|
|
{
|
|
struct buffer_head *bh;
|
|
int err;
|
|
|
|
bh = sb_getblk(inode->i_sb, pblk);
|
|
if (unlikely(!bh))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (!bh_uptodate_or_lock(bh)) {
|
|
trace_ext4_ext_load_extent(inode, pblk, _RET_IP_);
|
|
err = bh_submit_read(bh);
|
|
if (err < 0)
|
|
goto errout;
|
|
}
|
|
if (buffer_verified(bh) && !(flags & EXT4_EX_FORCE_CACHE))
|
|
return bh;
|
|
err = __ext4_ext_check(function, line, inode,
|
|
ext_block_hdr(bh), depth, pblk);
|
|
if (err)
|
|
goto errout;
|
|
set_buffer_verified(bh);
|
|
/*
|
|
* If this is a leaf block, cache all of its entries
|
|
*/
|
|
if (!(flags & EXT4_EX_NOCACHE) && depth == 0) {
|
|
struct ext4_extent_header *eh = ext_block_hdr(bh);
|
|
struct ext4_extent *ex = EXT_FIRST_EXTENT(eh);
|
|
ext4_lblk_t prev = 0;
|
|
int i;
|
|
|
|
for (i = le16_to_cpu(eh->eh_entries); i > 0; i--, ex++) {
|
|
unsigned int status = EXTENT_STATUS_WRITTEN;
|
|
ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
|
|
int len = ext4_ext_get_actual_len(ex);
|
|
|
|
if (prev && (prev != lblk))
|
|
ext4_es_cache_extent(inode, prev,
|
|
lblk - prev, ~0,
|
|
EXTENT_STATUS_HOLE);
|
|
|
|
if (ext4_ext_is_unwritten(ex))
|
|
status = EXTENT_STATUS_UNWRITTEN;
|
|
ext4_es_cache_extent(inode, lblk, len,
|
|
ext4_ext_pblock(ex), status);
|
|
prev = lblk + len;
|
|
}
|
|
}
|
|
return bh;
|
|
errout:
|
|
put_bh(bh);
|
|
return ERR_PTR(err);
|
|
|
|
}
|
|
|
|
#define read_extent_tree_block(inode, pblk, depth, flags) \
|
|
__read_extent_tree_block(__func__, __LINE__, (inode), (pblk), \
|
|
(depth), (flags))
|
|
|
|
/*
|
|
* This function is called to cache a file's extent information in the
|
|
* extent status tree
|
|
*/
|
|
int ext4_ext_precache(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct ext4_ext_path *path = NULL;
|
|
struct buffer_head *bh;
|
|
int i = 0, depth, ret = 0;
|
|
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
return 0; /* not an extent-mapped inode */
|
|
|
|
down_read(&ei->i_data_sem);
|
|
depth = ext_depth(inode);
|
|
|
|
path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
|
|
GFP_NOFS);
|
|
if (path == NULL) {
|
|
up_read(&ei->i_data_sem);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Don't cache anything if there are no external extent blocks */
|
|
if (depth == 0)
|
|
goto out;
|
|
path[0].p_hdr = ext_inode_hdr(inode);
|
|
ret = ext4_ext_check(inode, path[0].p_hdr, depth, 0);
|
|
if (ret)
|
|
goto out;
|
|
path[0].p_idx = EXT_FIRST_INDEX(path[0].p_hdr);
|
|
while (i >= 0) {
|
|
/*
|
|
* If this is a leaf block or we've reached the end of
|
|
* the index block, go up
|
|
*/
|
|
if ((i == depth) ||
|
|
path[i].p_idx > EXT_LAST_INDEX(path[i].p_hdr)) {
|
|
brelse(path[i].p_bh);
|
|
path[i].p_bh = NULL;
|
|
i--;
|
|
continue;
|
|
}
|
|
bh = read_extent_tree_block(inode,
|
|
ext4_idx_pblock(path[i].p_idx++),
|
|
depth - i - 1,
|
|
EXT4_EX_FORCE_CACHE);
|
|
if (IS_ERR(bh)) {
|
|
ret = PTR_ERR(bh);
|
|
break;
|
|
}
|
|
i++;
|
|
path[i].p_bh = bh;
|
|
path[i].p_hdr = ext_block_hdr(bh);
|
|
path[i].p_idx = EXT_FIRST_INDEX(path[i].p_hdr);
|
|
}
|
|
ext4_set_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
|
|
out:
|
|
up_read(&ei->i_data_sem);
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef EXT_DEBUG
|
|
static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
|
|
{
|
|
int k, l = path->p_depth;
|
|
|
|
ext_debug("path:");
|
|
for (k = 0; k <= l; k++, path++) {
|
|
if (path->p_idx) {
|
|
ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
|
|
ext4_idx_pblock(path->p_idx));
|
|
} else if (path->p_ext) {
|
|
ext_debug(" %d:[%d]%d:%llu ",
|
|
le32_to_cpu(path->p_ext->ee_block),
|
|
ext4_ext_is_unwritten(path->p_ext),
|
|
ext4_ext_get_actual_len(path->p_ext),
|
|
ext4_ext_pblock(path->p_ext));
|
|
} else
|
|
ext_debug(" []");
|
|
}
|
|
ext_debug("\n");
|
|
}
|
|
|
|
static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *ex;
|
|
int i;
|
|
|
|
if (!path)
|
|
return;
|
|
|
|
eh = path[depth].p_hdr;
|
|
ex = EXT_FIRST_EXTENT(eh);
|
|
|
|
ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
|
|
|
|
for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
|
|
ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
|
|
ext4_ext_is_unwritten(ex),
|
|
ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
|
|
}
|
|
ext_debug("\n");
|
|
}
|
|
|
|
static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
|
|
ext4_fsblk_t newblock, int level)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent *ex;
|
|
|
|
if (depth != level) {
|
|
struct ext4_extent_idx *idx;
|
|
idx = path[level].p_idx;
|
|
while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
|
|
ext_debug("%d: move %d:%llu in new index %llu\n", level,
|
|
le32_to_cpu(idx->ei_block),
|
|
ext4_idx_pblock(idx),
|
|
newblock);
|
|
idx++;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
ex = path[depth].p_ext;
|
|
while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
|
|
ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_pblock(ex),
|
|
ext4_ext_is_unwritten(ex),
|
|
ext4_ext_get_actual_len(ex),
|
|
newblock);
|
|
ex++;
|
|
}
|
|
}
|
|
|
|
#else
|
|
#define ext4_ext_show_path(inode, path)
|
|
#define ext4_ext_show_leaf(inode, path)
|
|
#define ext4_ext_show_move(inode, path, newblock, level)
|
|
#endif
|
|
|
|
void ext4_ext_drop_refs(struct ext4_ext_path *path)
|
|
{
|
|
int depth, i;
|
|
|
|
if (!path)
|
|
return;
|
|
depth = path->p_depth;
|
|
for (i = 0; i <= depth; i++, path++)
|
|
if (path->p_bh) {
|
|
brelse(path->p_bh);
|
|
path->p_bh = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_binsearch_idx:
|
|
* binary search for the closest index of the given block
|
|
* the header must be checked before calling this
|
|
*/
|
|
static void
|
|
ext4_ext_binsearch_idx(struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_lblk_t block)
|
|
{
|
|
struct ext4_extent_header *eh = path->p_hdr;
|
|
struct ext4_extent_idx *r, *l, *m;
|
|
|
|
|
|
ext_debug("binsearch for %u(idx): ", block);
|
|
|
|
l = EXT_FIRST_INDEX(eh) + 1;
|
|
r = EXT_LAST_INDEX(eh);
|
|
while (l <= r) {
|
|
m = l + (r - l) / 2;
|
|
if (block < le32_to_cpu(m->ei_block))
|
|
r = m - 1;
|
|
else
|
|
l = m + 1;
|
|
ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
|
|
m, le32_to_cpu(m->ei_block),
|
|
r, le32_to_cpu(r->ei_block));
|
|
}
|
|
|
|
path->p_idx = l - 1;
|
|
ext_debug(" -> %u->%lld ", le32_to_cpu(path->p_idx->ei_block),
|
|
ext4_idx_pblock(path->p_idx));
|
|
|
|
#ifdef CHECK_BINSEARCH
|
|
{
|
|
struct ext4_extent_idx *chix, *ix;
|
|
int k;
|
|
|
|
chix = ix = EXT_FIRST_INDEX(eh);
|
|
for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
|
|
if (k != 0 &&
|
|
le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
|
|
printk(KERN_DEBUG "k=%d, ix=0x%p, "
|
|
"first=0x%p\n", k,
|
|
ix, EXT_FIRST_INDEX(eh));
|
|
printk(KERN_DEBUG "%u <= %u\n",
|
|
le32_to_cpu(ix->ei_block),
|
|
le32_to_cpu(ix[-1].ei_block));
|
|
}
|
|
BUG_ON(k && le32_to_cpu(ix->ei_block)
|
|
<= le32_to_cpu(ix[-1].ei_block));
|
|
if (block < le32_to_cpu(ix->ei_block))
|
|
break;
|
|
chix = ix;
|
|
}
|
|
BUG_ON(chix != path->p_idx);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_binsearch:
|
|
* binary search for closest extent of the given block
|
|
* the header must be checked before calling this
|
|
*/
|
|
static void
|
|
ext4_ext_binsearch(struct inode *inode,
|
|
struct ext4_ext_path *path, ext4_lblk_t block)
|
|
{
|
|
struct ext4_extent_header *eh = path->p_hdr;
|
|
struct ext4_extent *r, *l, *m;
|
|
|
|
if (eh->eh_entries == 0) {
|
|
/*
|
|
* this leaf is empty:
|
|
* we get such a leaf in split/add case
|
|
*/
|
|
return;
|
|
}
|
|
|
|
ext_debug("binsearch for %u: ", block);
|
|
|
|
l = EXT_FIRST_EXTENT(eh) + 1;
|
|
r = EXT_LAST_EXTENT(eh);
|
|
|
|
while (l <= r) {
|
|
m = l + (r - l) / 2;
|
|
if (block < le32_to_cpu(m->ee_block))
|
|
r = m - 1;
|
|
else
|
|
l = m + 1;
|
|
ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
|
|
m, le32_to_cpu(m->ee_block),
|
|
r, le32_to_cpu(r->ee_block));
|
|
}
|
|
|
|
path->p_ext = l - 1;
|
|
ext_debug(" -> %d:%llu:[%d]%d ",
|
|
le32_to_cpu(path->p_ext->ee_block),
|
|
ext4_ext_pblock(path->p_ext),
|
|
ext4_ext_is_unwritten(path->p_ext),
|
|
ext4_ext_get_actual_len(path->p_ext));
|
|
|
|
#ifdef CHECK_BINSEARCH
|
|
{
|
|
struct ext4_extent *chex, *ex;
|
|
int k;
|
|
|
|
chex = ex = EXT_FIRST_EXTENT(eh);
|
|
for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
|
|
BUG_ON(k && le32_to_cpu(ex->ee_block)
|
|
<= le32_to_cpu(ex[-1].ee_block));
|
|
if (block < le32_to_cpu(ex->ee_block))
|
|
break;
|
|
chex = ex;
|
|
}
|
|
BUG_ON(chex != path->p_ext);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
|
|
eh = ext_inode_hdr(inode);
|
|
eh->eh_depth = 0;
|
|
eh->eh_entries = 0;
|
|
eh->eh_magic = EXT4_EXT_MAGIC;
|
|
eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
return 0;
|
|
}
|
|
|
|
struct ext4_ext_path *
|
|
ext4_find_extent(struct inode *inode, ext4_lblk_t block,
|
|
struct ext4_ext_path **orig_path, int flags)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
struct buffer_head *bh;
|
|
struct ext4_ext_path *path = orig_path ? *orig_path : NULL;
|
|
short int depth, i, ppos = 0;
|
|
int ret;
|
|
|
|
eh = ext_inode_hdr(inode);
|
|
depth = ext_depth(inode);
|
|
|
|
if (path) {
|
|
ext4_ext_drop_refs(path);
|
|
if (depth > path[0].p_maxdepth) {
|
|
kfree(path);
|
|
*orig_path = path = NULL;
|
|
}
|
|
}
|
|
if (!path) {
|
|
/* account possible depth increase */
|
|
path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
|
|
GFP_NOFS);
|
|
if (unlikely(!path))
|
|
return ERR_PTR(-ENOMEM);
|
|
path[0].p_maxdepth = depth + 1;
|
|
}
|
|
path[0].p_hdr = eh;
|
|
path[0].p_bh = NULL;
|
|
|
|
i = depth;
|
|
/* walk through the tree */
|
|
while (i) {
|
|
ext_debug("depth %d: num %d, max %d\n",
|
|
ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
|
|
|
|
ext4_ext_binsearch_idx(inode, path + ppos, block);
|
|
path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
|
|
path[ppos].p_depth = i;
|
|
path[ppos].p_ext = NULL;
|
|
|
|
bh = read_extent_tree_block(inode, path[ppos].p_block, --i,
|
|
flags);
|
|
if (unlikely(IS_ERR(bh))) {
|
|
ret = PTR_ERR(bh);
|
|
goto err;
|
|
}
|
|
|
|
eh = ext_block_hdr(bh);
|
|
ppos++;
|
|
if (unlikely(ppos > depth)) {
|
|
put_bh(bh);
|
|
EXT4_ERROR_INODE(inode,
|
|
"ppos %d > depth %d", ppos, depth);
|
|
ret = -EIO;
|
|
goto err;
|
|
}
|
|
path[ppos].p_bh = bh;
|
|
path[ppos].p_hdr = eh;
|
|
}
|
|
|
|
path[ppos].p_depth = i;
|
|
path[ppos].p_ext = NULL;
|
|
path[ppos].p_idx = NULL;
|
|
|
|
/* find extent */
|
|
ext4_ext_binsearch(inode, path + ppos, block);
|
|
/* if not an empty leaf */
|
|
if (path[ppos].p_ext)
|
|
path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
|
|
|
|
ext4_ext_show_path(inode, path);
|
|
|
|
return path;
|
|
|
|
err:
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
if (orig_path)
|
|
*orig_path = NULL;
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_insert_index:
|
|
* insert new index [@logical;@ptr] into the block at @curp;
|
|
* check where to insert: before @curp or after @curp
|
|
*/
|
|
static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *curp,
|
|
int logical, ext4_fsblk_t ptr)
|
|
{
|
|
struct ext4_extent_idx *ix;
|
|
int len, err;
|
|
|
|
err = ext4_ext_get_access(handle, inode, curp);
|
|
if (err)
|
|
return err;
|
|
|
|
if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"logical %d == ei_block %d!",
|
|
logical, le32_to_cpu(curp->p_idx->ei_block));
|
|
return -EIO;
|
|
}
|
|
|
|
if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
|
|
>= le16_to_cpu(curp->p_hdr->eh_max))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"eh_entries %d >= eh_max %d!",
|
|
le16_to_cpu(curp->p_hdr->eh_entries),
|
|
le16_to_cpu(curp->p_hdr->eh_max));
|
|
return -EIO;
|
|
}
|
|
|
|
if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
|
|
/* insert after */
|
|
ext_debug("insert new index %d after: %llu\n", logical, ptr);
|
|
ix = curp->p_idx + 1;
|
|
} else {
|
|
/* insert before */
|
|
ext_debug("insert new index %d before: %llu\n", logical, ptr);
|
|
ix = curp->p_idx;
|
|
}
|
|
|
|
len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
|
|
BUG_ON(len < 0);
|
|
if (len > 0) {
|
|
ext_debug("insert new index %d: "
|
|
"move %d indices from 0x%p to 0x%p\n",
|
|
logical, len, ix, ix + 1);
|
|
memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
|
|
}
|
|
|
|
if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
|
|
EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
|
|
return -EIO;
|
|
}
|
|
|
|
ix->ei_block = cpu_to_le32(logical);
|
|
ext4_idx_store_pblock(ix, ptr);
|
|
le16_add_cpu(&curp->p_hdr->eh_entries, 1);
|
|
|
|
if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
|
|
EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
|
|
return -EIO;
|
|
}
|
|
|
|
err = ext4_ext_dirty(handle, inode, curp);
|
|
ext4_std_error(inode->i_sb, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_split:
|
|
* inserts new subtree into the path, using free index entry
|
|
* at depth @at:
|
|
* - allocates all needed blocks (new leaf and all intermediate index blocks)
|
|
* - makes decision where to split
|
|
* - moves remaining extents and index entries (right to the split point)
|
|
* into the newly allocated blocks
|
|
* - initializes subtree
|
|
*/
|
|
static int ext4_ext_split(handle_t *handle, struct inode *inode,
|
|
unsigned int flags,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *newext, int at)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent_header *neh;
|
|
struct ext4_extent_idx *fidx;
|
|
int i = at, k, m, a;
|
|
ext4_fsblk_t newblock, oldblock;
|
|
__le32 border;
|
|
ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
|
|
int err = 0;
|
|
|
|
/* make decision: where to split? */
|
|
/* FIXME: now decision is simplest: at current extent */
|
|
|
|
/* if current leaf will be split, then we should use
|
|
* border from split point */
|
|
if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
|
|
return -EIO;
|
|
}
|
|
if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
|
|
border = path[depth].p_ext[1].ee_block;
|
|
ext_debug("leaf will be split."
|
|
" next leaf starts at %d\n",
|
|
le32_to_cpu(border));
|
|
} else {
|
|
border = newext->ee_block;
|
|
ext_debug("leaf will be added."
|
|
" next leaf starts at %d\n",
|
|
le32_to_cpu(border));
|
|
}
|
|
|
|
/*
|
|
* If error occurs, then we break processing
|
|
* and mark filesystem read-only. index won't
|
|
* be inserted and tree will be in consistent
|
|
* state. Next mount will repair buffers too.
|
|
*/
|
|
|
|
/*
|
|
* Get array to track all allocated blocks.
|
|
* We need this to handle errors and free blocks
|
|
* upon them.
|
|
*/
|
|
ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
|
|
if (!ablocks)
|
|
return -ENOMEM;
|
|
|
|
/* allocate all needed blocks */
|
|
ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
|
|
for (a = 0; a < depth - at; a++) {
|
|
newblock = ext4_ext_new_meta_block(handle, inode, path,
|
|
newext, &err, flags);
|
|
if (newblock == 0)
|
|
goto cleanup;
|
|
ablocks[a] = newblock;
|
|
}
|
|
|
|
/* initialize new leaf */
|
|
newblock = ablocks[--a];
|
|
if (unlikely(newblock == 0)) {
|
|
EXT4_ERROR_INODE(inode, "newblock == 0!");
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (unlikely(!bh)) {
|
|
err = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
neh = ext_block_hdr(bh);
|
|
neh->eh_entries = 0;
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
neh->eh_depth = 0;
|
|
|
|
/* move remainder of path[depth] to the new leaf */
|
|
if (unlikely(path[depth].p_hdr->eh_entries !=
|
|
path[depth].p_hdr->eh_max)) {
|
|
EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
|
|
path[depth].p_hdr->eh_entries,
|
|
path[depth].p_hdr->eh_max);
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
/* start copy from next extent */
|
|
m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
|
|
ext4_ext_show_move(inode, path, newblock, depth);
|
|
if (m) {
|
|
struct ext4_extent *ex;
|
|
ex = EXT_FIRST_EXTENT(neh);
|
|
memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
|
|
le16_add_cpu(&neh->eh_entries, m);
|
|
}
|
|
|
|
ext4_extent_block_csum_set(inode, neh);
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
/* correct old leaf */
|
|
if (m) {
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
}
|
|
|
|
/* create intermediate indexes */
|
|
k = depth - at - 1;
|
|
if (unlikely(k < 0)) {
|
|
EXT4_ERROR_INODE(inode, "k %d < 0!", k);
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
if (k)
|
|
ext_debug("create %d intermediate indices\n", k);
|
|
/* insert new index into current index block */
|
|
/* current depth stored in i var */
|
|
i = depth - 1;
|
|
while (k--) {
|
|
oldblock = newblock;
|
|
newblock = ablocks[--a];
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (unlikely(!bh)) {
|
|
err = -ENOMEM;
|
|
goto cleanup;
|
|
}
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
neh = ext_block_hdr(bh);
|
|
neh->eh_entries = cpu_to_le16(1);
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
|
|
neh->eh_depth = cpu_to_le16(depth - i);
|
|
fidx = EXT_FIRST_INDEX(neh);
|
|
fidx->ei_block = border;
|
|
ext4_idx_store_pblock(fidx, oldblock);
|
|
|
|
ext_debug("int.index at %d (block %llu): %u -> %llu\n",
|
|
i, newblock, le32_to_cpu(border), oldblock);
|
|
|
|
/* move remainder of path[i] to the new index block */
|
|
if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
|
|
EXT_LAST_INDEX(path[i].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
|
|
le32_to_cpu(path[i].p_ext->ee_block));
|
|
err = -EIO;
|
|
goto cleanup;
|
|
}
|
|
/* start copy indexes */
|
|
m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
|
|
ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
|
|
EXT_MAX_INDEX(path[i].p_hdr));
|
|
ext4_ext_show_move(inode, path, newblock, i);
|
|
if (m) {
|
|
memmove(++fidx, path[i].p_idx,
|
|
sizeof(struct ext4_extent_idx) * m);
|
|
le16_add_cpu(&neh->eh_entries, m);
|
|
}
|
|
ext4_extent_block_csum_set(inode, neh);
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto cleanup;
|
|
brelse(bh);
|
|
bh = NULL;
|
|
|
|
/* correct old index */
|
|
if (m) {
|
|
err = ext4_ext_get_access(handle, inode, path + i);
|
|
if (err)
|
|
goto cleanup;
|
|
le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
|
|
err = ext4_ext_dirty(handle, inode, path + i);
|
|
if (err)
|
|
goto cleanup;
|
|
}
|
|
|
|
i--;
|
|
}
|
|
|
|
/* insert new index */
|
|
err = ext4_ext_insert_index(handle, inode, path + at,
|
|
le32_to_cpu(border), newblock);
|
|
|
|
cleanup:
|
|
if (bh) {
|
|
if (buffer_locked(bh))
|
|
unlock_buffer(bh);
|
|
brelse(bh);
|
|
}
|
|
|
|
if (err) {
|
|
/* free all allocated blocks in error case */
|
|
for (i = 0; i < depth; i++) {
|
|
if (!ablocks[i])
|
|
continue;
|
|
ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
|
|
EXT4_FREE_BLOCKS_METADATA);
|
|
}
|
|
}
|
|
kfree(ablocks);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_grow_indepth:
|
|
* implements tree growing procedure:
|
|
* - allocates new block
|
|
* - moves top-level data (index block or leaf) into the new block
|
|
* - initializes new top-level, creating index that points to the
|
|
* just created block
|
|
*/
|
|
static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
|
|
unsigned int flags)
|
|
{
|
|
struct ext4_extent_header *neh;
|
|
struct buffer_head *bh;
|
|
ext4_fsblk_t newblock, goal = 0;
|
|
struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
|
|
int err = 0;
|
|
|
|
/* Try to prepend new index to old one */
|
|
if (ext_depth(inode))
|
|
goal = ext4_idx_pblock(EXT_FIRST_INDEX(ext_inode_hdr(inode)));
|
|
if (goal > le32_to_cpu(es->s_first_data_block)) {
|
|
flags |= EXT4_MB_HINT_TRY_GOAL;
|
|
goal--;
|
|
} else
|
|
goal = ext4_inode_to_goal_block(inode);
|
|
newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
|
|
NULL, &err);
|
|
if (newblock == 0)
|
|
return err;
|
|
|
|
bh = sb_getblk(inode->i_sb, newblock);
|
|
if (unlikely(!bh))
|
|
return -ENOMEM;
|
|
lock_buffer(bh);
|
|
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (err) {
|
|
unlock_buffer(bh);
|
|
goto out;
|
|
}
|
|
|
|
/* move top-level index/leaf into new block */
|
|
memmove(bh->b_data, EXT4_I(inode)->i_data,
|
|
sizeof(EXT4_I(inode)->i_data));
|
|
|
|
/* set size of new block */
|
|
neh = ext_block_hdr(bh);
|
|
/* old root could have indexes or leaves
|
|
* so calculate e_max right way */
|
|
if (ext_depth(inode))
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
|
|
else
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
|
|
neh->eh_magic = EXT4_EXT_MAGIC;
|
|
ext4_extent_block_csum_set(inode, neh);
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* Update top-level index: num,max,pointer */
|
|
neh = ext_inode_hdr(inode);
|
|
neh->eh_entries = cpu_to_le16(1);
|
|
ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
|
|
if (neh->eh_depth == 0) {
|
|
/* Root extent block becomes index block */
|
|
neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
|
|
EXT_FIRST_INDEX(neh)->ei_block =
|
|
EXT_FIRST_EXTENT(neh)->ee_block;
|
|
}
|
|
ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
|
|
le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
|
|
le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
|
|
ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
|
|
|
|
le16_add_cpu(&neh->eh_depth, 1);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
out:
|
|
brelse(bh);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_create_new_leaf:
|
|
* finds empty index and adds new leaf.
|
|
* if no free index is found, then it requests in-depth growing.
|
|
*/
|
|
static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
|
|
unsigned int mb_flags,
|
|
unsigned int gb_flags,
|
|
struct ext4_ext_path **ppath,
|
|
struct ext4_extent *newext)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
struct ext4_ext_path *curp;
|
|
int depth, i, err = 0;
|
|
|
|
repeat:
|
|
i = depth = ext_depth(inode);
|
|
|
|
/* walk up to the tree and look for free index entry */
|
|
curp = path + depth;
|
|
while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
|
|
i--;
|
|
curp--;
|
|
}
|
|
|
|
/* we use already allocated block for index block,
|
|
* so subsequent data blocks should be contiguous */
|
|
if (EXT_HAS_FREE_INDEX(curp)) {
|
|
/* if we found index with free entry, then use that
|
|
* entry: create all needed subtree and add new leaf */
|
|
err = ext4_ext_split(handle, inode, mb_flags, path, newext, i);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* refill path */
|
|
path = ext4_find_extent(inode,
|
|
(ext4_lblk_t)le32_to_cpu(newext->ee_block),
|
|
ppath, gb_flags);
|
|
if (IS_ERR(path))
|
|
err = PTR_ERR(path);
|
|
} else {
|
|
/* tree is full, time to grow in depth */
|
|
err = ext4_ext_grow_indepth(handle, inode, mb_flags);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* refill path */
|
|
path = ext4_find_extent(inode,
|
|
(ext4_lblk_t)le32_to_cpu(newext->ee_block),
|
|
ppath, gb_flags);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* only first (depth 0 -> 1) produces free space;
|
|
* in all other cases we have to split the grown tree
|
|
*/
|
|
depth = ext_depth(inode);
|
|
if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
|
|
/* now we need to split */
|
|
goto repeat;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* search the closest allocated block to the left for *logical
|
|
* and returns it at @logical + it's physical address at @phys
|
|
* if *logical is the smallest allocated block, the function
|
|
* returns 0 at @phys
|
|
* return value contains 0 (success) or error code
|
|
*/
|
|
static int ext4_ext_search_left(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t *logical, ext4_fsblk_t *phys)
|
|
{
|
|
struct ext4_extent_idx *ix;
|
|
struct ext4_extent *ex;
|
|
int depth, ee_len;
|
|
|
|
if (unlikely(path == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
|
|
return -EIO;
|
|
}
|
|
depth = path->p_depth;
|
|
*phys = 0;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return 0;
|
|
|
|
/* usually extent in the path covers blocks smaller
|
|
* then *logical, but it can be that extent is the
|
|
* first one in the file */
|
|
|
|
ex = path[depth].p_ext;
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
if (*logical < le32_to_cpu(ex->ee_block)) {
|
|
if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
|
|
*logical, le32_to_cpu(ex->ee_block));
|
|
return -EIO;
|
|
}
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
|
|
ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
|
|
EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
|
|
le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
|
|
depth);
|
|
return -EIO;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"logical %d < ee_block %d + ee_len %d!",
|
|
*logical, le32_to_cpu(ex->ee_block), ee_len);
|
|
return -EIO;
|
|
}
|
|
|
|
*logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
|
|
*phys = ext4_ext_pblock(ex) + ee_len - 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* search the closest allocated block to the right for *logical
|
|
* and returns it at @logical + it's physical address at @phys
|
|
* if *logical is the largest allocated block, the function
|
|
* returns 0 at @phys
|
|
* return value contains 0 (success) or error code
|
|
*/
|
|
static int ext4_ext_search_right(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
ext4_lblk_t *logical, ext4_fsblk_t *phys,
|
|
struct ext4_extent **ret_ex)
|
|
{
|
|
struct buffer_head *bh = NULL;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent_idx *ix;
|
|
struct ext4_extent *ex;
|
|
ext4_fsblk_t block;
|
|
int depth; /* Note, NOT eh_depth; depth from top of tree */
|
|
int ee_len;
|
|
|
|
if (unlikely(path == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
|
|
return -EIO;
|
|
}
|
|
depth = path->p_depth;
|
|
*phys = 0;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return 0;
|
|
|
|
/* usually extent in the path covers blocks smaller
|
|
* then *logical, but it can be that extent is the
|
|
* first one in the file */
|
|
|
|
ex = path[depth].p_ext;
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
if (*logical < le32_to_cpu(ex->ee_block)) {
|
|
if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"first_extent(path[%d].p_hdr) != ex",
|
|
depth);
|
|
return -EIO;
|
|
}
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"ix != EXT_FIRST_INDEX *logical %d!",
|
|
*logical);
|
|
return -EIO;
|
|
}
|
|
}
|
|
goto found_extent;
|
|
}
|
|
|
|
if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"logical %d < ee_block %d + ee_len %d!",
|
|
*logical, le32_to_cpu(ex->ee_block), ee_len);
|
|
return -EIO;
|
|
}
|
|
|
|
if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
|
|
/* next allocated block in this leaf */
|
|
ex++;
|
|
goto found_extent;
|
|
}
|
|
|
|
/* go up and search for index to the right */
|
|
while (--depth >= 0) {
|
|
ix = path[depth].p_idx;
|
|
if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
|
|
goto got_index;
|
|
}
|
|
|
|
/* we've gone up to the root and found no index to the right */
|
|
return 0;
|
|
|
|
got_index:
|
|
/* we've found index to the right, let's
|
|
* follow it and find the closest allocated
|
|
* block to the right */
|
|
ix++;
|
|
block = ext4_idx_pblock(ix);
|
|
while (++depth < path->p_depth) {
|
|
/* subtract from p_depth to get proper eh_depth */
|
|
bh = read_extent_tree_block(inode, block,
|
|
path->p_depth - depth, 0);
|
|
if (IS_ERR(bh))
|
|
return PTR_ERR(bh);
|
|
eh = ext_block_hdr(bh);
|
|
ix = EXT_FIRST_INDEX(eh);
|
|
block = ext4_idx_pblock(ix);
|
|
put_bh(bh);
|
|
}
|
|
|
|
bh = read_extent_tree_block(inode, block, path->p_depth - depth, 0);
|
|
if (IS_ERR(bh))
|
|
return PTR_ERR(bh);
|
|
eh = ext_block_hdr(bh);
|
|
ex = EXT_FIRST_EXTENT(eh);
|
|
found_extent:
|
|
*logical = le32_to_cpu(ex->ee_block);
|
|
*phys = ext4_ext_pblock(ex);
|
|
*ret_ex = ex;
|
|
if (bh)
|
|
put_bh(bh);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_next_allocated_block:
|
|
* returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
|
|
* NOTE: it considers block number from index entry as
|
|
* allocated block. Thus, index entries have to be consistent
|
|
* with leaves.
|
|
*/
|
|
ext4_lblk_t
|
|
ext4_ext_next_allocated_block(struct ext4_ext_path *path)
|
|
{
|
|
int depth;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
|
|
if (depth == 0 && path->p_ext == NULL)
|
|
return EXT_MAX_BLOCKS;
|
|
|
|
while (depth >= 0) {
|
|
if (depth == path->p_depth) {
|
|
/* leaf */
|
|
if (path[depth].p_ext &&
|
|
path[depth].p_ext !=
|
|
EXT_LAST_EXTENT(path[depth].p_hdr))
|
|
return le32_to_cpu(path[depth].p_ext[1].ee_block);
|
|
} else {
|
|
/* index */
|
|
if (path[depth].p_idx !=
|
|
EXT_LAST_INDEX(path[depth].p_hdr))
|
|
return le32_to_cpu(path[depth].p_idx[1].ei_block);
|
|
}
|
|
depth--;
|
|
}
|
|
|
|
return EXT_MAX_BLOCKS;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_next_leaf_block:
|
|
* returns first allocated block from next leaf or EXT_MAX_BLOCKS
|
|
*/
|
|
static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
|
|
{
|
|
int depth;
|
|
|
|
BUG_ON(path == NULL);
|
|
depth = path->p_depth;
|
|
|
|
/* zero-tree has no leaf blocks at all */
|
|
if (depth == 0)
|
|
return EXT_MAX_BLOCKS;
|
|
|
|
/* go to index block */
|
|
depth--;
|
|
|
|
while (depth >= 0) {
|
|
if (path[depth].p_idx !=
|
|
EXT_LAST_INDEX(path[depth].p_hdr))
|
|
return (ext4_lblk_t)
|
|
le32_to_cpu(path[depth].p_idx[1].ei_block);
|
|
depth--;
|
|
}
|
|
|
|
return EXT_MAX_BLOCKS;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_correct_indexes:
|
|
* if leaf gets modified and modified extent is first in the leaf,
|
|
* then we have to correct all indexes above.
|
|
* TODO: do we need to correct tree in all cases?
|
|
*/
|
|
static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
int depth = ext_depth(inode);
|
|
struct ext4_extent *ex;
|
|
__le32 border;
|
|
int k, err = 0;
|
|
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
|
|
if (unlikely(ex == NULL || eh == NULL)) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"ex %p == NULL or eh %p == NULL", ex, eh);
|
|
return -EIO;
|
|
}
|
|
|
|
if (depth == 0) {
|
|
/* there is no tree at all */
|
|
return 0;
|
|
}
|
|
|
|
if (ex != EXT_FIRST_EXTENT(eh)) {
|
|
/* we correct tree if first leaf got modified only */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* TODO: we need correction if border is smaller than current one
|
|
*/
|
|
k = depth - 1;
|
|
border = path[depth].p_ext->ee_block;
|
|
err = ext4_ext_get_access(handle, inode, path + k);
|
|
if (err)
|
|
return err;
|
|
path[k].p_idx->ei_block = border;
|
|
err = ext4_ext_dirty(handle, inode, path + k);
|
|
if (err)
|
|
return err;
|
|
|
|
while (k--) {
|
|
/* change all left-side indexes */
|
|
if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
|
|
break;
|
|
err = ext4_ext_get_access(handle, inode, path + k);
|
|
if (err)
|
|
break;
|
|
path[k].p_idx->ei_block = border;
|
|
err = ext4_ext_dirty(handle, inode, path + k);
|
|
if (err)
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int
|
|
ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
|
|
struct ext4_extent *ex2)
|
|
{
|
|
unsigned short ext1_ee_len, ext2_ee_len;
|
|
|
|
if (ext4_ext_is_unwritten(ex1) != ext4_ext_is_unwritten(ex2))
|
|
return 0;
|
|
|
|
ext1_ee_len = ext4_ext_get_actual_len(ex1);
|
|
ext2_ee_len = ext4_ext_get_actual_len(ex2);
|
|
|
|
if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
|
|
le32_to_cpu(ex2->ee_block))
|
|
return 0;
|
|
|
|
/*
|
|
* To allow future support for preallocated extents to be added
|
|
* as an RO_COMPAT feature, refuse to merge to extents if
|
|
* this can result in the top bit of ee_len being set.
|
|
*/
|
|
if (ext1_ee_len + ext2_ee_len > EXT_INIT_MAX_LEN)
|
|
return 0;
|
|
if (ext4_ext_is_unwritten(ex1) &&
|
|
(ext4_test_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN) ||
|
|
atomic_read(&EXT4_I(inode)->i_unwritten) ||
|
|
(ext1_ee_len + ext2_ee_len > EXT_UNWRITTEN_MAX_LEN)))
|
|
return 0;
|
|
#ifdef AGGRESSIVE_TEST
|
|
if (ext1_ee_len >= 4)
|
|
return 0;
|
|
#endif
|
|
|
|
if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function tries to merge the "ex" extent to the next extent in the tree.
|
|
* It always tries to merge towards right. If you want to merge towards
|
|
* left, pass "ex - 1" as argument instead of "ex".
|
|
* Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
|
|
* 1 if they got merged.
|
|
*/
|
|
static int ext4_ext_try_to_merge_right(struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex)
|
|
{
|
|
struct ext4_extent_header *eh;
|
|
unsigned int depth, len;
|
|
int merge_done = 0, unwritten;
|
|
|
|
depth = ext_depth(inode);
|
|
BUG_ON(path[depth].p_hdr == NULL);
|
|
eh = path[depth].p_hdr;
|
|
|
|
while (ex < EXT_LAST_EXTENT(eh)) {
|
|
if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
|
|
break;
|
|
/* merge with next extent! */
|
|
unwritten = ext4_ext_is_unwritten(ex);
|
|
ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
|
|
+ ext4_ext_get_actual_len(ex + 1));
|
|
if (unwritten)
|
|
ext4_ext_mark_unwritten(ex);
|
|
|
|
if (ex + 1 < EXT_LAST_EXTENT(eh)) {
|
|
len = (EXT_LAST_EXTENT(eh) - ex - 1)
|
|
* sizeof(struct ext4_extent);
|
|
memmove(ex + 1, ex + 2, len);
|
|
}
|
|
le16_add_cpu(&eh->eh_entries, -1);
|
|
merge_done = 1;
|
|
WARN_ON(eh->eh_entries == 0);
|
|
if (!eh->eh_entries)
|
|
EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
|
|
}
|
|
|
|
return merge_done;
|
|
}
|
|
|
|
/*
|
|
* This function does a very simple check to see if we can collapse
|
|
* an extent tree with a single extent tree leaf block into the inode.
|
|
*/
|
|
static void ext4_ext_try_to_merge_up(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
size_t s;
|
|
unsigned max_root = ext4_ext_space_root(inode, 0);
|
|
ext4_fsblk_t blk;
|
|
|
|
if ((path[0].p_depth != 1) ||
|
|
(le16_to_cpu(path[0].p_hdr->eh_entries) != 1) ||
|
|
(le16_to_cpu(path[1].p_hdr->eh_entries) > max_root))
|
|
return;
|
|
|
|
/*
|
|
* We need to modify the block allocation bitmap and the block
|
|
* group descriptor to release the extent tree block. If we
|
|
* can't get the journal credits, give up.
|
|
*/
|
|
if (ext4_journal_extend(handle, 2))
|
|
return;
|
|
|
|
/*
|
|
* Copy the extent data up to the inode
|
|
*/
|
|
blk = ext4_idx_pblock(path[0].p_idx);
|
|
s = le16_to_cpu(path[1].p_hdr->eh_entries) *
|
|
sizeof(struct ext4_extent_idx);
|
|
s += sizeof(struct ext4_extent_header);
|
|
|
|
path[1].p_maxdepth = path[0].p_maxdepth;
|
|
memcpy(path[0].p_hdr, path[1].p_hdr, s);
|
|
path[0].p_depth = 0;
|
|
path[0].p_ext = EXT_FIRST_EXTENT(path[0].p_hdr) +
|
|
(path[1].p_ext - EXT_FIRST_EXTENT(path[1].p_hdr));
|
|
path[0].p_hdr->eh_max = cpu_to_le16(max_root);
|
|
|
|
brelse(path[1].p_bh);
|
|
ext4_free_blocks(handle, inode, NULL, blk, 1,
|
|
EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
|
|
}
|
|
|
|
/*
|
|
* This function tries to merge the @ex extent to neighbours in the tree.
|
|
* return 1 if merge left else 0.
|
|
*/
|
|
static void ext4_ext_try_to_merge(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
struct ext4_extent *ex) {
|
|
struct ext4_extent_header *eh;
|
|
unsigned int depth;
|
|
int merge_done = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
BUG_ON(path[depth].p_hdr == NULL);
|
|
eh = path[depth].p_hdr;
|
|
|
|
if (ex > EXT_FIRST_EXTENT(eh))
|
|
merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
|
|
|
|
if (!merge_done)
|
|
(void) ext4_ext_try_to_merge_right(inode, path, ex);
|
|
|
|
ext4_ext_try_to_merge_up(handle, inode, path);
|
|
}
|
|
|
|
/*
|
|
* check if a portion of the "newext" extent overlaps with an
|
|
* existing extent.
|
|
*
|
|
* If there is an overlap discovered, it updates the length of the newext
|
|
* such that there will be no overlap, and then returns 1.
|
|
* If there is no overlap found, it returns 0.
|
|
*/
|
|
static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
|
|
struct inode *inode,
|
|
struct ext4_extent *newext,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
ext4_lblk_t b1, b2;
|
|
unsigned int depth, len1;
|
|
unsigned int ret = 0;
|
|
|
|
b1 = le32_to_cpu(newext->ee_block);
|
|
len1 = ext4_ext_get_actual_len(newext);
|
|
depth = ext_depth(inode);
|
|
if (!path[depth].p_ext)
|
|
goto out;
|
|
b2 = EXT4_LBLK_CMASK(sbi, le32_to_cpu(path[depth].p_ext->ee_block));
|
|
|
|
/*
|
|
* get the next allocated block if the extent in the path
|
|
* is before the requested block(s)
|
|
*/
|
|
if (b2 < b1) {
|
|
b2 = ext4_ext_next_allocated_block(path);
|
|
if (b2 == EXT_MAX_BLOCKS)
|
|
goto out;
|
|
b2 = EXT4_LBLK_CMASK(sbi, b2);
|
|
}
|
|
|
|
/* check for wrap through zero on extent logical start block*/
|
|
if (b1 + len1 < b1) {
|
|
len1 = EXT_MAX_BLOCKS - b1;
|
|
newext->ee_len = cpu_to_le16(len1);
|
|
ret = 1;
|
|
}
|
|
|
|
/* check for overlap */
|
|
if (b1 + len1 > b2) {
|
|
newext->ee_len = cpu_to_le16(b2 - b1);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_insert_extent:
|
|
* tries to merge requsted extent into the existing extent or
|
|
* inserts requested extent as new one into the tree,
|
|
* creating new leaf in the no-space case.
|
|
*/
|
|
int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path **ppath,
|
|
struct ext4_extent *newext, int gb_flags)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *ex, *fex;
|
|
struct ext4_extent *nearex; /* nearest extent */
|
|
struct ext4_ext_path *npath = NULL;
|
|
int depth, len, err;
|
|
ext4_lblk_t next;
|
|
int mb_flags = 0, unwritten;
|
|
|
|
if (gb_flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
|
|
mb_flags |= EXT4_MB_DELALLOC_RESERVED;
|
|
if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
|
|
EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
|
|
return -EIO;
|
|
}
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
eh = path[depth].p_hdr;
|
|
if (unlikely(path[depth].p_hdr == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
|
|
return -EIO;
|
|
}
|
|
|
|
/* try to insert block into found extent and return */
|
|
if (ex && !(gb_flags & EXT4_GET_BLOCKS_PRE_IO)) {
|
|
|
|
/*
|
|
* Try to see whether we should rather test the extent on
|
|
* right from ex, or from the left of ex. This is because
|
|
* ext4_find_extent() can return either extent on the
|
|
* left, or on the right from the searched position. This
|
|
* will make merging more effective.
|
|
*/
|
|
if (ex < EXT_LAST_EXTENT(eh) &&
|
|
(le32_to_cpu(ex->ee_block) +
|
|
ext4_ext_get_actual_len(ex) <
|
|
le32_to_cpu(newext->ee_block))) {
|
|
ex += 1;
|
|
goto prepend;
|
|
} else if ((ex > EXT_FIRST_EXTENT(eh)) &&
|
|
(le32_to_cpu(newext->ee_block) +
|
|
ext4_ext_get_actual_len(newext) <
|
|
le32_to_cpu(ex->ee_block)))
|
|
ex -= 1;
|
|
|
|
/* Try to append newex to the ex */
|
|
if (ext4_can_extents_be_merged(inode, ex, newext)) {
|
|
ext_debug("append [%d]%d block to %u:[%d]%d"
|
|
"(from %llu)\n",
|
|
ext4_ext_is_unwritten(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_is_unwritten(ex),
|
|
ext4_ext_get_actual_len(ex),
|
|
ext4_ext_pblock(ex));
|
|
err = ext4_ext_get_access(handle, inode,
|
|
path + depth);
|
|
if (err)
|
|
return err;
|
|
unwritten = ext4_ext_is_unwritten(ex);
|
|
ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
|
|
+ ext4_ext_get_actual_len(newext));
|
|
if (unwritten)
|
|
ext4_ext_mark_unwritten(ex);
|
|
eh = path[depth].p_hdr;
|
|
nearex = ex;
|
|
goto merge;
|
|
}
|
|
|
|
prepend:
|
|
/* Try to prepend newex to the ex */
|
|
if (ext4_can_extents_be_merged(inode, newext, ex)) {
|
|
ext_debug("prepend %u[%d]%d block to %u:[%d]%d"
|
|
"(from %llu)\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_is_unwritten(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_is_unwritten(ex),
|
|
ext4_ext_get_actual_len(ex),
|
|
ext4_ext_pblock(ex));
|
|
err = ext4_ext_get_access(handle, inode,
|
|
path + depth);
|
|
if (err)
|
|
return err;
|
|
|
|
unwritten = ext4_ext_is_unwritten(ex);
|
|
ex->ee_block = newext->ee_block;
|
|
ext4_ext_store_pblock(ex, ext4_ext_pblock(newext));
|
|
ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
|
|
+ ext4_ext_get_actual_len(newext));
|
|
if (unwritten)
|
|
ext4_ext_mark_unwritten(ex);
|
|
eh = path[depth].p_hdr;
|
|
nearex = ex;
|
|
goto merge;
|
|
}
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
|
|
goto has_space;
|
|
|
|
/* probably next leaf has space for us? */
|
|
fex = EXT_LAST_EXTENT(eh);
|
|
next = EXT_MAX_BLOCKS;
|
|
if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
|
|
next = ext4_ext_next_leaf_block(path);
|
|
if (next != EXT_MAX_BLOCKS) {
|
|
ext_debug("next leaf block - %u\n", next);
|
|
BUG_ON(npath != NULL);
|
|
npath = ext4_find_extent(inode, next, NULL, 0);
|
|
if (IS_ERR(npath))
|
|
return PTR_ERR(npath);
|
|
BUG_ON(npath->p_depth != path->p_depth);
|
|
eh = npath[depth].p_hdr;
|
|
if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
|
|
ext_debug("next leaf isn't full(%d)\n",
|
|
le16_to_cpu(eh->eh_entries));
|
|
path = npath;
|
|
goto has_space;
|
|
}
|
|
ext_debug("next leaf has no free space(%d,%d)\n",
|
|
le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
|
|
}
|
|
|
|
/*
|
|
* There is no free space in the found leaf.
|
|
* We're gonna add a new leaf in the tree.
|
|
*/
|
|
if (gb_flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
|
|
mb_flags |= EXT4_MB_USE_RESERVED;
|
|
err = ext4_ext_create_new_leaf(handle, inode, mb_flags, gb_flags,
|
|
ppath, newext);
|
|
if (err)
|
|
goto cleanup;
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
|
|
has_space:
|
|
nearex = path[depth].p_ext;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
if (!nearex) {
|
|
/* there is no extent in this leaf, create first one */
|
|
ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_unwritten(newext),
|
|
ext4_ext_get_actual_len(newext));
|
|
nearex = EXT_FIRST_EXTENT(eh);
|
|
} else {
|
|
if (le32_to_cpu(newext->ee_block)
|
|
> le32_to_cpu(nearex->ee_block)) {
|
|
/* Insert after */
|
|
ext_debug("insert %u:%llu:[%d]%d before: "
|
|
"nearest %p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_unwritten(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
nearex);
|
|
nearex++;
|
|
} else {
|
|
/* Insert before */
|
|
BUG_ON(newext->ee_block == nearex->ee_block);
|
|
ext_debug("insert %u:%llu:[%d]%d after: "
|
|
"nearest %p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_unwritten(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
nearex);
|
|
}
|
|
len = EXT_LAST_EXTENT(eh) - nearex + 1;
|
|
if (len > 0) {
|
|
ext_debug("insert %u:%llu:[%d]%d: "
|
|
"move %d extents from 0x%p to 0x%p\n",
|
|
le32_to_cpu(newext->ee_block),
|
|
ext4_ext_pblock(newext),
|
|
ext4_ext_is_unwritten(newext),
|
|
ext4_ext_get_actual_len(newext),
|
|
len, nearex, nearex + 1);
|
|
memmove(nearex + 1, nearex,
|
|
len * sizeof(struct ext4_extent));
|
|
}
|
|
}
|
|
|
|
le16_add_cpu(&eh->eh_entries, 1);
|
|
path[depth].p_ext = nearex;
|
|
nearex->ee_block = newext->ee_block;
|
|
ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
|
|
nearex->ee_len = newext->ee_len;
|
|
|
|
merge:
|
|
/* try to merge extents */
|
|
if (!(gb_flags & EXT4_GET_BLOCKS_PRE_IO))
|
|
ext4_ext_try_to_merge(handle, inode, path, nearex);
|
|
|
|
|
|
/* time to correct all indexes above */
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
if (err)
|
|
goto cleanup;
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + path->p_depth);
|
|
|
|
cleanup:
|
|
ext4_ext_drop_refs(npath);
|
|
kfree(npath);
|
|
return err;
|
|
}
|
|
|
|
static int ext4_fill_fiemap_extents(struct inode *inode,
|
|
ext4_lblk_t block, ext4_lblk_t num,
|
|
struct fiemap_extent_info *fieinfo)
|
|
{
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_extent *ex;
|
|
struct extent_status es;
|
|
ext4_lblk_t next, next_del, start = 0, end = 0;
|
|
ext4_lblk_t last = block + num;
|
|
int exists, depth = 0, err = 0;
|
|
unsigned int flags = 0;
|
|
unsigned char blksize_bits = inode->i_sb->s_blocksize_bits;
|
|
|
|
while (block < last && block != EXT_MAX_BLOCKS) {
|
|
num = last - block;
|
|
/* find extent for this block */
|
|
down_read(&EXT4_I(inode)->i_data_sem);
|
|
|
|
path = ext4_find_extent(inode, block, &path, 0);
|
|
if (IS_ERR(path)) {
|
|
up_read(&EXT4_I(inode)->i_data_sem);
|
|
err = PTR_ERR(path);
|
|
path = NULL;
|
|
break;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
if (unlikely(path[depth].p_hdr == NULL)) {
|
|
up_read(&EXT4_I(inode)->i_data_sem);
|
|
EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
ex = path[depth].p_ext;
|
|
next = ext4_ext_next_allocated_block(path);
|
|
|
|
flags = 0;
|
|
exists = 0;
|
|
if (!ex) {
|
|
/* there is no extent yet, so try to allocate
|
|
* all requested space */
|
|
start = block;
|
|
end = block + num;
|
|
} else if (le32_to_cpu(ex->ee_block) > block) {
|
|
/* need to allocate space before found extent */
|
|
start = block;
|
|
end = le32_to_cpu(ex->ee_block);
|
|
if (block + num < end)
|
|
end = block + num;
|
|
} else if (block >= le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex)) {
|
|
/* need to allocate space after found extent */
|
|
start = block;
|
|
end = block + num;
|
|
if (end >= next)
|
|
end = next;
|
|
} else if (block >= le32_to_cpu(ex->ee_block)) {
|
|
/*
|
|
* some part of requested space is covered
|
|
* by found extent
|
|
*/
|
|
start = block;
|
|
end = le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex);
|
|
if (block + num < end)
|
|
end = block + num;
|
|
exists = 1;
|
|
} else {
|
|
BUG();
|
|
}
|
|
BUG_ON(end <= start);
|
|
|
|
if (!exists) {
|
|
es.es_lblk = start;
|
|
es.es_len = end - start;
|
|
es.es_pblk = 0;
|
|
} else {
|
|
es.es_lblk = le32_to_cpu(ex->ee_block);
|
|
es.es_len = ext4_ext_get_actual_len(ex);
|
|
es.es_pblk = ext4_ext_pblock(ex);
|
|
if (ext4_ext_is_unwritten(ex))
|
|
flags |= FIEMAP_EXTENT_UNWRITTEN;
|
|
}
|
|
|
|
/*
|
|
* Find delayed extent and update es accordingly. We call
|
|
* it even in !exists case to find out whether es is the
|
|
* last existing extent or not.
|
|
*/
|
|
next_del = ext4_find_delayed_extent(inode, &es);
|
|
if (!exists && next_del) {
|
|
exists = 1;
|
|
flags |= (FIEMAP_EXTENT_DELALLOC |
|
|
FIEMAP_EXTENT_UNKNOWN);
|
|
}
|
|
up_read(&EXT4_I(inode)->i_data_sem);
|
|
|
|
if (unlikely(es.es_len == 0)) {
|
|
EXT4_ERROR_INODE(inode, "es.es_len == 0");
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is possible iff next == next_del == EXT_MAX_BLOCKS.
|
|
* we need to check next == EXT_MAX_BLOCKS because it is
|
|
* possible that an extent is with unwritten and delayed
|
|
* status due to when an extent is delayed allocated and
|
|
* is allocated by fallocate status tree will track both of
|
|
* them in a extent.
|
|
*
|
|
* So we could return a unwritten and delayed extent, and
|
|
* its block is equal to 'next'.
|
|
*/
|
|
if (next == next_del && next == EXT_MAX_BLOCKS) {
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
if (unlikely(next_del != EXT_MAX_BLOCKS ||
|
|
next != EXT_MAX_BLOCKS)) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"next extent == %u, next "
|
|
"delalloc extent = %u",
|
|
next, next_del);
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (exists) {
|
|
err = fiemap_fill_next_extent(fieinfo,
|
|
(__u64)es.es_lblk << blksize_bits,
|
|
(__u64)es.es_pblk << blksize_bits,
|
|
(__u64)es.es_len << blksize_bits,
|
|
flags);
|
|
if (err < 0)
|
|
break;
|
|
if (err == 1) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
block = es.es_lblk + es.es_len;
|
|
}
|
|
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_put_gap_in_cache:
|
|
* calculate boundaries of the gap that the requested block fits into
|
|
* and cache this gap
|
|
*/
|
|
static void
|
|
ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
|
|
ext4_lblk_t block)
|
|
{
|
|
int depth = ext_depth(inode);
|
|
ext4_lblk_t len;
|
|
ext4_lblk_t lblock;
|
|
struct ext4_extent *ex;
|
|
struct extent_status es;
|
|
|
|
ex = path[depth].p_ext;
|
|
if (ex == NULL) {
|
|
/* there is no extent yet, so gap is [0;-] */
|
|
lblock = 0;
|
|
len = EXT_MAX_BLOCKS;
|
|
ext_debug("cache gap(whole file):");
|
|
} else if (block < le32_to_cpu(ex->ee_block)) {
|
|
lblock = block;
|
|
len = le32_to_cpu(ex->ee_block) - block;
|
|
ext_debug("cache gap(before): %u [%u:%u]",
|
|
block,
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex));
|
|
} else if (block >= le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex)) {
|
|
ext4_lblk_t next;
|
|
lblock = le32_to_cpu(ex->ee_block)
|
|
+ ext4_ext_get_actual_len(ex);
|
|
|
|
next = ext4_ext_next_allocated_block(path);
|
|
ext_debug("cache gap(after): [%u:%u] %u",
|
|
le32_to_cpu(ex->ee_block),
|
|
ext4_ext_get_actual_len(ex),
|
|
block);
|
|
BUG_ON(next == lblock);
|
|
len = next - lblock;
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
ext4_es_find_delayed_extent_range(inode, lblock, lblock + len - 1, &es);
|
|
if (es.es_len) {
|
|
/* There's delayed extent containing lblock? */
|
|
if (es.es_lblk <= lblock)
|
|
return;
|
|
len = min(es.es_lblk - lblock, len);
|
|
}
|
|
ext_debug(" -> %u:%u\n", lblock, len);
|
|
ext4_es_insert_extent(inode, lblock, len, ~0, EXTENT_STATUS_HOLE);
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_rm_idx:
|
|
* removes index from the index block.
|
|
*/
|
|
static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path, int depth)
|
|
{
|
|
int err;
|
|
ext4_fsblk_t leaf;
|
|
|
|
/* free index block */
|
|
depth--;
|
|
path = path + depth;
|
|
leaf = ext4_idx_pblock(path->p_idx);
|
|
if (unlikely(path->p_hdr->eh_entries == 0)) {
|
|
EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
|
|
return -EIO;
|
|
}
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
if (err)
|
|
return err;
|
|
|
|
if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
|
|
int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
|
|
len *= sizeof(struct ext4_extent_idx);
|
|
memmove(path->p_idx, path->p_idx + 1, len);
|
|
}
|
|
|
|
le16_add_cpu(&path->p_hdr->eh_entries, -1);
|
|
err = ext4_ext_dirty(handle, inode, path);
|
|
if (err)
|
|
return err;
|
|
ext_debug("index is empty, remove it, free block %llu\n", leaf);
|
|
trace_ext4_ext_rm_idx(inode, leaf);
|
|
|
|
ext4_free_blocks(handle, inode, NULL, leaf, 1,
|
|
EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
|
|
|
|
while (--depth >= 0) {
|
|
if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
|
|
break;
|
|
path--;
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
if (err)
|
|
break;
|
|
path->p_idx->ei_block = (path+1)->p_idx->ei_block;
|
|
err = ext4_ext_dirty(handle, inode, path);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_calc_credits_for_single_extent:
|
|
* This routine returns max. credits that needed to insert an extent
|
|
* to the extent tree.
|
|
* When pass the actual path, the caller should calculate credits
|
|
* under i_data_sem.
|
|
*/
|
|
int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
if (path) {
|
|
int depth = ext_depth(inode);
|
|
int ret = 0;
|
|
|
|
/* probably there is space in leaf? */
|
|
if (le16_to_cpu(path[depth].p_hdr->eh_entries)
|
|
< le16_to_cpu(path[depth].p_hdr->eh_max)) {
|
|
|
|
/*
|
|
* There are some space in the leaf tree, no
|
|
* need to account for leaf block credit
|
|
*
|
|
* bitmaps and block group descriptor blocks
|
|
* and other metadata blocks still need to be
|
|
* accounted.
|
|
*/
|
|
/* 1 bitmap, 1 block group descriptor */
|
|
ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ext4_chunk_trans_blocks(inode, nrblocks);
|
|
}
|
|
|
|
/*
|
|
* How many index/leaf blocks need to change/allocate to add @extents extents?
|
|
*
|
|
* If we add a single extent, then in the worse case, each tree level
|
|
* index/leaf need to be changed in case of the tree split.
|
|
*
|
|
* If more extents are inserted, they could cause the whole tree split more
|
|
* than once, but this is really rare.
|
|
*/
|
|
int ext4_ext_index_trans_blocks(struct inode *inode, int extents)
|
|
{
|
|
int index;
|
|
int depth;
|
|
|
|
/* If we are converting the inline data, only one is needed here. */
|
|
if (ext4_has_inline_data(inode))
|
|
return 1;
|
|
|
|
depth = ext_depth(inode);
|
|
|
|
if (extents <= 1)
|
|
index = depth * 2;
|
|
else
|
|
index = depth * 3;
|
|
|
|
return index;
|
|
}
|
|
|
|
static inline int get_default_free_blocks_flags(struct inode *inode)
|
|
{
|
|
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
|
|
return EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET;
|
|
else if (ext4_should_journal_data(inode))
|
|
return EXT4_FREE_BLOCKS_FORGET;
|
|
return 0;
|
|
}
|
|
|
|
static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
|
|
struct ext4_extent *ex,
|
|
long long *partial_cluster,
|
|
ext4_lblk_t from, ext4_lblk_t to)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
unsigned short ee_len = ext4_ext_get_actual_len(ex);
|
|
ext4_fsblk_t pblk;
|
|
int flags = get_default_free_blocks_flags(inode);
|
|
|
|
/*
|
|
* For bigalloc file systems, we never free a partial cluster
|
|
* at the beginning of the extent. Instead, we make a note
|
|
* that we tried freeing the cluster, and check to see if we
|
|
* need to free it on a subsequent call to ext4_remove_blocks,
|
|
* or at the end of ext4_ext_rm_leaf or ext4_ext_remove_space.
|
|
*/
|
|
flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
|
|
|
|
trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
|
|
/*
|
|
* If we have a partial cluster, and it's different from the
|
|
* cluster of the last block, we need to explicitly free the
|
|
* partial cluster here.
|
|
*/
|
|
pblk = ext4_ext_pblock(ex) + ee_len - 1;
|
|
if (*partial_cluster > 0 &&
|
|
*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
|
|
ext4_free_blocks(handle, inode, NULL,
|
|
EXT4_C2B(sbi, *partial_cluster),
|
|
sbi->s_cluster_ratio, flags);
|
|
*partial_cluster = 0;
|
|
}
|
|
|
|
#ifdef EXTENTS_STATS
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
spin_lock(&sbi->s_ext_stats_lock);
|
|
sbi->s_ext_blocks += ee_len;
|
|
sbi->s_ext_extents++;
|
|
if (ee_len < sbi->s_ext_min)
|
|
sbi->s_ext_min = ee_len;
|
|
if (ee_len > sbi->s_ext_max)
|
|
sbi->s_ext_max = ee_len;
|
|
if (ext_depth(inode) > sbi->s_depth_max)
|
|
sbi->s_depth_max = ext_depth(inode);
|
|
spin_unlock(&sbi->s_ext_stats_lock);
|
|
}
|
|
#endif
|
|
if (from >= le32_to_cpu(ex->ee_block)
|
|
&& to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
|
|
/* tail removal */
|
|
ext4_lblk_t num;
|
|
long long first_cluster;
|
|
|
|
num = le32_to_cpu(ex->ee_block) + ee_len - from;
|
|
pblk = ext4_ext_pblock(ex) + ee_len - num;
|
|
/*
|
|
* Usually we want to free partial cluster at the end of the
|
|
* extent, except for the situation when the cluster is still
|
|
* used by any other extent (partial_cluster is negative).
|
|
*/
|
|
if (*partial_cluster < 0 &&
|
|
*partial_cluster == -(long long) EXT4_B2C(sbi, pblk+num-1))
|
|
flags |= EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER;
|
|
|
|
ext_debug("free last %u blocks starting %llu partial %lld\n",
|
|
num, pblk, *partial_cluster);
|
|
ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
|
|
/*
|
|
* If the block range to be freed didn't start at the
|
|
* beginning of a cluster, and we removed the entire
|
|
* extent and the cluster is not used by any other extent,
|
|
* save the partial cluster here, since we might need to
|
|
* delete if we determine that the truncate or punch hole
|
|
* operation has removed all of the blocks in the cluster.
|
|
* If that cluster is used by another extent, preserve its
|
|
* negative value so it isn't freed later on.
|
|
*
|
|
* If the whole extent wasn't freed, we've reached the
|
|
* start of the truncated/punched region and have finished
|
|
* removing blocks. If there's a partial cluster here it's
|
|
* shared with the remainder of the extent and is no longer
|
|
* a candidate for removal.
|
|
*/
|
|
if (EXT4_PBLK_COFF(sbi, pblk) && ee_len == num) {
|
|
first_cluster = (long long) EXT4_B2C(sbi, pblk);
|
|
if (first_cluster != -*partial_cluster)
|
|
*partial_cluster = first_cluster;
|
|
} else {
|
|
*partial_cluster = 0;
|
|
}
|
|
} else
|
|
ext4_error(sbi->s_sb, "strange request: removal(2) "
|
|
"%u-%u from %u:%u\n",
|
|
from, to, le32_to_cpu(ex->ee_block), ee_len);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* ext4_ext_rm_leaf() Removes the extents associated with the
|
|
* blocks appearing between "start" and "end". Both "start"
|
|
* and "end" must appear in the same extent or EIO is returned.
|
|
*
|
|
* @handle: The journal handle
|
|
* @inode: The files inode
|
|
* @path: The path to the leaf
|
|
* @partial_cluster: The cluster which we'll have to free if all extents
|
|
* has been released from it. However, if this value is
|
|
* negative, it's a cluster just to the right of the
|
|
* punched region and it must not be freed.
|
|
* @start: The first block to remove
|
|
* @end: The last block to remove
|
|
*/
|
|
static int
|
|
ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path,
|
|
long long *partial_cluster,
|
|
ext4_lblk_t start, ext4_lblk_t end)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
int err = 0, correct_index = 0;
|
|
int depth = ext_depth(inode), credits;
|
|
struct ext4_extent_header *eh;
|
|
ext4_lblk_t a, b;
|
|
unsigned num;
|
|
ext4_lblk_t ex_ee_block;
|
|
unsigned short ex_ee_len;
|
|
unsigned unwritten = 0;
|
|
struct ext4_extent *ex;
|
|
ext4_fsblk_t pblk;
|
|
|
|
/* the header must be checked already in ext4_ext_remove_space() */
|
|
ext_debug("truncate since %u in leaf to %u\n", start, end);
|
|
if (!path[depth].p_hdr)
|
|
path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
|
|
eh = path[depth].p_hdr;
|
|
if (unlikely(path[depth].p_hdr == NULL)) {
|
|
EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
|
|
return -EIO;
|
|
}
|
|
/* find where to start removing */
|
|
ex = path[depth].p_ext;
|
|
if (!ex)
|
|
ex = EXT_LAST_EXTENT(eh);
|
|
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
|
|
|
|
while (ex >= EXT_FIRST_EXTENT(eh) &&
|
|
ex_ee_block + ex_ee_len > start) {
|
|
|
|
if (ext4_ext_is_unwritten(ex))
|
|
unwritten = 1;
|
|
else
|
|
unwritten = 0;
|
|
|
|
ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
|
|
unwritten, ex_ee_len);
|
|
path[depth].p_ext = ex;
|
|
|
|
a = ex_ee_block > start ? ex_ee_block : start;
|
|
b = ex_ee_block+ex_ee_len - 1 < end ?
|
|
ex_ee_block+ex_ee_len - 1 : end;
|
|
|
|
ext_debug(" border %u:%u\n", a, b);
|
|
|
|
/* If this extent is beyond the end of the hole, skip it */
|
|
if (end < ex_ee_block) {
|
|
/*
|
|
* We're going to skip this extent and move to another,
|
|
* so note that its first cluster is in use to avoid
|
|
* freeing it when removing blocks. Eventually, the
|
|
* right edge of the truncated/punched region will
|
|
* be just to the left.
|
|
*/
|
|
if (sbi->s_cluster_ratio > 1) {
|
|
pblk = ext4_ext_pblock(ex);
|
|
*partial_cluster =
|
|
-(long long) EXT4_B2C(sbi, pblk);
|
|
}
|
|
ex--;
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
continue;
|
|
} else if (b != ex_ee_block + ex_ee_len - 1) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"can not handle truncate %u:%u "
|
|
"on extent %u:%u",
|
|
start, end, ex_ee_block,
|
|
ex_ee_block + ex_ee_len - 1);
|
|
err = -EIO;
|
|
goto out;
|
|
} else if (a != ex_ee_block) {
|
|
/* remove tail of the extent */
|
|
num = a - ex_ee_block;
|
|
} else {
|
|
/* remove whole extent: excellent! */
|
|
num = 0;
|
|
}
|
|
/*
|
|
* 3 for leaf, sb, and inode plus 2 (bmap and group
|
|
* descriptor) for each block group; assume two block
|
|
* groups plus ex_ee_len/blocks_per_block_group for
|
|
* the worst case
|
|
*/
|
|
credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
|
|
if (ex == EXT_FIRST_EXTENT(eh)) {
|
|
correct_index = 1;
|
|
credits += (ext_depth(inode)) + 1;
|
|
}
|
|
credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
|
|
|
|
err = ext4_ext_truncate_extend_restart(handle, inode, credits);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
|
|
a, b);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (num == 0)
|
|
/* this extent is removed; mark slot entirely unused */
|
|
ext4_ext_store_pblock(ex, 0);
|
|
|
|
ex->ee_len = cpu_to_le16(num);
|
|
/*
|
|
* Do not mark unwritten if all the blocks in the
|
|
* extent have been removed.
|
|
*/
|
|
if (unwritten && num)
|
|
ext4_ext_mark_unwritten(ex);
|
|
/*
|
|
* If the extent was completely released,
|
|
* we need to remove it from the leaf
|
|
*/
|
|
if (num == 0) {
|
|
if (end != EXT_MAX_BLOCKS - 1) {
|
|
/*
|
|
* For hole punching, we need to scoot all the
|
|
* extents up when an extent is removed so that
|
|
* we dont have blank extents in the middle
|
|
*/
|
|
memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
|
|
sizeof(struct ext4_extent));
|
|
|
|
/* Now get rid of the one at the end */
|
|
memset(EXT_LAST_EXTENT(eh), 0,
|
|
sizeof(struct ext4_extent));
|
|
}
|
|
le16_add_cpu(&eh->eh_entries, -1);
|
|
}
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
|
|
ext4_ext_pblock(ex));
|
|
ex--;
|
|
ex_ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_ee_len = ext4_ext_get_actual_len(ex);
|
|
}
|
|
|
|
if (correct_index && eh->eh_entries)
|
|
err = ext4_ext_correct_indexes(handle, inode, path);
|
|
|
|
/*
|
|
* If there's a partial cluster and at least one extent remains in
|
|
* the leaf, free the partial cluster if it isn't shared with the
|
|
* current extent. If it is shared with the current extent
|
|
* we zero partial_cluster because we've reached the start of the
|
|
* truncated/punched region and we're done removing blocks.
|
|
*/
|
|
if (*partial_cluster > 0 && ex >= EXT_FIRST_EXTENT(eh)) {
|
|
pblk = ext4_ext_pblock(ex) + ex_ee_len - 1;
|
|
if (*partial_cluster != (long long) EXT4_B2C(sbi, pblk)) {
|
|
ext4_free_blocks(handle, inode, NULL,
|
|
EXT4_C2B(sbi, *partial_cluster),
|
|
sbi->s_cluster_ratio,
|
|
get_default_free_blocks_flags(inode));
|
|
}
|
|
*partial_cluster = 0;
|
|
}
|
|
|
|
/* if this leaf is free, then we should
|
|
* remove it from index block above */
|
|
if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
|
|
err = ext4_ext_rm_idx(handle, inode, path, depth);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_more_to_rm:
|
|
* returns 1 if current index has to be freed (even partial)
|
|
*/
|
|
static int
|
|
ext4_ext_more_to_rm(struct ext4_ext_path *path)
|
|
{
|
|
BUG_ON(path->p_idx == NULL);
|
|
|
|
if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
|
|
return 0;
|
|
|
|
/*
|
|
* if truncate on deeper level happened, it wasn't partial,
|
|
* so we have to consider current index for truncation
|
|
*/
|
|
if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
|
|
ext4_lblk_t end)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
int depth = ext_depth(inode);
|
|
struct ext4_ext_path *path = NULL;
|
|
long long partial_cluster = 0;
|
|
handle_t *handle;
|
|
int i = 0, err = 0;
|
|
|
|
ext_debug("truncate since %u to %u\n", start, end);
|
|
|
|
/* probably first extent we're gonna free will be last in block */
|
|
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, depth + 1);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
again:
|
|
trace_ext4_ext_remove_space(inode, start, end, depth);
|
|
|
|
/*
|
|
* Check if we are removing extents inside the extent tree. If that
|
|
* is the case, we are going to punch a hole inside the extent tree
|
|
* so we have to check whether we need to split the extent covering
|
|
* the last block to remove so we can easily remove the part of it
|
|
* in ext4_ext_rm_leaf().
|
|
*/
|
|
if (end < EXT_MAX_BLOCKS - 1) {
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t ee_block, ex_end, lblk;
|
|
ext4_fsblk_t pblk;
|
|
|
|
/* find extent for or closest extent to this block */
|
|
path = ext4_find_extent(inode, end, NULL, EXT4_EX_NOCACHE);
|
|
if (IS_ERR(path)) {
|
|
ext4_journal_stop(handle);
|
|
return PTR_ERR(path);
|
|
}
|
|
depth = ext_depth(inode);
|
|
/* Leaf not may not exist only if inode has no blocks at all */
|
|
ex = path[depth].p_ext;
|
|
if (!ex) {
|
|
if (depth) {
|
|
EXT4_ERROR_INODE(inode,
|
|
"path[%d].p_hdr == NULL",
|
|
depth);
|
|
err = -EIO;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ex_end = ee_block + ext4_ext_get_actual_len(ex) - 1;
|
|
|
|
/*
|
|
* See if the last block is inside the extent, if so split
|
|
* the extent at 'end' block so we can easily remove the
|
|
* tail of the first part of the split extent in
|
|
* ext4_ext_rm_leaf().
|
|
*/
|
|
if (end >= ee_block && end < ex_end) {
|
|
|
|
/*
|
|
* If we're going to split the extent, note that
|
|
* the cluster containing the block after 'end' is
|
|
* in use to avoid freeing it when removing blocks.
|
|
*/
|
|
if (sbi->s_cluster_ratio > 1) {
|
|
pblk = ext4_ext_pblock(ex) + end - ee_block + 2;
|
|
partial_cluster =
|
|
-(long long) EXT4_B2C(sbi, pblk);
|
|
}
|
|
|
|
/*
|
|
* Split the extent in two so that 'end' is the last
|
|
* block in the first new extent. Also we should not
|
|
* fail removing space due to ENOSPC so try to use
|
|
* reserved block if that happens.
|
|
*/
|
|
err = ext4_force_split_extent_at(handle, inode, &path,
|
|
end + 1, 1);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
} else if (sbi->s_cluster_ratio > 1 && end >= ex_end) {
|
|
/*
|
|
* If there's an extent to the right its first cluster
|
|
* contains the immediate right boundary of the
|
|
* truncated/punched region. Set partial_cluster to
|
|
* its negative value so it won't be freed if shared
|
|
* with the current extent. The end < ee_block case
|
|
* is handled in ext4_ext_rm_leaf().
|
|
*/
|
|
lblk = ex_end + 1;
|
|
err = ext4_ext_search_right(inode, path, &lblk, &pblk,
|
|
&ex);
|
|
if (err)
|
|
goto out;
|
|
if (pblk)
|
|
partial_cluster =
|
|
-(long long) EXT4_B2C(sbi, pblk);
|
|
}
|
|
}
|
|
/*
|
|
* We start scanning from right side, freeing all the blocks
|
|
* after i_size and walking into the tree depth-wise.
|
|
*/
|
|
depth = ext_depth(inode);
|
|
if (path) {
|
|
int k = i = depth;
|
|
while (--k > 0)
|
|
path[k].p_block =
|
|
le16_to_cpu(path[k].p_hdr->eh_entries)+1;
|
|
} else {
|
|
path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
|
|
GFP_NOFS);
|
|
if (path == NULL) {
|
|
ext4_journal_stop(handle);
|
|
return -ENOMEM;
|
|
}
|
|
path[0].p_maxdepth = path[0].p_depth = depth;
|
|
path[0].p_hdr = ext_inode_hdr(inode);
|
|
i = 0;
|
|
|
|
if (ext4_ext_check(inode, path[0].p_hdr, depth, 0)) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
err = 0;
|
|
|
|
while (i >= 0 && err == 0) {
|
|
if (i == depth) {
|
|
/* this is leaf block */
|
|
err = ext4_ext_rm_leaf(handle, inode, path,
|
|
&partial_cluster, start,
|
|
end);
|
|
/* root level has p_bh == NULL, brelse() eats this */
|
|
brelse(path[i].p_bh);
|
|
path[i].p_bh = NULL;
|
|
i--;
|
|
continue;
|
|
}
|
|
|
|
/* this is index block */
|
|
if (!path[i].p_hdr) {
|
|
ext_debug("initialize header\n");
|
|
path[i].p_hdr = ext_block_hdr(path[i].p_bh);
|
|
}
|
|
|
|
if (!path[i].p_idx) {
|
|
/* this level hasn't been touched yet */
|
|
path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
|
|
path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
|
|
ext_debug("init index ptr: hdr 0x%p, num %d\n",
|
|
path[i].p_hdr,
|
|
le16_to_cpu(path[i].p_hdr->eh_entries));
|
|
} else {
|
|
/* we were already here, see at next index */
|
|
path[i].p_idx--;
|
|
}
|
|
|
|
ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
|
|
i, EXT_FIRST_INDEX(path[i].p_hdr),
|
|
path[i].p_idx);
|
|
if (ext4_ext_more_to_rm(path + i)) {
|
|
struct buffer_head *bh;
|
|
/* go to the next level */
|
|
ext_debug("move to level %d (block %llu)\n",
|
|
i + 1, ext4_idx_pblock(path[i].p_idx));
|
|
memset(path + i + 1, 0, sizeof(*path));
|
|
bh = read_extent_tree_block(inode,
|
|
ext4_idx_pblock(path[i].p_idx), depth - i - 1,
|
|
EXT4_EX_NOCACHE);
|
|
if (IS_ERR(bh)) {
|
|
/* should we reset i_size? */
|
|
err = PTR_ERR(bh);
|
|
break;
|
|
}
|
|
/* Yield here to deal with large extent trees.
|
|
* Should be a no-op if we did IO above. */
|
|
cond_resched();
|
|
if (WARN_ON(i + 1 > depth)) {
|
|
err = -EIO;
|
|
break;
|
|
}
|
|
path[i + 1].p_bh = bh;
|
|
|
|
/* save actual number of indexes since this
|
|
* number is changed at the next iteration */
|
|
path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
|
|
i++;
|
|
} else {
|
|
/* we finished processing this index, go up */
|
|
if (path[i].p_hdr->eh_entries == 0 && i > 0) {
|
|
/* index is empty, remove it;
|
|
* handle must be already prepared by the
|
|
* truncatei_leaf() */
|
|
err = ext4_ext_rm_idx(handle, inode, path, i);
|
|
}
|
|
/* root level has p_bh == NULL, brelse() eats this */
|
|
brelse(path[i].p_bh);
|
|
path[i].p_bh = NULL;
|
|
i--;
|
|
ext_debug("return to level %d\n", i);
|
|
}
|
|
}
|
|
|
|
trace_ext4_ext_remove_space_done(inode, start, end, depth,
|
|
partial_cluster, path->p_hdr->eh_entries);
|
|
|
|
/*
|
|
* If we still have something in the partial cluster and we have removed
|
|
* even the first extent, then we should free the blocks in the partial
|
|
* cluster as well. (This code will only run when there are no leaves
|
|
* to the immediate left of the truncated/punched region.)
|
|
*/
|
|
if (partial_cluster > 0 && err == 0) {
|
|
/* don't zero partial_cluster since it's not used afterwards */
|
|
ext4_free_blocks(handle, inode, NULL,
|
|
EXT4_C2B(sbi, partial_cluster),
|
|
sbi->s_cluster_ratio,
|
|
get_default_free_blocks_flags(inode));
|
|
}
|
|
|
|
/* TODO: flexible tree reduction should be here */
|
|
if (path->p_hdr->eh_entries == 0) {
|
|
/*
|
|
* truncate to zero freed all the tree,
|
|
* so we need to correct eh_depth
|
|
*/
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
if (err == 0) {
|
|
ext_inode_hdr(inode)->eh_depth = 0;
|
|
ext_inode_hdr(inode)->eh_max =
|
|
cpu_to_le16(ext4_ext_space_root(inode, 0));
|
|
err = ext4_ext_dirty(handle, inode, path);
|
|
}
|
|
}
|
|
out:
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
path = NULL;
|
|
if (err == -EAGAIN)
|
|
goto again;
|
|
ext4_journal_stop(handle);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* called at mount time
|
|
*/
|
|
void ext4_ext_init(struct super_block *sb)
|
|
{
|
|
/*
|
|
* possible initialization would be here
|
|
*/
|
|
|
|
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
|
|
#if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
|
|
printk(KERN_INFO "EXT4-fs: file extents enabled"
|
|
#ifdef AGGRESSIVE_TEST
|
|
", aggressive tests"
|
|
#endif
|
|
#ifdef CHECK_BINSEARCH
|
|
", check binsearch"
|
|
#endif
|
|
#ifdef EXTENTS_STATS
|
|
", stats"
|
|
#endif
|
|
"\n");
|
|
#endif
|
|
#ifdef EXTENTS_STATS
|
|
spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
|
|
EXT4_SB(sb)->s_ext_min = 1 << 30;
|
|
EXT4_SB(sb)->s_ext_max = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called at umount time
|
|
*/
|
|
void ext4_ext_release(struct super_block *sb)
|
|
{
|
|
if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
|
|
return;
|
|
|
|
#ifdef EXTENTS_STATS
|
|
if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
|
|
sbi->s_ext_blocks, sbi->s_ext_extents,
|
|
sbi->s_ext_blocks / sbi->s_ext_extents);
|
|
printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
|
|
sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int ext4_zeroout_es(struct inode *inode, struct ext4_extent *ex)
|
|
{
|
|
ext4_lblk_t ee_block;
|
|
ext4_fsblk_t ee_pblock;
|
|
unsigned int ee_len;
|
|
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
ee_pblock = ext4_ext_pblock(ex);
|
|
|
|
if (ee_len == 0)
|
|
return 0;
|
|
|
|
return ext4_es_insert_extent(inode, ee_block, ee_len, ee_pblock,
|
|
EXTENT_STATUS_WRITTEN);
|
|
}
|
|
|
|
/* FIXME!! we need to try to merge to left or right after zero-out */
|
|
static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
|
|
{
|
|
ext4_fsblk_t ee_pblock;
|
|
unsigned int ee_len;
|
|
int ret;
|
|
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
ee_pblock = ext4_ext_pblock(ex);
|
|
|
|
if (ext4_encrypted_inode(inode))
|
|
return ext4_encrypted_zeroout(inode, ex);
|
|
|
|
ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_split_extent_at() splits an extent at given block.
|
|
*
|
|
* @handle: the journal handle
|
|
* @inode: the file inode
|
|
* @path: the path to the extent
|
|
* @split: the logical block where the extent is splitted.
|
|
* @split_flags: indicates if the extent could be zeroout if split fails, and
|
|
* the states(init or unwritten) of new extents.
|
|
* @flags: flags used to insert new extent to extent tree.
|
|
*
|
|
*
|
|
* Splits extent [a, b] into two extents [a, @split) and [@split, b], states
|
|
* of which are deterimined by split_flag.
|
|
*
|
|
* There are two cases:
|
|
* a> the extent are splitted into two extent.
|
|
* b> split is not needed, and just mark the extent.
|
|
*
|
|
* return 0 on success.
|
|
*/
|
|
static int ext4_split_extent_at(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path **ppath,
|
|
ext4_lblk_t split,
|
|
int split_flag,
|
|
int flags)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
ext4_fsblk_t newblock;
|
|
ext4_lblk_t ee_block;
|
|
struct ext4_extent *ex, newex, orig_ex, zero_ex;
|
|
struct ext4_extent *ex2 = NULL;
|
|
unsigned int ee_len, depth;
|
|
int err = 0;
|
|
|
|
BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
|
|
(EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
|
|
|
|
ext_debug("ext4_split_extents_at: inode %lu, logical"
|
|
"block %llu\n", inode->i_ino, (unsigned long long)split);
|
|
|
|
ext4_ext_show_leaf(inode, path);
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
newblock = split - ee_block + ext4_ext_pblock(ex);
|
|
|
|
BUG_ON(split < ee_block || split >= (ee_block + ee_len));
|
|
BUG_ON(!ext4_ext_is_unwritten(ex) &&
|
|
split_flag & (EXT4_EXT_MAY_ZEROOUT |
|
|
EXT4_EXT_MARK_UNWRIT1 |
|
|
EXT4_EXT_MARK_UNWRIT2));
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (split == ee_block) {
|
|
/*
|
|
* case b: block @split is the block that the extent begins with
|
|
* then we just change the state of the extent, and splitting
|
|
* is not needed.
|
|
*/
|
|
if (split_flag & EXT4_EXT_MARK_UNWRIT2)
|
|
ext4_ext_mark_unwritten(ex);
|
|
else
|
|
ext4_ext_mark_initialized(ex);
|
|
|
|
if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
|
|
ext4_ext_try_to_merge(handle, inode, path, ex);
|
|
|
|
err = ext4_ext_dirty(handle, inode, path + path->p_depth);
|
|
goto out;
|
|
}
|
|
|
|
/* case a */
|
|
memcpy(&orig_ex, ex, sizeof(orig_ex));
|
|
ex->ee_len = cpu_to_le16(split - ee_block);
|
|
if (split_flag & EXT4_EXT_MARK_UNWRIT1)
|
|
ext4_ext_mark_unwritten(ex);
|
|
|
|
/*
|
|
* path may lead to new leaf, not to original leaf any more
|
|
* after ext4_ext_insert_extent() returns,
|
|
*/
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
|
|
ex2 = &newex;
|
|
ex2->ee_block = cpu_to_le32(split);
|
|
ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
|
|
ext4_ext_store_pblock(ex2, newblock);
|
|
if (split_flag & EXT4_EXT_MARK_UNWRIT2)
|
|
ext4_ext_mark_unwritten(ex2);
|
|
|
|
err = ext4_ext_insert_extent(handle, inode, ppath, &newex, flags);
|
|
if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
|
|
if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
|
|
if (split_flag & EXT4_EXT_DATA_VALID1) {
|
|
err = ext4_ext_zeroout(inode, ex2);
|
|
zero_ex.ee_block = ex2->ee_block;
|
|
zero_ex.ee_len = cpu_to_le16(
|
|
ext4_ext_get_actual_len(ex2));
|
|
ext4_ext_store_pblock(&zero_ex,
|
|
ext4_ext_pblock(ex2));
|
|
} else {
|
|
err = ext4_ext_zeroout(inode, ex);
|
|
zero_ex.ee_block = ex->ee_block;
|
|
zero_ex.ee_len = cpu_to_le16(
|
|
ext4_ext_get_actual_len(ex));
|
|
ext4_ext_store_pblock(&zero_ex,
|
|
ext4_ext_pblock(ex));
|
|
}
|
|
} else {
|
|
err = ext4_ext_zeroout(inode, &orig_ex);
|
|
zero_ex.ee_block = orig_ex.ee_block;
|
|
zero_ex.ee_len = cpu_to_le16(
|
|
ext4_ext_get_actual_len(&orig_ex));
|
|
ext4_ext_store_pblock(&zero_ex,
|
|
ext4_ext_pblock(&orig_ex));
|
|
}
|
|
|
|
if (err)
|
|
goto fix_extent_len;
|
|
/* update the extent length and mark as initialized */
|
|
ex->ee_len = cpu_to_le16(ee_len);
|
|
ext4_ext_try_to_merge(handle, inode, path, ex);
|
|
err = ext4_ext_dirty(handle, inode, path + path->p_depth);
|
|
if (err)
|
|
goto fix_extent_len;
|
|
|
|
/* update extent status tree */
|
|
err = ext4_zeroout_es(inode, &zero_ex);
|
|
|
|
goto out;
|
|
} else if (err)
|
|
goto fix_extent_len;
|
|
|
|
out:
|
|
ext4_ext_show_leaf(inode, path);
|
|
return err;
|
|
|
|
fix_extent_len:
|
|
ex->ee_len = orig_ex.ee_len;
|
|
ext4_ext_dirty(handle, inode, path + path->p_depth);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_split_extents() splits an extent and mark extent which is covered
|
|
* by @map as split_flags indicates
|
|
*
|
|
* It may result in splitting the extent into multiple extents (up to three)
|
|
* There are three possibilities:
|
|
* a> There is no split required
|
|
* b> Splits in two extents: Split is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is splitting in middle of the extent
|
|
*
|
|
*/
|
|
static int ext4_split_extent(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_ext_path **ppath,
|
|
struct ext4_map_blocks *map,
|
|
int split_flag,
|
|
int flags)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
ext4_lblk_t ee_block;
|
|
struct ext4_extent *ex;
|
|
unsigned int ee_len, depth;
|
|
int err = 0;
|
|
int unwritten;
|
|
int split_flag1, flags1;
|
|
int allocated = map->m_len;
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
unwritten = ext4_ext_is_unwritten(ex);
|
|
|
|
if (map->m_lblk + map->m_len < ee_block + ee_len) {
|
|
split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
|
|
flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
|
|
if (unwritten)
|
|
split_flag1 |= EXT4_EXT_MARK_UNWRIT1 |
|
|
EXT4_EXT_MARK_UNWRIT2;
|
|
if (split_flag & EXT4_EXT_DATA_VALID2)
|
|
split_flag1 |= EXT4_EXT_DATA_VALID1;
|
|
err = ext4_split_extent_at(handle, inode, ppath,
|
|
map->m_lblk + map->m_len, split_flag1, flags1);
|
|
if (err)
|
|
goto out;
|
|
} else {
|
|
allocated = ee_len - (map->m_lblk - ee_block);
|
|
}
|
|
/*
|
|
* Update path is required because previous ext4_split_extent_at() may
|
|
* result in split of original leaf or extent zeroout.
|
|
*/
|
|
path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
|
|
if (IS_ERR(path))
|
|
return PTR_ERR(path);
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
if (!ex) {
|
|
EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
|
|
(unsigned long) map->m_lblk);
|
|
return -EIO;
|
|
}
|
|
unwritten = ext4_ext_is_unwritten(ex);
|
|
split_flag1 = 0;
|
|
|
|
if (map->m_lblk >= ee_block) {
|
|
split_flag1 = split_flag & EXT4_EXT_DATA_VALID2;
|
|
if (unwritten) {
|
|
split_flag1 |= EXT4_EXT_MARK_UNWRIT1;
|
|
split_flag1 |= split_flag & (EXT4_EXT_MAY_ZEROOUT |
|
|
EXT4_EXT_MARK_UNWRIT2);
|
|
}
|
|
err = ext4_split_extent_at(handle, inode, ppath,
|
|
map->m_lblk, split_flag1, flags);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
ext4_ext_show_leaf(inode, path);
|
|
out:
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
/*
|
|
* This function is called by ext4_ext_map_blocks() if someone tries to write
|
|
* to an unwritten extent. It may result in splitting the unwritten
|
|
* extent into multiple extents (up to three - one initialized and two
|
|
* unwritten).
|
|
* There are three possibilities:
|
|
* a> There is no split required: Entire extent should be initialized
|
|
* b> Splits in two extents: Write is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is writing in middle of the extent
|
|
*
|
|
* Pre-conditions:
|
|
* - The extent pointed to by 'path' is unwritten.
|
|
* - The extent pointed to by 'path' contains a superset
|
|
* of the logical span [map->m_lblk, map->m_lblk + map->m_len).
|
|
*
|
|
* Post-conditions on success:
|
|
* - the returned value is the number of blocks beyond map->l_lblk
|
|
* that are allocated and initialized.
|
|
* It is guaranteed to be >= map->m_len.
|
|
*/
|
|
static int ext4_ext_convert_to_initialized(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path **ppath,
|
|
int flags)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
struct ext4_sb_info *sbi;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_map_blocks split_map;
|
|
struct ext4_extent zero_ex;
|
|
struct ext4_extent *ex, *abut_ex;
|
|
ext4_lblk_t ee_block, eof_block;
|
|
unsigned int ee_len, depth, map_len = map->m_len;
|
|
int allocated = 0, max_zeroout = 0;
|
|
int err = 0;
|
|
int split_flag = 0;
|
|
|
|
ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
|
|
"block %llu, max_blocks %u\n", inode->i_ino,
|
|
(unsigned long long)map->m_lblk, map_len);
|
|
|
|
sbi = EXT4_SB(inode->i_sb);
|
|
eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
if (eof_block < map->m_lblk + map_len)
|
|
eof_block = map->m_lblk + map_len;
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
zero_ex.ee_len = 0;
|
|
|
|
trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
|
|
|
|
/* Pre-conditions */
|
|
BUG_ON(!ext4_ext_is_unwritten(ex));
|
|
BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
|
|
|
|
/*
|
|
* Attempt to transfer newly initialized blocks from the currently
|
|
* unwritten extent to its neighbor. This is much cheaper
|
|
* than an insertion followed by a merge as those involve costly
|
|
* memmove() calls. Transferring to the left is the common case in
|
|
* steady state for workloads doing fallocate(FALLOC_FL_KEEP_SIZE)
|
|
* followed by append writes.
|
|
*
|
|
* Limitations of the current logic:
|
|
* - L1: we do not deal with writes covering the whole extent.
|
|
* This would require removing the extent if the transfer
|
|
* is possible.
|
|
* - L2: we only attempt to merge with an extent stored in the
|
|
* same extent tree node.
|
|
*/
|
|
if ((map->m_lblk == ee_block) &&
|
|
/* See if we can merge left */
|
|
(map_len < ee_len) && /*L1*/
|
|
(ex > EXT_FIRST_EXTENT(eh))) { /*L2*/
|
|
ext4_lblk_t prev_lblk;
|
|
ext4_fsblk_t prev_pblk, ee_pblk;
|
|
unsigned int prev_len;
|
|
|
|
abut_ex = ex - 1;
|
|
prev_lblk = le32_to_cpu(abut_ex->ee_block);
|
|
prev_len = ext4_ext_get_actual_len(abut_ex);
|
|
prev_pblk = ext4_ext_pblock(abut_ex);
|
|
ee_pblk = ext4_ext_pblock(ex);
|
|
|
|
/*
|
|
* A transfer of blocks from 'ex' to 'abut_ex' is allowed
|
|
* upon those conditions:
|
|
* - C1: abut_ex is initialized,
|
|
* - C2: abut_ex is logically abutting ex,
|
|
* - C3: abut_ex is physically abutting ex,
|
|
* - C4: abut_ex can receive the additional blocks without
|
|
* overflowing the (initialized) length limit.
|
|
*/
|
|
if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
|
|
((prev_lblk + prev_len) == ee_block) && /*C2*/
|
|
((prev_pblk + prev_len) == ee_pblk) && /*C3*/
|
|
(prev_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
trace_ext4_ext_convert_to_initialized_fastpath(inode,
|
|
map, ex, abut_ex);
|
|
|
|
/* Shift the start of ex by 'map_len' blocks */
|
|
ex->ee_block = cpu_to_le32(ee_block + map_len);
|
|
ext4_ext_store_pblock(ex, ee_pblk + map_len);
|
|
ex->ee_len = cpu_to_le16(ee_len - map_len);
|
|
ext4_ext_mark_unwritten(ex); /* Restore the flag */
|
|
|
|
/* Extend abut_ex by 'map_len' blocks */
|
|
abut_ex->ee_len = cpu_to_le16(prev_len + map_len);
|
|
|
|
/* Result: number of initialized blocks past m_lblk */
|
|
allocated = map_len;
|
|
}
|
|
} else if (((map->m_lblk + map_len) == (ee_block + ee_len)) &&
|
|
(map_len < ee_len) && /*L1*/
|
|
ex < EXT_LAST_EXTENT(eh)) { /*L2*/
|
|
/* See if we can merge right */
|
|
ext4_lblk_t next_lblk;
|
|
ext4_fsblk_t next_pblk, ee_pblk;
|
|
unsigned int next_len;
|
|
|
|
abut_ex = ex + 1;
|
|
next_lblk = le32_to_cpu(abut_ex->ee_block);
|
|
next_len = ext4_ext_get_actual_len(abut_ex);
|
|
next_pblk = ext4_ext_pblock(abut_ex);
|
|
ee_pblk = ext4_ext_pblock(ex);
|
|
|
|
/*
|
|
* A transfer of blocks from 'ex' to 'abut_ex' is allowed
|
|
* upon those conditions:
|
|
* - C1: abut_ex is initialized,
|
|
* - C2: abut_ex is logically abutting ex,
|
|
* - C3: abut_ex is physically abutting ex,
|
|
* - C4: abut_ex can receive the additional blocks without
|
|
* overflowing the (initialized) length limit.
|
|
*/
|
|
if ((!ext4_ext_is_unwritten(abut_ex)) && /*C1*/
|
|
((map->m_lblk + map_len) == next_lblk) && /*C2*/
|
|
((ee_pblk + ee_len) == next_pblk) && /*C3*/
|
|
(next_len < (EXT_INIT_MAX_LEN - map_len))) { /*C4*/
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
trace_ext4_ext_convert_to_initialized_fastpath(inode,
|
|
map, ex, abut_ex);
|
|
|
|
/* Shift the start of abut_ex by 'map_len' blocks */
|
|
abut_ex->ee_block = cpu_to_le32(next_lblk - map_len);
|
|
ext4_ext_store_pblock(abut_ex, next_pblk - map_len);
|
|
ex->ee_len = cpu_to_le16(ee_len - map_len);
|
|
ext4_ext_mark_unwritten(ex); /* Restore the flag */
|
|
|
|
/* Extend abut_ex by 'map_len' blocks */
|
|
abut_ex->ee_len = cpu_to_le16(next_len + map_len);
|
|
|
|
/* Result: number of initialized blocks past m_lblk */
|
|
allocated = map_len;
|
|
}
|
|
}
|
|
if (allocated) {
|
|
/* Mark the block containing both extents as dirty */
|
|
ext4_ext_dirty(handle, inode, path + depth);
|
|
|
|
/* Update path to point to the right extent */
|
|
path[depth].p_ext = abut_ex;
|
|
goto out;
|
|
} else
|
|
allocated = ee_len - (map->m_lblk - ee_block);
|
|
|
|
WARN_ON(map->m_lblk < ee_block);
|
|
/*
|
|
* It is safe to convert extent to initialized via explicit
|
|
* zeroout only if extent is fully inside i_size or new_size.
|
|
*/
|
|
split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
|
|
|
|
if (EXT4_EXT_MAY_ZEROOUT & split_flag)
|
|
max_zeroout = sbi->s_extent_max_zeroout_kb >>
|
|
(inode->i_sb->s_blocksize_bits - 10);
|
|
|
|
/* If extent is less than s_max_zeroout_kb, zeroout directly */
|
|
if (max_zeroout && (ee_len <= max_zeroout)) {
|
|
err = ext4_ext_zeroout(inode, ex);
|
|
if (err)
|
|
goto out;
|
|
zero_ex.ee_block = ex->ee_block;
|
|
zero_ex.ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex));
|
|
ext4_ext_store_pblock(&zero_ex, ext4_ext_pblock(ex));
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
ext4_ext_mark_initialized(ex);
|
|
ext4_ext_try_to_merge(handle, inode, path, ex);
|
|
err = ext4_ext_dirty(handle, inode, path + path->p_depth);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* four cases:
|
|
* 1. split the extent into three extents.
|
|
* 2. split the extent into two extents, zeroout the first half.
|
|
* 3. split the extent into two extents, zeroout the second half.
|
|
* 4. split the extent into two extents with out zeroout.
|
|
*/
|
|
split_map.m_lblk = map->m_lblk;
|
|
split_map.m_len = map->m_len;
|
|
|
|
if (max_zeroout && (allocated > map->m_len)) {
|
|
if (allocated <= max_zeroout) {
|
|
/* case 3 */
|
|
zero_ex.ee_block =
|
|
cpu_to_le32(map->m_lblk);
|
|
zero_ex.ee_len = cpu_to_le16(allocated);
|
|
ext4_ext_store_pblock(&zero_ex,
|
|
ext4_ext_pblock(ex) + map->m_lblk - ee_block);
|
|
err = ext4_ext_zeroout(inode, &zero_ex);
|
|
if (err)
|
|
goto out;
|
|
split_map.m_lblk = map->m_lblk;
|
|
split_map.m_len = allocated;
|
|
} else if (map->m_lblk - ee_block + map->m_len < max_zeroout) {
|
|
/* case 2 */
|
|
if (map->m_lblk != ee_block) {
|
|
zero_ex.ee_block = ex->ee_block;
|
|
zero_ex.ee_len = cpu_to_le16(map->m_lblk -
|
|
ee_block);
|
|
ext4_ext_store_pblock(&zero_ex,
|
|
ext4_ext_pblock(ex));
|
|
err = ext4_ext_zeroout(inode, &zero_ex);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
split_map.m_lblk = ee_block;
|
|
split_map.m_len = map->m_lblk - ee_block + map->m_len;
|
|
allocated = map->m_len;
|
|
}
|
|
}
|
|
|
|
err = ext4_split_extent(handle, inode, ppath, &split_map, split_flag,
|
|
flags);
|
|
if (err > 0)
|
|
err = 0;
|
|
out:
|
|
/* If we have gotten a failure, don't zero out status tree */
|
|
if (!err)
|
|
err = ext4_zeroout_es(inode, &zero_ex);
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
/*
|
|
* This function is called by ext4_ext_map_blocks() from
|
|
* ext4_get_blocks_dio_write() when DIO to write
|
|
* to an unwritten extent.
|
|
*
|
|
* Writing to an unwritten extent may result in splitting the unwritten
|
|
* extent into multiple initialized/unwritten extents (up to three)
|
|
* There are three possibilities:
|
|
* a> There is no split required: Entire extent should be unwritten
|
|
* b> Splits in two extents: Write is happening at either end of the extent
|
|
* c> Splits in three extents: Somone is writing in middle of the extent
|
|
*
|
|
* This works the same way in the case of initialized -> unwritten conversion.
|
|
*
|
|
* One of more index blocks maybe needed if the extent tree grow after
|
|
* the unwritten extent split. To prevent ENOSPC occur at the IO
|
|
* complete, we need to split the unwritten extent before DIO submit
|
|
* the IO. The unwritten extent called at this time will be split
|
|
* into three unwritten extent(at most). After IO complete, the part
|
|
* being filled will be convert to initialized by the end_io callback function
|
|
* via ext4_convert_unwritten_extents().
|
|
*
|
|
* Returns the size of unwritten extent to be written on success.
|
|
*/
|
|
static int ext4_split_convert_extents(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path **ppath,
|
|
int flags)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
ext4_lblk_t eof_block;
|
|
ext4_lblk_t ee_block;
|
|
struct ext4_extent *ex;
|
|
unsigned int ee_len;
|
|
int split_flag = 0, depth;
|
|
|
|
ext_debug("%s: inode %lu, logical block %llu, max_blocks %u\n",
|
|
__func__, inode->i_ino,
|
|
(unsigned long long)map->m_lblk, map->m_len);
|
|
|
|
eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
|
|
inode->i_sb->s_blocksize_bits;
|
|
if (eof_block < map->m_lblk + map->m_len)
|
|
eof_block = map->m_lblk + map->m_len;
|
|
/*
|
|
* It is safe to convert extent to initialized via explicit
|
|
* zeroout only if extent is fully insde i_size or new_size.
|
|
*/
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
/* Convert to unwritten */
|
|
if (flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN) {
|
|
split_flag |= EXT4_EXT_DATA_VALID1;
|
|
/* Convert to initialized */
|
|
} else if (flags & EXT4_GET_BLOCKS_CONVERT) {
|
|
split_flag |= ee_block + ee_len <= eof_block ?
|
|
EXT4_EXT_MAY_ZEROOUT : 0;
|
|
split_flag |= (EXT4_EXT_MARK_UNWRIT2 | EXT4_EXT_DATA_VALID2);
|
|
}
|
|
flags |= EXT4_GET_BLOCKS_PRE_IO;
|
|
return ext4_split_extent(handle, inode, ppath, map, split_flag, flags);
|
|
}
|
|
|
|
static int ext4_convert_unwritten_extents_endio(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path **ppath)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t ee_block;
|
|
unsigned int ee_len;
|
|
int depth;
|
|
int err = 0;
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
|
|
"block %llu, max_blocks %u\n", inode->i_ino,
|
|
(unsigned long long)ee_block, ee_len);
|
|
|
|
/* If extent is larger than requested it is a clear sign that we still
|
|
* have some extent state machine issues left. So extent_split is still
|
|
* required.
|
|
* TODO: Once all related issues will be fixed this situation should be
|
|
* illegal.
|
|
*/
|
|
if (ee_block != map->m_lblk || ee_len > map->m_len) {
|
|
#ifdef EXT4_DEBUG
|
|
ext4_warning("Inode (%ld) finished: extent logical block %llu,"
|
|
" len %u; IO logical block %llu, len %u\n",
|
|
inode->i_ino, (unsigned long long)ee_block, ee_len,
|
|
(unsigned long long)map->m_lblk, map->m_len);
|
|
#endif
|
|
err = ext4_split_convert_extents(handle, inode, map, ppath,
|
|
EXT4_GET_BLOCKS_CONVERT);
|
|
if (err < 0)
|
|
return err;
|
|
path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
|
|
if (IS_ERR(path))
|
|
return PTR_ERR(path);
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
}
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
/* first mark the extent as initialized */
|
|
ext4_ext_mark_initialized(ex);
|
|
|
|
/* note: ext4_ext_correct_indexes() isn't needed here because
|
|
* borders are not changed
|
|
*/
|
|
ext4_ext_try_to_merge(handle, inode, path, ex);
|
|
|
|
/* Mark modified extent as dirty */
|
|
err = ext4_ext_dirty(handle, inode, path + path->p_depth);
|
|
out:
|
|
ext4_ext_show_leaf(inode, path);
|
|
return err;
|
|
}
|
|
|
|
static void unmap_underlying_metadata_blocks(struct block_device *bdev,
|
|
sector_t block, int count)
|
|
{
|
|
int i;
|
|
for (i = 0; i < count; i++)
|
|
unmap_underlying_metadata(bdev, block + i);
|
|
}
|
|
|
|
/*
|
|
* Handle EOFBLOCKS_FL flag, clearing it if necessary
|
|
*/
|
|
static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
|
|
ext4_lblk_t lblk,
|
|
struct ext4_ext_path *path,
|
|
unsigned int len)
|
|
{
|
|
int i, depth;
|
|
struct ext4_extent_header *eh;
|
|
struct ext4_extent *last_ex;
|
|
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
|
|
return 0;
|
|
|
|
depth = ext_depth(inode);
|
|
eh = path[depth].p_hdr;
|
|
|
|
/*
|
|
* We're going to remove EOFBLOCKS_FL entirely in future so we
|
|
* do not care for this case anymore. Simply remove the flag
|
|
* if there are no extents.
|
|
*/
|
|
if (unlikely(!eh->eh_entries))
|
|
goto out;
|
|
last_ex = EXT_LAST_EXTENT(eh);
|
|
/*
|
|
* We should clear the EOFBLOCKS_FL flag if we are writing the
|
|
* last block in the last extent in the file. We test this by
|
|
* first checking to see if the caller to
|
|
* ext4_ext_get_blocks() was interested in the last block (or
|
|
* a block beyond the last block) in the current extent. If
|
|
* this turns out to be false, we can bail out from this
|
|
* function immediately.
|
|
*/
|
|
if (lblk + len < le32_to_cpu(last_ex->ee_block) +
|
|
ext4_ext_get_actual_len(last_ex))
|
|
return 0;
|
|
/*
|
|
* If the caller does appear to be planning to write at or
|
|
* beyond the end of the current extent, we then test to see
|
|
* if the current extent is the last extent in the file, by
|
|
* checking to make sure it was reached via the rightmost node
|
|
* at each level of the tree.
|
|
*/
|
|
for (i = depth-1; i >= 0; i--)
|
|
if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
|
|
return 0;
|
|
out:
|
|
ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
|
|
return ext4_mark_inode_dirty(handle, inode);
|
|
}
|
|
|
|
/**
|
|
* ext4_find_delalloc_range: find delayed allocated block in the given range.
|
|
*
|
|
* Return 1 if there is a delalloc block in the range, otherwise 0.
|
|
*/
|
|
int ext4_find_delalloc_range(struct inode *inode,
|
|
ext4_lblk_t lblk_start,
|
|
ext4_lblk_t lblk_end)
|
|
{
|
|
struct extent_status es;
|
|
|
|
ext4_es_find_delayed_extent_range(inode, lblk_start, lblk_end, &es);
|
|
if (es.es_len == 0)
|
|
return 0; /* there is no delay extent in this tree */
|
|
else if (es.es_lblk <= lblk_start &&
|
|
lblk_start < es.es_lblk + es.es_len)
|
|
return 1;
|
|
else if (lblk_start <= es.es_lblk && es.es_lblk <= lblk_end)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_lblk_t lblk_start, lblk_end;
|
|
lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
|
|
lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
|
|
|
|
return ext4_find_delalloc_range(inode, lblk_start, lblk_end);
|
|
}
|
|
|
|
/**
|
|
* Determines how many complete clusters (out of those specified by the 'map')
|
|
* are under delalloc and were reserved quota for.
|
|
* This function is called when we are writing out the blocks that were
|
|
* originally written with their allocation delayed, but then the space was
|
|
* allocated using fallocate() before the delayed allocation could be resolved.
|
|
* The cases to look for are:
|
|
* ('=' indicated delayed allocated blocks
|
|
* '-' indicates non-delayed allocated blocks)
|
|
* (a) partial clusters towards beginning and/or end outside of allocated range
|
|
* are not delalloc'ed.
|
|
* Ex:
|
|
* |----c---=|====c====|====c====|===-c----|
|
|
* |++++++ allocated ++++++|
|
|
* ==> 4 complete clusters in above example
|
|
*
|
|
* (b) partial cluster (outside of allocated range) towards either end is
|
|
* marked for delayed allocation. In this case, we will exclude that
|
|
* cluster.
|
|
* Ex:
|
|
* |----====c========|========c========|
|
|
* |++++++ allocated ++++++|
|
|
* ==> 1 complete clusters in above example
|
|
*
|
|
* Ex:
|
|
* |================c================|
|
|
* |++++++ allocated ++++++|
|
|
* ==> 0 complete clusters in above example
|
|
*
|
|
* The ext4_da_update_reserve_space will be called only if we
|
|
* determine here that there were some "entire" clusters that span
|
|
* this 'allocated' range.
|
|
* In the non-bigalloc case, this function will just end up returning num_blks
|
|
* without ever calling ext4_find_delalloc_range.
|
|
*/
|
|
static unsigned int
|
|
get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
|
|
unsigned int num_blks)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
|
|
ext4_lblk_t lblk_from, lblk_to, c_offset;
|
|
unsigned int allocated_clusters = 0;
|
|
|
|
alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
|
|
alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
|
|
|
|
/* max possible clusters for this allocation */
|
|
allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
|
|
|
|
trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
|
|
|
|
/* Check towards left side */
|
|
c_offset = EXT4_LBLK_COFF(sbi, lblk_start);
|
|
if (c_offset) {
|
|
lblk_from = EXT4_LBLK_CMASK(sbi, lblk_start);
|
|
lblk_to = lblk_from + c_offset - 1;
|
|
|
|
if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
|
|
allocated_clusters--;
|
|
}
|
|
|
|
/* Now check towards right. */
|
|
c_offset = EXT4_LBLK_COFF(sbi, lblk_start + num_blks);
|
|
if (allocated_clusters && c_offset) {
|
|
lblk_from = lblk_start + num_blks;
|
|
lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
|
|
|
|
if (ext4_find_delalloc_range(inode, lblk_from, lblk_to))
|
|
allocated_clusters--;
|
|
}
|
|
|
|
return allocated_clusters;
|
|
}
|
|
|
|
static int
|
|
convert_initialized_extent(handle_t *handle, struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path **ppath, int flags,
|
|
unsigned int allocated, ext4_fsblk_t newblock)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
struct ext4_extent *ex;
|
|
ext4_lblk_t ee_block;
|
|
unsigned int ee_len;
|
|
int depth;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Make sure that the extent is no bigger than we support with
|
|
* unwritten extent
|
|
*/
|
|
if (map->m_len > EXT_UNWRITTEN_MAX_LEN)
|
|
map->m_len = EXT_UNWRITTEN_MAX_LEN / 2;
|
|
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
ee_block = le32_to_cpu(ex->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
ext_debug("%s: inode %lu, logical"
|
|
"block %llu, max_blocks %u\n", __func__, inode->i_ino,
|
|
(unsigned long long)ee_block, ee_len);
|
|
|
|
if (ee_block != map->m_lblk || ee_len > map->m_len) {
|
|
err = ext4_split_convert_extents(handle, inode, map, ppath,
|
|
EXT4_GET_BLOCKS_CONVERT_UNWRITTEN);
|
|
if (err < 0)
|
|
return err;
|
|
path = ext4_find_extent(inode, map->m_lblk, ppath, 0);
|
|
if (IS_ERR(path))
|
|
return PTR_ERR(path);
|
|
depth = ext_depth(inode);
|
|
ex = path[depth].p_ext;
|
|
if (!ex) {
|
|
EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
|
|
(unsigned long) map->m_lblk);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
err = ext4_ext_get_access(handle, inode, path + depth);
|
|
if (err)
|
|
return err;
|
|
/* first mark the extent as unwritten */
|
|
ext4_ext_mark_unwritten(ex);
|
|
|
|
/* note: ext4_ext_correct_indexes() isn't needed here because
|
|
* borders are not changed
|
|
*/
|
|
ext4_ext_try_to_merge(handle, inode, path, ex);
|
|
|
|
/* Mark modified extent as dirty */
|
|
err = ext4_ext_dirty(handle, inode, path + path->p_depth);
|
|
if (err)
|
|
return err;
|
|
ext4_ext_show_leaf(inode, path);
|
|
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
err = check_eofblocks_fl(handle, inode, map->m_lblk, path, map->m_len);
|
|
if (err)
|
|
return err;
|
|
map->m_flags |= EXT4_MAP_UNWRITTEN;
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
map->m_len = allocated;
|
|
return allocated;
|
|
}
|
|
|
|
static int
|
|
ext4_ext_handle_unwritten_extents(handle_t *handle, struct inode *inode,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_ext_path **ppath, int flags,
|
|
unsigned int allocated, ext4_fsblk_t newblock)
|
|
{
|
|
struct ext4_ext_path *path = *ppath;
|
|
int ret = 0;
|
|
int err = 0;
|
|
ext4_io_end_t *io = ext4_inode_aio(inode);
|
|
|
|
ext_debug("ext4_ext_handle_unwritten_extents: inode %lu, logical "
|
|
"block %llu, max_blocks %u, flags %x, allocated %u\n",
|
|
inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
|
|
flags, allocated);
|
|
ext4_ext_show_leaf(inode, path);
|
|
|
|
/*
|
|
* When writing into unwritten space, we should not fail to
|
|
* allocate metadata blocks for the new extent block if needed.
|
|
*/
|
|
flags |= EXT4_GET_BLOCKS_METADATA_NOFAIL;
|
|
|
|
trace_ext4_ext_handle_unwritten_extents(inode, map, flags,
|
|
allocated, newblock);
|
|
|
|
/* get_block() before submit the IO, split the extent */
|
|
if (flags & EXT4_GET_BLOCKS_PRE_IO) {
|
|
ret = ext4_split_convert_extents(handle, inode, map, ppath,
|
|
flags | EXT4_GET_BLOCKS_CONVERT);
|
|
if (ret <= 0)
|
|
goto out;
|
|
/*
|
|
* Flag the inode(non aio case) or end_io struct (aio case)
|
|
* that this IO needs to conversion to written when IO is
|
|
* completed
|
|
*/
|
|
if (io)
|
|
ext4_set_io_unwritten_flag(inode, io);
|
|
else
|
|
ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
|
|
map->m_flags |= EXT4_MAP_UNWRITTEN;
|
|
goto out;
|
|
}
|
|
/* IO end_io complete, convert the filled extent to written */
|
|
if (flags & EXT4_GET_BLOCKS_CONVERT) {
|
|
ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
|
|
ppath);
|
|
if (ret >= 0) {
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
err = check_eofblocks_fl(handle, inode, map->m_lblk,
|
|
path, map->m_len);
|
|
} else
|
|
err = ret;
|
|
map->m_flags |= EXT4_MAP_MAPPED;
|
|
map->m_pblk = newblock;
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
map->m_len = allocated;
|
|
goto out2;
|
|
}
|
|
/* buffered IO case */
|
|
/*
|
|
* repeat fallocate creation request
|
|
* we already have an unwritten extent
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT) {
|
|
map->m_flags |= EXT4_MAP_UNWRITTEN;
|
|
goto map_out;
|
|
}
|
|
|
|
/* buffered READ or buffered write_begin() lookup */
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* We have blocks reserved already. We
|
|
* return allocated blocks so that delalloc
|
|
* won't do block reservation for us. But
|
|
* the buffer head will be unmapped so that
|
|
* a read from the block returns 0s.
|
|
*/
|
|
map->m_flags |= EXT4_MAP_UNWRITTEN;
|
|
goto out1;
|
|
}
|
|
|
|
/* buffered write, writepage time, convert*/
|
|
ret = ext4_ext_convert_to_initialized(handle, inode, map, ppath, flags);
|
|
if (ret >= 0)
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
out:
|
|
if (ret <= 0) {
|
|
err = ret;
|
|
goto out2;
|
|
} else
|
|
allocated = ret;
|
|
map->m_flags |= EXT4_MAP_NEW;
|
|
/*
|
|
* if we allocated more blocks than requested
|
|
* we need to make sure we unmap the extra block
|
|
* allocated. The actual needed block will get
|
|
* unmapped later when we find the buffer_head marked
|
|
* new.
|
|
*/
|
|
if (allocated > map->m_len) {
|
|
unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
|
|
newblock + map->m_len,
|
|
allocated - map->m_len);
|
|
allocated = map->m_len;
|
|
}
|
|
map->m_len = allocated;
|
|
|
|
/*
|
|
* If we have done fallocate with the offset that is already
|
|
* delayed allocated, we would have block reservation
|
|
* and quota reservation done in the delayed write path.
|
|
* But fallocate would have already updated quota and block
|
|
* count for this offset. So cancel these reservation
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
|
|
unsigned int reserved_clusters;
|
|
reserved_clusters = get_reserved_cluster_alloc(inode,
|
|
map->m_lblk, map->m_len);
|
|
if (reserved_clusters)
|
|
ext4_da_update_reserve_space(inode,
|
|
reserved_clusters,
|
|
0);
|
|
}
|
|
|
|
map_out:
|
|
map->m_flags |= EXT4_MAP_MAPPED;
|
|
if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
|
|
err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
|
|
map->m_len);
|
|
if (err < 0)
|
|
goto out2;
|
|
}
|
|
out1:
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
ext4_ext_show_leaf(inode, path);
|
|
map->m_pblk = newblock;
|
|
map->m_len = allocated;
|
|
out2:
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
/*
|
|
* get_implied_cluster_alloc - check to see if the requested
|
|
* allocation (in the map structure) overlaps with a cluster already
|
|
* allocated in an extent.
|
|
* @sb The filesystem superblock structure
|
|
* @map The requested lblk->pblk mapping
|
|
* @ex The extent structure which might contain an implied
|
|
* cluster allocation
|
|
*
|
|
* This function is called by ext4_ext_map_blocks() after we failed to
|
|
* find blocks that were already in the inode's extent tree. Hence,
|
|
* we know that the beginning of the requested region cannot overlap
|
|
* the extent from the inode's extent tree. There are three cases we
|
|
* want to catch. The first is this case:
|
|
*
|
|
* |--- cluster # N--|
|
|
* |--- extent ---| |---- requested region ---|
|
|
* |==========|
|
|
*
|
|
* The second case that we need to test for is this one:
|
|
*
|
|
* |--------- cluster # N ----------------|
|
|
* |--- requested region --| |------- extent ----|
|
|
* |=======================|
|
|
*
|
|
* The third case is when the requested region lies between two extents
|
|
* within the same cluster:
|
|
* |------------- cluster # N-------------|
|
|
* |----- ex -----| |---- ex_right ----|
|
|
* |------ requested region ------|
|
|
* |================|
|
|
*
|
|
* In each of the above cases, we need to set the map->m_pblk and
|
|
* map->m_len so it corresponds to the return the extent labelled as
|
|
* "|====|" from cluster #N, since it is already in use for data in
|
|
* cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
|
|
* signal to ext4_ext_map_blocks() that map->m_pblk should be treated
|
|
* as a new "allocated" block region. Otherwise, we will return 0 and
|
|
* ext4_ext_map_blocks() will then allocate one or more new clusters
|
|
* by calling ext4_mb_new_blocks().
|
|
*/
|
|
static int get_implied_cluster_alloc(struct super_block *sb,
|
|
struct ext4_map_blocks *map,
|
|
struct ext4_extent *ex,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
ext4_lblk_t c_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
|
|
ext4_lblk_t ex_cluster_start, ex_cluster_end;
|
|
ext4_lblk_t rr_cluster_start;
|
|
ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
|
|
ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
|
|
unsigned short ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
/* The extent passed in that we are trying to match */
|
|
ex_cluster_start = EXT4_B2C(sbi, ee_block);
|
|
ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
|
|
|
|
/* The requested region passed into ext4_map_blocks() */
|
|
rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
|
|
|
|
if ((rr_cluster_start == ex_cluster_end) ||
|
|
(rr_cluster_start == ex_cluster_start)) {
|
|
if (rr_cluster_start == ex_cluster_end)
|
|
ee_start += ee_len - 1;
|
|
map->m_pblk = EXT4_PBLK_CMASK(sbi, ee_start) + c_offset;
|
|
map->m_len = min(map->m_len,
|
|
(unsigned) sbi->s_cluster_ratio - c_offset);
|
|
/*
|
|
* Check for and handle this case:
|
|
*
|
|
* |--------- cluster # N-------------|
|
|
* |------- extent ----|
|
|
* |--- requested region ---|
|
|
* |===========|
|
|
*/
|
|
|
|
if (map->m_lblk < ee_block)
|
|
map->m_len = min(map->m_len, ee_block - map->m_lblk);
|
|
|
|
/*
|
|
* Check for the case where there is already another allocated
|
|
* block to the right of 'ex' but before the end of the cluster.
|
|
*
|
|
* |------------- cluster # N-------------|
|
|
* |----- ex -----| |---- ex_right ----|
|
|
* |------ requested region ------|
|
|
* |================|
|
|
*/
|
|
if (map->m_lblk > ee_block) {
|
|
ext4_lblk_t next = ext4_ext_next_allocated_block(path);
|
|
map->m_len = min(map->m_len, next - map->m_lblk);
|
|
}
|
|
|
|
trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
|
|
return 1;
|
|
}
|
|
|
|
trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Block allocation/map/preallocation routine for extents based files
|
|
*
|
|
*
|
|
* Need to be called with
|
|
* down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
|
|
* (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
|
|
*
|
|
* return > 0, number of of blocks already mapped/allocated
|
|
* if create == 0 and these are pre-allocated blocks
|
|
* buffer head is unmapped
|
|
* otherwise blocks are mapped
|
|
*
|
|
* return = 0, if plain look up failed (blocks have not been allocated)
|
|
* buffer head is unmapped
|
|
*
|
|
* return < 0, error case.
|
|
*/
|
|
int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
|
|
struct ext4_map_blocks *map, int flags)
|
|
{
|
|
struct ext4_ext_path *path = NULL;
|
|
struct ext4_extent newex, *ex, *ex2;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
ext4_fsblk_t newblock = 0;
|
|
int free_on_err = 0, err = 0, depth, ret;
|
|
unsigned int allocated = 0, offset = 0;
|
|
unsigned int allocated_clusters = 0;
|
|
struct ext4_allocation_request ar;
|
|
ext4_io_end_t *io = ext4_inode_aio(inode);
|
|
ext4_lblk_t cluster_offset;
|
|
int set_unwritten = 0;
|
|
bool map_from_cluster = false;
|
|
|
|
ext_debug("blocks %u/%u requested for inode %lu\n",
|
|
map->m_lblk, map->m_len, inode->i_ino);
|
|
trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
|
|
|
|
/* find extent for this block */
|
|
path = ext4_find_extent(inode, map->m_lblk, NULL, 0);
|
|
if (IS_ERR(path)) {
|
|
err = PTR_ERR(path);
|
|
path = NULL;
|
|
goto out2;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
|
|
/*
|
|
* consistent leaf must not be empty;
|
|
* this situation is possible, though, _during_ tree modification;
|
|
* this is why assert can't be put in ext4_find_extent()
|
|
*/
|
|
if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
|
|
EXT4_ERROR_INODE(inode, "bad extent address "
|
|
"lblock: %lu, depth: %d pblock %lld",
|
|
(unsigned long) map->m_lblk, depth,
|
|
path[depth].p_block);
|
|
err = -EIO;
|
|
goto out2;
|
|
}
|
|
|
|
ex = path[depth].p_ext;
|
|
if (ex) {
|
|
ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
|
|
ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
|
|
unsigned short ee_len;
|
|
|
|
|
|
/*
|
|
* unwritten extents are treated as holes, except that
|
|
* we split out initialized portions during a write.
|
|
*/
|
|
ee_len = ext4_ext_get_actual_len(ex);
|
|
|
|
trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
|
|
|
|
/* if found extent covers block, simply return it */
|
|
if (in_range(map->m_lblk, ee_block, ee_len)) {
|
|
newblock = map->m_lblk - ee_block + ee_start;
|
|
/* number of remaining blocks in the extent */
|
|
allocated = ee_len - (map->m_lblk - ee_block);
|
|
ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
|
|
ee_block, ee_len, newblock);
|
|
|
|
/*
|
|
* If the extent is initialized check whether the
|
|
* caller wants to convert it to unwritten.
|
|
*/
|
|
if ((!ext4_ext_is_unwritten(ex)) &&
|
|
(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) {
|
|
allocated = convert_initialized_extent(
|
|
handle, inode, map, &path,
|
|
flags, allocated, newblock);
|
|
goto out2;
|
|
} else if (!ext4_ext_is_unwritten(ex))
|
|
goto out;
|
|
|
|
ret = ext4_ext_handle_unwritten_extents(
|
|
handle, inode, map, &path, flags,
|
|
allocated, newblock);
|
|
if (ret < 0)
|
|
err = ret;
|
|
else
|
|
allocated = ret;
|
|
goto out2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* requested block isn't allocated yet;
|
|
* we couldn't try to create block if create flag is zero
|
|
*/
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
|
|
/*
|
|
* put just found gap into cache to speed up
|
|
* subsequent requests
|
|
*/
|
|
ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* Okay, we need to do block allocation.
|
|
*/
|
|
newex.ee_block = cpu_to_le32(map->m_lblk);
|
|
cluster_offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
|
|
|
|
/*
|
|
* If we are doing bigalloc, check to see if the extent returned
|
|
* by ext4_find_extent() implies a cluster we can use.
|
|
*/
|
|
if (cluster_offset && ex &&
|
|
get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
|
|
ar.len = allocated = map->m_len;
|
|
newblock = map->m_pblk;
|
|
map_from_cluster = true;
|
|
goto got_allocated_blocks;
|
|
}
|
|
|
|
/* find neighbour allocated blocks */
|
|
ar.lleft = map->m_lblk;
|
|
err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
|
|
if (err)
|
|
goto out2;
|
|
ar.lright = map->m_lblk;
|
|
ex2 = NULL;
|
|
err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
|
|
if (err)
|
|
goto out2;
|
|
|
|
/* Check if the extent after searching to the right implies a
|
|
* cluster we can use. */
|
|
if ((sbi->s_cluster_ratio > 1) && ex2 &&
|
|
get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
|
|
ar.len = allocated = map->m_len;
|
|
newblock = map->m_pblk;
|
|
map_from_cluster = true;
|
|
goto got_allocated_blocks;
|
|
}
|
|
|
|
/*
|
|
* See if request is beyond maximum number of blocks we can have in
|
|
* a single extent. For an initialized extent this limit is
|
|
* EXT_INIT_MAX_LEN and for an unwritten extent this limit is
|
|
* EXT_UNWRITTEN_MAX_LEN.
|
|
*/
|
|
if (map->m_len > EXT_INIT_MAX_LEN &&
|
|
!(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
|
|
map->m_len = EXT_INIT_MAX_LEN;
|
|
else if (map->m_len > EXT_UNWRITTEN_MAX_LEN &&
|
|
(flags & EXT4_GET_BLOCKS_UNWRIT_EXT))
|
|
map->m_len = EXT_UNWRITTEN_MAX_LEN;
|
|
|
|
/* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
|
|
newex.ee_len = cpu_to_le16(map->m_len);
|
|
err = ext4_ext_check_overlap(sbi, inode, &newex, path);
|
|
if (err)
|
|
allocated = ext4_ext_get_actual_len(&newex);
|
|
else
|
|
allocated = map->m_len;
|
|
|
|
/* allocate new block */
|
|
ar.inode = inode;
|
|
ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
|
|
ar.logical = map->m_lblk;
|
|
/*
|
|
* We calculate the offset from the beginning of the cluster
|
|
* for the logical block number, since when we allocate a
|
|
* physical cluster, the physical block should start at the
|
|
* same offset from the beginning of the cluster. This is
|
|
* needed so that future calls to get_implied_cluster_alloc()
|
|
* work correctly.
|
|
*/
|
|
offset = EXT4_LBLK_COFF(sbi, map->m_lblk);
|
|
ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
|
|
ar.goal -= offset;
|
|
ar.logical -= offset;
|
|
if (S_ISREG(inode->i_mode))
|
|
ar.flags = EXT4_MB_HINT_DATA;
|
|
else
|
|
/* disable in-core preallocation for non-regular files */
|
|
ar.flags = 0;
|
|
if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
|
|
ar.flags |= EXT4_MB_HINT_NOPREALLOC;
|
|
if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
|
|
ar.flags |= EXT4_MB_DELALLOC_RESERVED;
|
|
if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
|
|
ar.flags |= EXT4_MB_USE_RESERVED;
|
|
newblock = ext4_mb_new_blocks(handle, &ar, &err);
|
|
if (!newblock)
|
|
goto out2;
|
|
ext_debug("allocate new block: goal %llu, found %llu/%u\n",
|
|
ar.goal, newblock, allocated);
|
|
free_on_err = 1;
|
|
allocated_clusters = ar.len;
|
|
ar.len = EXT4_C2B(sbi, ar.len) - offset;
|
|
if (ar.len > allocated)
|
|
ar.len = allocated;
|
|
|
|
got_allocated_blocks:
|
|
/* try to insert new extent into found leaf and return */
|
|
ext4_ext_store_pblock(&newex, newblock + offset);
|
|
newex.ee_len = cpu_to_le16(ar.len);
|
|
/* Mark unwritten */
|
|
if (flags & EXT4_GET_BLOCKS_UNWRIT_EXT){
|
|
ext4_ext_mark_unwritten(&newex);
|
|
map->m_flags |= EXT4_MAP_UNWRITTEN;
|
|
/*
|
|
* io_end structure was created for every IO write to an
|
|
* unwritten extent. To avoid unnecessary conversion,
|
|
* here we flag the IO that really needs the conversion.
|
|
* For non asycn direct IO case, flag the inode state
|
|
* that we need to perform conversion when IO is done.
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_PRE_IO)
|
|
set_unwritten = 1;
|
|
}
|
|
|
|
err = 0;
|
|
if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
|
|
err = check_eofblocks_fl(handle, inode, map->m_lblk,
|
|
path, ar.len);
|
|
if (!err)
|
|
err = ext4_ext_insert_extent(handle, inode, &path,
|
|
&newex, flags);
|
|
|
|
if (!err && set_unwritten) {
|
|
if (io)
|
|
ext4_set_io_unwritten_flag(inode, io);
|
|
else
|
|
ext4_set_inode_state(inode,
|
|
EXT4_STATE_DIO_UNWRITTEN);
|
|
}
|
|
|
|
if (err && free_on_err) {
|
|
int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
|
|
EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
|
|
/* free data blocks we just allocated */
|
|
/* not a good idea to call discard here directly,
|
|
* but otherwise we'd need to call it every free() */
|
|
ext4_discard_preallocations(inode);
|
|
ext4_free_blocks(handle, inode, NULL, newblock,
|
|
EXT4_C2B(sbi, allocated_clusters), fb_flags);
|
|
goto out2;
|
|
}
|
|
|
|
/* previous routine could use block we allocated */
|
|
newblock = ext4_ext_pblock(&newex);
|
|
allocated = ext4_ext_get_actual_len(&newex);
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
map->m_flags |= EXT4_MAP_NEW;
|
|
|
|
/*
|
|
* Update reserved blocks/metadata blocks after successful
|
|
* block allocation which had been deferred till now.
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
|
|
unsigned int reserved_clusters;
|
|
/*
|
|
* Check how many clusters we had reserved this allocated range
|
|
*/
|
|
reserved_clusters = get_reserved_cluster_alloc(inode,
|
|
map->m_lblk, allocated);
|
|
if (!map_from_cluster) {
|
|
BUG_ON(allocated_clusters < reserved_clusters);
|
|
if (reserved_clusters < allocated_clusters) {
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
int reservation = allocated_clusters -
|
|
reserved_clusters;
|
|
/*
|
|
* It seems we claimed few clusters outside of
|
|
* the range of this allocation. We should give
|
|
* it back to the reservation pool. This can
|
|
* happen in the following case:
|
|
*
|
|
* * Suppose s_cluster_ratio is 4 (i.e., each
|
|
* cluster has 4 blocks. Thus, the clusters
|
|
* are [0-3],[4-7],[8-11]...
|
|
* * First comes delayed allocation write for
|
|
* logical blocks 10 & 11. Since there were no
|
|
* previous delayed allocated blocks in the
|
|
* range [8-11], we would reserve 1 cluster
|
|
* for this write.
|
|
* * Next comes write for logical blocks 3 to 8.
|
|
* In this case, we will reserve 2 clusters
|
|
* (for [0-3] and [4-7]; and not for [8-11] as
|
|
* that range has a delayed allocated blocks.
|
|
* Thus total reserved clusters now becomes 3.
|
|
* * Now, during the delayed allocation writeout
|
|
* time, we will first write blocks [3-8] and
|
|
* allocate 3 clusters for writing these
|
|
* blocks. Also, we would claim all these
|
|
* three clusters above.
|
|
* * Now when we come here to writeout the
|
|
* blocks [10-11], we would expect to claim
|
|
* the reservation of 1 cluster we had made
|
|
* (and we would claim it since there are no
|
|
* more delayed allocated blocks in the range
|
|
* [8-11]. But our reserved cluster count had
|
|
* already gone to 0.
|
|
*
|
|
* Thus, at the step 4 above when we determine
|
|
* that there are still some unwritten delayed
|
|
* allocated blocks outside of our current
|
|
* block range, we should increment the
|
|
* reserved clusters count so that when the
|
|
* remaining blocks finally gets written, we
|
|
* could claim them.
|
|
*/
|
|
dquot_reserve_block(inode,
|
|
EXT4_C2B(sbi, reservation));
|
|
spin_lock(&ei->i_block_reservation_lock);
|
|
ei->i_reserved_data_blocks += reservation;
|
|
spin_unlock(&ei->i_block_reservation_lock);
|
|
}
|
|
/*
|
|
* We will claim quota for all newly allocated blocks.
|
|
* We're updating the reserved space *after* the
|
|
* correction above so we do not accidentally free
|
|
* all the metadata reservation because we might
|
|
* actually need it later on.
|
|
*/
|
|
ext4_da_update_reserve_space(inode, allocated_clusters,
|
|
1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Cache the extent and update transaction to commit on fdatasync only
|
|
* when it is _not_ an unwritten extent.
|
|
*/
|
|
if ((flags & EXT4_GET_BLOCKS_UNWRIT_EXT) == 0)
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
else
|
|
ext4_update_inode_fsync_trans(handle, inode, 0);
|
|
out:
|
|
if (allocated > map->m_len)
|
|
allocated = map->m_len;
|
|
ext4_ext_show_leaf(inode, path);
|
|
map->m_flags |= EXT4_MAP_MAPPED;
|
|
map->m_pblk = newblock;
|
|
map->m_len = allocated;
|
|
out2:
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
|
|
trace_ext4_ext_map_blocks_exit(inode, flags, map,
|
|
err ? err : allocated);
|
|
return err ? err : allocated;
|
|
}
|
|
|
|
void ext4_ext_truncate(handle_t *handle, struct inode *inode)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
ext4_lblk_t last_block;
|
|
int err = 0;
|
|
|
|
/*
|
|
* TODO: optimization is possible here.
|
|
* Probably we need not scan at all,
|
|
* because page truncation is enough.
|
|
*/
|
|
|
|
/* we have to know where to truncate from in crash case */
|
|
EXT4_I(inode)->i_disksize = inode->i_size;
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
|
|
last_block = (inode->i_size + sb->s_blocksize - 1)
|
|
>> EXT4_BLOCK_SIZE_BITS(sb);
|
|
retry:
|
|
err = ext4_es_remove_extent(inode, last_block,
|
|
EXT_MAX_BLOCKS - last_block);
|
|
if (err == -ENOMEM) {
|
|
cond_resched();
|
|
congestion_wait(BLK_RW_ASYNC, HZ/50);
|
|
goto retry;
|
|
}
|
|
if (err) {
|
|
ext4_std_error(inode->i_sb, err);
|
|
return;
|
|
}
|
|
err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
|
|
ext4_std_error(inode->i_sb, err);
|
|
}
|
|
|
|
static int ext4_alloc_file_blocks(struct file *file, ext4_lblk_t offset,
|
|
ext4_lblk_t len, loff_t new_size,
|
|
int flags, int mode)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
handle_t *handle;
|
|
int ret = 0;
|
|
int ret2 = 0;
|
|
int retries = 0;
|
|
int depth = 0;
|
|
struct ext4_map_blocks map;
|
|
unsigned int credits;
|
|
loff_t epos;
|
|
|
|
map.m_lblk = offset;
|
|
map.m_len = len;
|
|
/*
|
|
* Don't normalize the request if it can fit in one extent so
|
|
* that it doesn't get unnecessarily split into multiple
|
|
* extents.
|
|
*/
|
|
if (len <= EXT_UNWRITTEN_MAX_LEN)
|
|
flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
|
|
|
|
/* Wait all existing dio workers, newcomers will block on i_mutex */
|
|
ext4_inode_block_unlocked_dio(inode);
|
|
inode_dio_wait(inode);
|
|
|
|
/*
|
|
* credits to insert 1 extent into extent tree
|
|
*/
|
|
credits = ext4_chunk_trans_blocks(inode, len);
|
|
/*
|
|
* We can only call ext_depth() on extent based inodes
|
|
*/
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
depth = ext_depth(inode);
|
|
else
|
|
depth = -1;
|
|
|
|
retry:
|
|
while (ret >= 0 && len) {
|
|
/*
|
|
* Recalculate credits when extent tree depth changes.
|
|
*/
|
|
if (depth >= 0 && depth != ext_depth(inode)) {
|
|
credits = ext4_chunk_trans_blocks(inode, len);
|
|
depth = ext_depth(inode);
|
|
}
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
|
|
credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
break;
|
|
}
|
|
ret = ext4_map_blocks(handle, inode, &map, flags);
|
|
if (ret <= 0) {
|
|
ext4_debug("inode #%lu: block %u: len %u: "
|
|
"ext4_ext_map_blocks returned %d",
|
|
inode->i_ino, map.m_lblk,
|
|
map.m_len, ret);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
break;
|
|
}
|
|
map.m_lblk += ret;
|
|
map.m_len = len = len - ret;
|
|
epos = (loff_t)map.m_lblk << inode->i_blkbits;
|
|
inode->i_ctime = ext4_current_time(inode);
|
|
if (new_size) {
|
|
if (epos > new_size)
|
|
epos = new_size;
|
|
if (ext4_update_inode_size(inode, epos) & 0x1)
|
|
inode->i_mtime = inode->i_ctime;
|
|
} else {
|
|
if (epos > inode->i_size)
|
|
ext4_set_inode_flag(inode,
|
|
EXT4_INODE_EOFBLOCKS);
|
|
}
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (ret2)
|
|
break;
|
|
}
|
|
if (ret == -ENOSPC &&
|
|
ext4_should_retry_alloc(inode->i_sb, &retries)) {
|
|
ret = 0;
|
|
goto retry;
|
|
}
|
|
|
|
ext4_inode_resume_unlocked_dio(inode);
|
|
|
|
return ret > 0 ? ret2 : ret;
|
|
}
|
|
|
|
static long ext4_zero_range(struct file *file, loff_t offset,
|
|
loff_t len, int mode)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
handle_t *handle = NULL;
|
|
unsigned int max_blocks;
|
|
loff_t new_size = 0;
|
|
int ret = 0;
|
|
int flags;
|
|
int credits;
|
|
int partial_begin, partial_end;
|
|
loff_t start, end;
|
|
ext4_lblk_t lblk;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
unsigned int blkbits = inode->i_blkbits;
|
|
|
|
trace_ext4_zero_range(inode, offset, len, mode);
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
/* Call ext4_force_commit to flush all data in case of data=journal. */
|
|
if (ext4_should_journal_data(inode)) {
|
|
ret = ext4_force_commit(inode->i_sb);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write out all dirty pages to avoid race conditions
|
|
* Then release them.
|
|
*/
|
|
if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
|
|
ret = filemap_write_and_wait_range(mapping, offset,
|
|
offset + len - 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Round up offset. This is not fallocate, we neet to zero out
|
|
* blocks, so convert interior block aligned part of the range to
|
|
* unwritten and possibly manually zero out unaligned parts of the
|
|
* range.
|
|
*/
|
|
start = round_up(offset, 1 << blkbits);
|
|
end = round_down((offset + len), 1 << blkbits);
|
|
|
|
if (start < offset || end > offset + len)
|
|
return -EINVAL;
|
|
partial_begin = offset & ((1 << blkbits) - 1);
|
|
partial_end = (offset + len) & ((1 << blkbits) - 1);
|
|
|
|
lblk = start >> blkbits;
|
|
max_blocks = (end >> blkbits);
|
|
if (max_blocks < lblk)
|
|
max_blocks = 0;
|
|
else
|
|
max_blocks -= lblk;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
/*
|
|
* Indirect files do not support unwritten extnets
|
|
*/
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out_mutex;
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
|
offset + len > i_size_read(inode)) {
|
|
new_size = offset + len;
|
|
ret = inode_newsize_ok(inode, new_size);
|
|
if (ret)
|
|
goto out_mutex;
|
|
}
|
|
|
|
flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
|
|
if (mode & FALLOC_FL_KEEP_SIZE)
|
|
flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
|
|
|
|
/* Preallocate the range including the unaligned edges */
|
|
if (partial_begin || partial_end) {
|
|
ret = ext4_alloc_file_blocks(file,
|
|
round_down(offset, 1 << blkbits) >> blkbits,
|
|
(round_up((offset + len), 1 << blkbits) -
|
|
round_down(offset, 1 << blkbits)) >> blkbits,
|
|
new_size, flags, mode);
|
|
if (ret)
|
|
goto out_mutex;
|
|
|
|
}
|
|
|
|
/* Zero range excluding the unaligned edges */
|
|
if (max_blocks > 0) {
|
|
flags |= (EXT4_GET_BLOCKS_CONVERT_UNWRITTEN |
|
|
EXT4_EX_NOCACHE);
|
|
|
|
/* Now release the pages and zero block aligned part of pages*/
|
|
truncate_pagecache_range(inode, start, end - 1);
|
|
inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
|
|
|
|
/* Wait all existing dio workers, newcomers will block on i_mutex */
|
|
ext4_inode_block_unlocked_dio(inode);
|
|
inode_dio_wait(inode);
|
|
|
|
ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
|
|
flags, mode);
|
|
if (ret)
|
|
goto out_dio;
|
|
}
|
|
if (!partial_begin && !partial_end)
|
|
goto out_dio;
|
|
|
|
/*
|
|
* In worst case we have to writeout two nonadjacent unwritten
|
|
* blocks and update the inode
|
|
*/
|
|
credits = (2 * ext4_ext_index_trans_blocks(inode, 2)) + 1;
|
|
if (ext4_should_journal_data(inode))
|
|
credits += 2;
|
|
handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
ext4_std_error(inode->i_sb, ret);
|
|
goto out_dio;
|
|
}
|
|
|
|
inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
|
|
if (new_size) {
|
|
ext4_update_inode_size(inode, new_size);
|
|
} else {
|
|
/*
|
|
* Mark that we allocate beyond EOF so the subsequent truncate
|
|
* can proceed even if the new size is the same as i_size.
|
|
*/
|
|
if ((offset + len) > i_size_read(inode))
|
|
ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
|
|
}
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
|
|
/* Zero out partial block at the edges of the range */
|
|
ret = ext4_zero_partial_blocks(handle, inode, offset, len);
|
|
|
|
if (file->f_flags & O_SYNC)
|
|
ext4_handle_sync(handle);
|
|
|
|
ext4_journal_stop(handle);
|
|
out_dio:
|
|
ext4_inode_resume_unlocked_dio(inode);
|
|
out_mutex:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* preallocate space for a file. This implements ext4's fallocate file
|
|
* operation, which gets called from sys_fallocate system call.
|
|
* For block-mapped files, posix_fallocate should fall back to the method
|
|
* of writing zeroes to the required new blocks (the same behavior which is
|
|
* expected for file systems which do not support fallocate() system call).
|
|
*/
|
|
long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
loff_t new_size = 0;
|
|
unsigned int max_blocks;
|
|
int ret = 0;
|
|
int flags;
|
|
ext4_lblk_t lblk;
|
|
unsigned int blkbits = inode->i_blkbits;
|
|
|
|
/*
|
|
* Encrypted inodes can't handle collapse range or insert
|
|
* range since we would need to re-encrypt blocks with a
|
|
* different IV or XTS tweak (which are based on the logical
|
|
* block number).
|
|
*
|
|
* XXX It's not clear why zero range isn't working, but we'll
|
|
* leave it disabled for encrypted inodes for now. This is a
|
|
* bug we should fix....
|
|
*/
|
|
if (ext4_encrypted_inode(inode) &&
|
|
(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE |
|
|
FALLOC_FL_ZERO_RANGE)))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Return error if mode is not supported */
|
|
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
|
|
FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
|
|
FALLOC_FL_INSERT_RANGE))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (mode & FALLOC_FL_PUNCH_HOLE)
|
|
return ext4_punch_hole(inode, offset, len);
|
|
|
|
ret = ext4_convert_inline_data(inode);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (mode & FALLOC_FL_COLLAPSE_RANGE)
|
|
return ext4_collapse_range(inode, offset, len);
|
|
|
|
if (mode & FALLOC_FL_INSERT_RANGE)
|
|
return ext4_insert_range(inode, offset, len);
|
|
|
|
if (mode & FALLOC_FL_ZERO_RANGE)
|
|
return ext4_zero_range(file, offset, len, mode);
|
|
|
|
trace_ext4_fallocate_enter(inode, offset, len, mode);
|
|
lblk = offset >> blkbits;
|
|
/*
|
|
* We can't just convert len to max_blocks because
|
|
* If blocksize = 4096 offset = 3072 and len = 2048
|
|
*/
|
|
max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
|
|
- lblk;
|
|
|
|
flags = EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT;
|
|
if (mode & FALLOC_FL_KEEP_SIZE)
|
|
flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
/*
|
|
* We only support preallocation for extent-based files only
|
|
*/
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
if (!(mode & FALLOC_FL_KEEP_SIZE) &&
|
|
offset + len > i_size_read(inode)) {
|
|
new_size = offset + len;
|
|
ret = inode_newsize_ok(inode, new_size);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = ext4_alloc_file_blocks(file, lblk, max_blocks, new_size,
|
|
flags, mode);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (file->f_flags & O_SYNC && EXT4_SB(inode->i_sb)->s_journal) {
|
|
ret = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
|
|
EXT4_I(inode)->i_sync_tid);
|
|
}
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function convert a range of blocks to written extents
|
|
* The caller of this function will pass the start offset and the size.
|
|
* all unwritten extents within this range will be converted to
|
|
* written extents.
|
|
*
|
|
* This function is called from the direct IO end io call back
|
|
* function, to convert the fallocated extents after IO is completed.
|
|
* Returns 0 on success.
|
|
*/
|
|
int ext4_convert_unwritten_extents(handle_t *handle, struct inode *inode,
|
|
loff_t offset, ssize_t len)
|
|
{
|
|
unsigned int max_blocks;
|
|
int ret = 0;
|
|
int ret2 = 0;
|
|
struct ext4_map_blocks map;
|
|
unsigned int credits, blkbits = inode->i_blkbits;
|
|
|
|
map.m_lblk = offset >> blkbits;
|
|
/*
|
|
* We can't just convert len to max_blocks because
|
|
* If blocksize = 4096 offset = 3072 and len = 2048
|
|
*/
|
|
max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
|
|
map.m_lblk);
|
|
/*
|
|
* This is somewhat ugly but the idea is clear: When transaction is
|
|
* reserved, everything goes into it. Otherwise we rather start several
|
|
* smaller transactions for conversion of each extent separately.
|
|
*/
|
|
if (handle) {
|
|
handle = ext4_journal_start_reserved(handle,
|
|
EXT4_HT_EXT_CONVERT);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
credits = 0;
|
|
} else {
|
|
/*
|
|
* credits to insert 1 extent into extent tree
|
|
*/
|
|
credits = ext4_chunk_trans_blocks(inode, max_blocks);
|
|
}
|
|
while (ret >= 0 && ret < max_blocks) {
|
|
map.m_lblk += ret;
|
|
map.m_len = (max_blocks -= ret);
|
|
if (credits) {
|
|
handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
|
|
credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
break;
|
|
}
|
|
}
|
|
ret = ext4_map_blocks(handle, inode, &map,
|
|
EXT4_GET_BLOCKS_IO_CONVERT_EXT);
|
|
if (ret <= 0)
|
|
ext4_warning(inode->i_sb,
|
|
"inode #%lu: block %u: len %u: "
|
|
"ext4_ext_map_blocks returned %d",
|
|
inode->i_ino, map.m_lblk,
|
|
map.m_len, ret);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
if (credits)
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (ret <= 0 || ret2)
|
|
break;
|
|
}
|
|
if (!credits)
|
|
ret2 = ext4_journal_stop(handle);
|
|
return ret > 0 ? ret2 : ret;
|
|
}
|
|
|
|
/*
|
|
* If newes is not existing extent (newes->ec_pblk equals zero) find
|
|
* delayed extent at start of newes and update newes accordingly and
|
|
* return start of the next delayed extent.
|
|
*
|
|
* If newes is existing extent (newes->ec_pblk is not equal zero)
|
|
* return start of next delayed extent or EXT_MAX_BLOCKS if no delayed
|
|
* extent found. Leave newes unmodified.
|
|
*/
|
|
static int ext4_find_delayed_extent(struct inode *inode,
|
|
struct extent_status *newes)
|
|
{
|
|
struct extent_status es;
|
|
ext4_lblk_t block, next_del;
|
|
|
|
if (newes->es_pblk == 0) {
|
|
ext4_es_find_delayed_extent_range(inode, newes->es_lblk,
|
|
newes->es_lblk + newes->es_len - 1, &es);
|
|
|
|
/*
|
|
* No extent in extent-tree contains block @newes->es_pblk,
|
|
* then the block may stay in 1)a hole or 2)delayed-extent.
|
|
*/
|
|
if (es.es_len == 0)
|
|
/* A hole found. */
|
|
return 0;
|
|
|
|
if (es.es_lblk > newes->es_lblk) {
|
|
/* A hole found. */
|
|
newes->es_len = min(es.es_lblk - newes->es_lblk,
|
|
newes->es_len);
|
|
return 0;
|
|
}
|
|
|
|
newes->es_len = es.es_lblk + es.es_len - newes->es_lblk;
|
|
}
|
|
|
|
block = newes->es_lblk + newes->es_len;
|
|
ext4_es_find_delayed_extent_range(inode, block, EXT_MAX_BLOCKS, &es);
|
|
if (es.es_len == 0)
|
|
next_del = EXT_MAX_BLOCKS;
|
|
else
|
|
next_del = es.es_lblk;
|
|
|
|
return next_del;
|
|
}
|
|
/* fiemap flags we can handle specified here */
|
|
#define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
|
|
|
|
static int ext4_xattr_fiemap(struct inode *inode,
|
|
struct fiemap_extent_info *fieinfo)
|
|
{
|
|
__u64 physical = 0;
|
|
__u64 length;
|
|
__u32 flags = FIEMAP_EXTENT_LAST;
|
|
int blockbits = inode->i_sb->s_blocksize_bits;
|
|
int error = 0;
|
|
|
|
/* in-inode? */
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
|
|
struct ext4_iloc iloc;
|
|
int offset; /* offset of xattr in inode */
|
|
|
|
error = ext4_get_inode_loc(inode, &iloc);
|
|
if (error)
|
|
return error;
|
|
physical = (__u64)iloc.bh->b_blocknr << blockbits;
|
|
offset = EXT4_GOOD_OLD_INODE_SIZE +
|
|
EXT4_I(inode)->i_extra_isize;
|
|
physical += offset;
|
|
length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
|
|
flags |= FIEMAP_EXTENT_DATA_INLINE;
|
|
brelse(iloc.bh);
|
|
} else { /* external block */
|
|
physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
|
|
length = inode->i_sb->s_blocksize;
|
|
}
|
|
|
|
if (physical)
|
|
error = fiemap_fill_next_extent(fieinfo, 0, physical,
|
|
length, flags);
|
|
return (error < 0 ? error : 0);
|
|
}
|
|
|
|
int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
__u64 start, __u64 len)
|
|
{
|
|
ext4_lblk_t start_blk;
|
|
int error = 0;
|
|
|
|
if (ext4_has_inline_data(inode)) {
|
|
int has_inline = 1;
|
|
|
|
error = ext4_inline_data_fiemap(inode, fieinfo, &has_inline,
|
|
start, len);
|
|
|
|
if (has_inline)
|
|
return error;
|
|
}
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
|
|
error = ext4_ext_precache(inode);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/* fallback to generic here if not in extents fmt */
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
|
|
return generic_block_fiemap(inode, fieinfo, start, len,
|
|
ext4_get_block);
|
|
|
|
if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
|
|
return -EBADR;
|
|
|
|
if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
|
|
error = ext4_xattr_fiemap(inode, fieinfo);
|
|
} else {
|
|
ext4_lblk_t len_blks;
|
|
__u64 last_blk;
|
|
|
|
start_blk = start >> inode->i_sb->s_blocksize_bits;
|
|
last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
|
|
if (last_blk >= EXT_MAX_BLOCKS)
|
|
last_blk = EXT_MAX_BLOCKS-1;
|
|
len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
|
|
|
|
/*
|
|
* Walk the extent tree gathering extent information
|
|
* and pushing extents back to the user.
|
|
*/
|
|
error = ext4_fill_fiemap_extents(inode, start_blk,
|
|
len_blks, fieinfo);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* ext4_access_path:
|
|
* Function to access the path buffer for marking it dirty.
|
|
* It also checks if there are sufficient credits left in the journal handle
|
|
* to update path.
|
|
*/
|
|
static int
|
|
ext4_access_path(handle_t *handle, struct inode *inode,
|
|
struct ext4_ext_path *path)
|
|
{
|
|
int credits, err;
|
|
|
|
if (!ext4_handle_valid(handle))
|
|
return 0;
|
|
|
|
/*
|
|
* Check if need to extend journal credits
|
|
* 3 for leaf, sb, and inode plus 2 (bmap and group
|
|
* descriptor) for each block group; assume two block
|
|
* groups
|
|
*/
|
|
if (handle->h_buffer_credits < 7) {
|
|
credits = ext4_writepage_trans_blocks(inode);
|
|
err = ext4_ext_truncate_extend_restart(handle, inode, credits);
|
|
/* EAGAIN is success */
|
|
if (err && err != -EAGAIN)
|
|
return err;
|
|
}
|
|
|
|
err = ext4_ext_get_access(handle, inode, path);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_shift_path_extents:
|
|
* Shift the extents of a path structure lying between path[depth].p_ext
|
|
* and EXT_LAST_EXTENT(path[depth].p_hdr), by @shift blocks. @SHIFT tells
|
|
* if it is right shift or left shift operation.
|
|
*/
|
|
static int
|
|
ext4_ext_shift_path_extents(struct ext4_ext_path *path, ext4_lblk_t shift,
|
|
struct inode *inode, handle_t *handle,
|
|
enum SHIFT_DIRECTION SHIFT)
|
|
{
|
|
int depth, err = 0;
|
|
struct ext4_extent *ex_start, *ex_last;
|
|
bool update = 0;
|
|
depth = path->p_depth;
|
|
|
|
while (depth >= 0) {
|
|
if (depth == path->p_depth) {
|
|
ex_start = path[depth].p_ext;
|
|
if (!ex_start)
|
|
return -EIO;
|
|
|
|
ex_last = EXT_LAST_EXTENT(path[depth].p_hdr);
|
|
|
|
err = ext4_access_path(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (ex_start == EXT_FIRST_EXTENT(path[depth].p_hdr))
|
|
update = 1;
|
|
|
|
while (ex_start <= ex_last) {
|
|
if (SHIFT == SHIFT_LEFT) {
|
|
le32_add_cpu(&ex_start->ee_block,
|
|
-shift);
|
|
/* Try to merge to the left. */
|
|
if ((ex_start >
|
|
EXT_FIRST_EXTENT(path[depth].p_hdr))
|
|
&&
|
|
ext4_ext_try_to_merge_right(inode,
|
|
path, ex_start - 1))
|
|
ex_last--;
|
|
else
|
|
ex_start++;
|
|
} else {
|
|
le32_add_cpu(&ex_last->ee_block, shift);
|
|
ext4_ext_try_to_merge_right(inode, path,
|
|
ex_last);
|
|
ex_last--;
|
|
}
|
|
}
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (--depth < 0 || !update)
|
|
break;
|
|
}
|
|
|
|
/* Update index too */
|
|
err = ext4_access_path(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (SHIFT == SHIFT_LEFT)
|
|
le32_add_cpu(&path[depth].p_idx->ei_block, -shift);
|
|
else
|
|
le32_add_cpu(&path[depth].p_idx->ei_block, shift);
|
|
err = ext4_ext_dirty(handle, inode, path + depth);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* we are done if current index is not a starting index */
|
|
if (path[depth].p_idx != EXT_FIRST_INDEX(path[depth].p_hdr))
|
|
break;
|
|
|
|
depth--;
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_ext_shift_extents:
|
|
* All the extents which lies in the range from @start to the last allocated
|
|
* block for the @inode are shifted either towards left or right (depending
|
|
* upon @SHIFT) by @shift blocks.
|
|
* On success, 0 is returned, error otherwise.
|
|
*/
|
|
static int
|
|
ext4_ext_shift_extents(struct inode *inode, handle_t *handle,
|
|
ext4_lblk_t start, ext4_lblk_t shift,
|
|
enum SHIFT_DIRECTION SHIFT)
|
|
{
|
|
struct ext4_ext_path *path;
|
|
int ret = 0, depth;
|
|
struct ext4_extent *extent;
|
|
ext4_lblk_t stop, *iterator, ex_start, ex_end;
|
|
|
|
/* Let path point to the last extent */
|
|
path = ext4_find_extent(inode, EXT_MAX_BLOCKS - 1, NULL, 0);
|
|
if (IS_ERR(path))
|
|
return PTR_ERR(path);
|
|
|
|
depth = path->p_depth;
|
|
extent = path[depth].p_ext;
|
|
if (!extent)
|
|
goto out;
|
|
|
|
stop = le32_to_cpu(extent->ee_block) +
|
|
ext4_ext_get_actual_len(extent);
|
|
|
|
/*
|
|
* In case of left shift, Don't start shifting extents until we make
|
|
* sure the hole is big enough to accommodate the shift.
|
|
*/
|
|
if (SHIFT == SHIFT_LEFT) {
|
|
path = ext4_find_extent(inode, start - 1, &path, 0);
|
|
if (IS_ERR(path))
|
|
return PTR_ERR(path);
|
|
depth = path->p_depth;
|
|
extent = path[depth].p_ext;
|
|
if (extent) {
|
|
ex_start = le32_to_cpu(extent->ee_block);
|
|
ex_end = le32_to_cpu(extent->ee_block) +
|
|
ext4_ext_get_actual_len(extent);
|
|
} else {
|
|
ex_start = 0;
|
|
ex_end = 0;
|
|
}
|
|
|
|
if ((start == ex_start && shift > ex_start) ||
|
|
(shift > start - ex_end)) {
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In case of left shift, iterator points to start and it is increased
|
|
* till we reach stop. In case of right shift, iterator points to stop
|
|
* and it is decreased till we reach start.
|
|
*/
|
|
if (SHIFT == SHIFT_LEFT)
|
|
iterator = &start;
|
|
else
|
|
iterator = &stop;
|
|
|
|
/* Its safe to start updating extents */
|
|
while (start < stop) {
|
|
path = ext4_find_extent(inode, *iterator, &path, 0);
|
|
if (IS_ERR(path))
|
|
return PTR_ERR(path);
|
|
depth = path->p_depth;
|
|
extent = path[depth].p_ext;
|
|
if (!extent) {
|
|
EXT4_ERROR_INODE(inode, "unexpected hole at %lu",
|
|
(unsigned long) *iterator);
|
|
return -EIO;
|
|
}
|
|
if (SHIFT == SHIFT_LEFT && *iterator >
|
|
le32_to_cpu(extent->ee_block)) {
|
|
/* Hole, move to the next extent */
|
|
if (extent < EXT_LAST_EXTENT(path[depth].p_hdr)) {
|
|
path[depth].p_ext++;
|
|
} else {
|
|
*iterator = ext4_ext_next_allocated_block(path);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (SHIFT == SHIFT_LEFT) {
|
|
extent = EXT_LAST_EXTENT(path[depth].p_hdr);
|
|
*iterator = le32_to_cpu(extent->ee_block) +
|
|
ext4_ext_get_actual_len(extent);
|
|
} else {
|
|
extent = EXT_FIRST_EXTENT(path[depth].p_hdr);
|
|
*iterator = le32_to_cpu(extent->ee_block) > 0 ?
|
|
le32_to_cpu(extent->ee_block) - 1 : 0;
|
|
/* Update path extent in case we need to stop */
|
|
while (le32_to_cpu(extent->ee_block) < start)
|
|
extent++;
|
|
path[depth].p_ext = extent;
|
|
}
|
|
ret = ext4_ext_shift_path_extents(path, shift, inode,
|
|
handle, SHIFT);
|
|
if (ret)
|
|
break;
|
|
}
|
|
out:
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_collapse_range:
|
|
* This implements the fallocate's collapse range functionality for ext4
|
|
* Returns: 0 and non-zero on error.
|
|
*/
|
|
int ext4_collapse_range(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
ext4_lblk_t punch_start, punch_stop;
|
|
handle_t *handle;
|
|
unsigned int credits;
|
|
loff_t new_size, ioffset;
|
|
int ret;
|
|
|
|
/*
|
|
* We need to test this early because xfstests assumes that a
|
|
* collapse range of (0, 1) will return EOPNOTSUPP if the file
|
|
* system does not support collapse range.
|
|
*/
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Collapse range works only on fs block size aligned offsets. */
|
|
if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
|
|
len & (EXT4_CLUSTER_SIZE(sb) - 1))
|
|
return -EINVAL;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
trace_ext4_collapse_range(inode, offset, len);
|
|
|
|
punch_start = offset >> EXT4_BLOCK_SIZE_BITS(sb);
|
|
punch_stop = (offset + len) >> EXT4_BLOCK_SIZE_BITS(sb);
|
|
|
|
/* Call ext4_force_commit to flush all data in case of data=journal. */
|
|
if (ext4_should_journal_data(inode)) {
|
|
ret = ext4_force_commit(inode->i_sb);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Need to round down offset to be aligned with page size boundary
|
|
* for page size > block size.
|
|
*/
|
|
ioffset = round_down(offset, PAGE_SIZE);
|
|
|
|
/* Write out all dirty pages */
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
|
|
LLONG_MAX);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Take mutex lock */
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
/*
|
|
* There is no need to overlap collapse range with EOF, in which case
|
|
* it is effectively a truncate operation
|
|
*/
|
|
if (offset + len >= i_size_read(inode)) {
|
|
ret = -EINVAL;
|
|
goto out_mutex;
|
|
}
|
|
|
|
/* Currently just for extent based files */
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out_mutex;
|
|
}
|
|
|
|
truncate_pagecache(inode, ioffset);
|
|
|
|
/* Wait for existing dio to complete */
|
|
ext4_inode_block_unlocked_dio(inode);
|
|
inode_dio_wait(inode);
|
|
|
|
credits = ext4_writepage_trans_blocks(inode);
|
|
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
goto out_dio;
|
|
}
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_discard_preallocations(inode);
|
|
|
|
ret = ext4_es_remove_extent(inode, punch_start,
|
|
EXT_MAX_BLOCKS - punch_start);
|
|
if (ret) {
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
goto out_stop;
|
|
}
|
|
|
|
ret = ext4_ext_remove_space(inode, punch_start, punch_stop - 1);
|
|
if (ret) {
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
goto out_stop;
|
|
}
|
|
ext4_discard_preallocations(inode);
|
|
|
|
ret = ext4_ext_shift_extents(inode, handle, punch_stop,
|
|
punch_stop - punch_start, SHIFT_LEFT);
|
|
if (ret) {
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
goto out_stop;
|
|
}
|
|
|
|
new_size = i_size_read(inode) - len;
|
|
i_size_write(inode, new_size);
|
|
EXT4_I(inode)->i_disksize = new_size;
|
|
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
|
|
out_stop:
|
|
ext4_journal_stop(handle);
|
|
out_dio:
|
|
ext4_inode_resume_unlocked_dio(inode);
|
|
out_mutex:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* ext4_insert_range:
|
|
* This function implements the FALLOC_FL_INSERT_RANGE flag of fallocate.
|
|
* The data blocks starting from @offset to the EOF are shifted by @len
|
|
* towards right to create a hole in the @inode. Inode size is increased
|
|
* by len bytes.
|
|
* Returns 0 on success, error otherwise.
|
|
*/
|
|
int ext4_insert_range(struct inode *inode, loff_t offset, loff_t len)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
handle_t *handle;
|
|
struct ext4_ext_path *path;
|
|
struct ext4_extent *extent;
|
|
ext4_lblk_t offset_lblk, len_lblk, ee_start_lblk = 0;
|
|
unsigned int credits, ee_len;
|
|
int ret = 0, depth, split_flag = 0;
|
|
loff_t ioffset;
|
|
|
|
/*
|
|
* We need to test this early because xfstests assumes that an
|
|
* insert range of (0, 1) will return EOPNOTSUPP if the file
|
|
* system does not support insert range.
|
|
*/
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Insert range works only on fs block size aligned offsets. */
|
|
if (offset & (EXT4_CLUSTER_SIZE(sb) - 1) ||
|
|
len & (EXT4_CLUSTER_SIZE(sb) - 1))
|
|
return -EINVAL;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EOPNOTSUPP;
|
|
|
|
trace_ext4_insert_range(inode, offset, len);
|
|
|
|
offset_lblk = offset >> EXT4_BLOCK_SIZE_BITS(sb);
|
|
len_lblk = len >> EXT4_BLOCK_SIZE_BITS(sb);
|
|
|
|
/* Call ext4_force_commit to flush all data in case of data=journal */
|
|
if (ext4_should_journal_data(inode)) {
|
|
ret = ext4_force_commit(inode->i_sb);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Need to round down to align start offset to page size boundary
|
|
* for page size > block size.
|
|
*/
|
|
ioffset = round_down(offset, PAGE_SIZE);
|
|
|
|
/* Write out all dirty pages */
|
|
ret = filemap_write_and_wait_range(inode->i_mapping, ioffset,
|
|
LLONG_MAX);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Take mutex lock */
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
/* Currently just for extent based files */
|
|
if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out_mutex;
|
|
}
|
|
|
|
/* Check for wrap through zero */
|
|
if (inode->i_size + len > inode->i_sb->s_maxbytes) {
|
|
ret = -EFBIG;
|
|
goto out_mutex;
|
|
}
|
|
|
|
/* Offset should be less than i_size */
|
|
if (offset >= i_size_read(inode)) {
|
|
ret = -EINVAL;
|
|
goto out_mutex;
|
|
}
|
|
|
|
truncate_pagecache(inode, ioffset);
|
|
|
|
/* Wait for existing dio to complete */
|
|
ext4_inode_block_unlocked_dio(inode);
|
|
inode_dio_wait(inode);
|
|
|
|
credits = ext4_writepage_trans_blocks(inode);
|
|
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
goto out_dio;
|
|
}
|
|
|
|
/* Expand file to avoid data loss if there is error while shifting */
|
|
inode->i_size += len;
|
|
EXT4_I(inode)->i_disksize += len;
|
|
inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
|
|
ret = ext4_mark_inode_dirty(handle, inode);
|
|
if (ret)
|
|
goto out_stop;
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_discard_preallocations(inode);
|
|
|
|
path = ext4_find_extent(inode, offset_lblk, NULL, 0);
|
|
if (IS_ERR(path)) {
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
goto out_stop;
|
|
}
|
|
|
|
depth = ext_depth(inode);
|
|
extent = path[depth].p_ext;
|
|
if (extent) {
|
|
ee_start_lblk = le32_to_cpu(extent->ee_block);
|
|
ee_len = ext4_ext_get_actual_len(extent);
|
|
|
|
/*
|
|
* If offset_lblk is not the starting block of extent, split
|
|
* the extent @offset_lblk
|
|
*/
|
|
if ((offset_lblk > ee_start_lblk) &&
|
|
(offset_lblk < (ee_start_lblk + ee_len))) {
|
|
if (ext4_ext_is_unwritten(extent))
|
|
split_flag = EXT4_EXT_MARK_UNWRIT1 |
|
|
EXT4_EXT_MARK_UNWRIT2;
|
|
ret = ext4_split_extent_at(handle, inode, &path,
|
|
offset_lblk, split_flag,
|
|
EXT4_EX_NOCACHE |
|
|
EXT4_GET_BLOCKS_PRE_IO |
|
|
EXT4_GET_BLOCKS_METADATA_NOFAIL);
|
|
}
|
|
|
|
ext4_ext_drop_refs(path);
|
|
kfree(path);
|
|
if (ret < 0) {
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
goto out_stop;
|
|
}
|
|
}
|
|
|
|
ret = ext4_es_remove_extent(inode, offset_lblk,
|
|
EXT_MAX_BLOCKS - offset_lblk);
|
|
if (ret) {
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
goto out_stop;
|
|
}
|
|
|
|
/*
|
|
* if offset_lblk lies in a hole which is at start of file, use
|
|
* ee_start_lblk to shift extents
|
|
*/
|
|
ret = ext4_ext_shift_extents(inode, handle,
|
|
ee_start_lblk > offset_lblk ? ee_start_lblk : offset_lblk,
|
|
len_lblk, SHIFT_RIGHT);
|
|
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
|
|
out_stop:
|
|
ext4_journal_stop(handle);
|
|
out_dio:
|
|
ext4_inode_resume_unlocked_dio(inode);
|
|
out_mutex:
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ext4_swap_extents - Swap extents between two inodes
|
|
*
|
|
* @inode1: First inode
|
|
* @inode2: Second inode
|
|
* @lblk1: Start block for first inode
|
|
* @lblk2: Start block for second inode
|
|
* @count: Number of blocks to swap
|
|
* @mark_unwritten: Mark second inode's extents as unwritten after swap
|
|
* @erp: Pointer to save error value
|
|
*
|
|
* This helper routine does exactly what is promise "swap extents". All other
|
|
* stuff such as page-cache locking consistency, bh mapping consistency or
|
|
* extent's data copying must be performed by caller.
|
|
* Locking:
|
|
* i_mutex is held for both inodes
|
|
* i_data_sem is locked for write for both inodes
|
|
* Assumptions:
|
|
* All pages from requested range are locked for both inodes
|
|
*/
|
|
int
|
|
ext4_swap_extents(handle_t *handle, struct inode *inode1,
|
|
struct inode *inode2, ext4_lblk_t lblk1, ext4_lblk_t lblk2,
|
|
ext4_lblk_t count, int unwritten, int *erp)
|
|
{
|
|
struct ext4_ext_path *path1 = NULL;
|
|
struct ext4_ext_path *path2 = NULL;
|
|
int replaced_count = 0;
|
|
|
|
BUG_ON(!rwsem_is_locked(&EXT4_I(inode1)->i_data_sem));
|
|
BUG_ON(!rwsem_is_locked(&EXT4_I(inode2)->i_data_sem));
|
|
BUG_ON(!mutex_is_locked(&inode1->i_mutex));
|
|
BUG_ON(!mutex_is_locked(&inode2->i_mutex));
|
|
|
|
*erp = ext4_es_remove_extent(inode1, lblk1, count);
|
|
if (unlikely(*erp))
|
|
return 0;
|
|
*erp = ext4_es_remove_extent(inode2, lblk2, count);
|
|
if (unlikely(*erp))
|
|
return 0;
|
|
|
|
while (count) {
|
|
struct ext4_extent *ex1, *ex2, tmp_ex;
|
|
ext4_lblk_t e1_blk, e2_blk;
|
|
int e1_len, e2_len, len;
|
|
int split = 0;
|
|
|
|
path1 = ext4_find_extent(inode1, lblk1, NULL, EXT4_EX_NOCACHE);
|
|
if (unlikely(IS_ERR(path1))) {
|
|
*erp = PTR_ERR(path1);
|
|
path1 = NULL;
|
|
finish:
|
|
count = 0;
|
|
goto repeat;
|
|
}
|
|
path2 = ext4_find_extent(inode2, lblk2, NULL, EXT4_EX_NOCACHE);
|
|
if (unlikely(IS_ERR(path2))) {
|
|
*erp = PTR_ERR(path2);
|
|
path2 = NULL;
|
|
goto finish;
|
|
}
|
|
ex1 = path1[path1->p_depth].p_ext;
|
|
ex2 = path2[path2->p_depth].p_ext;
|
|
/* Do we have somthing to swap ? */
|
|
if (unlikely(!ex2 || !ex1))
|
|
goto finish;
|
|
|
|
e1_blk = le32_to_cpu(ex1->ee_block);
|
|
e2_blk = le32_to_cpu(ex2->ee_block);
|
|
e1_len = ext4_ext_get_actual_len(ex1);
|
|
e2_len = ext4_ext_get_actual_len(ex2);
|
|
|
|
/* Hole handling */
|
|
if (!in_range(lblk1, e1_blk, e1_len) ||
|
|
!in_range(lblk2, e2_blk, e2_len)) {
|
|
ext4_lblk_t next1, next2;
|
|
|
|
/* if hole after extent, then go to next extent */
|
|
next1 = ext4_ext_next_allocated_block(path1);
|
|
next2 = ext4_ext_next_allocated_block(path2);
|
|
/* If hole before extent, then shift to that extent */
|
|
if (e1_blk > lblk1)
|
|
next1 = e1_blk;
|
|
if (e2_blk > lblk2)
|
|
next2 = e1_blk;
|
|
/* Do we have something to swap */
|
|
if (next1 == EXT_MAX_BLOCKS || next2 == EXT_MAX_BLOCKS)
|
|
goto finish;
|
|
/* Move to the rightest boundary */
|
|
len = next1 - lblk1;
|
|
if (len < next2 - lblk2)
|
|
len = next2 - lblk2;
|
|
if (len > count)
|
|
len = count;
|
|
lblk1 += len;
|
|
lblk2 += len;
|
|
count -= len;
|
|
goto repeat;
|
|
}
|
|
|
|
/* Prepare left boundary */
|
|
if (e1_blk < lblk1) {
|
|
split = 1;
|
|
*erp = ext4_force_split_extent_at(handle, inode1,
|
|
&path1, lblk1, 0);
|
|
if (unlikely(*erp))
|
|
goto finish;
|
|
}
|
|
if (e2_blk < lblk2) {
|
|
split = 1;
|
|
*erp = ext4_force_split_extent_at(handle, inode2,
|
|
&path2, lblk2, 0);
|
|
if (unlikely(*erp))
|
|
goto finish;
|
|
}
|
|
/* ext4_split_extent_at() may result in leaf extent split,
|
|
* path must to be revalidated. */
|
|
if (split)
|
|
goto repeat;
|
|
|
|
/* Prepare right boundary */
|
|
len = count;
|
|
if (len > e1_blk + e1_len - lblk1)
|
|
len = e1_blk + e1_len - lblk1;
|
|
if (len > e2_blk + e2_len - lblk2)
|
|
len = e2_blk + e2_len - lblk2;
|
|
|
|
if (len != e1_len) {
|
|
split = 1;
|
|
*erp = ext4_force_split_extent_at(handle, inode1,
|
|
&path1, lblk1 + len, 0);
|
|
if (unlikely(*erp))
|
|
goto finish;
|
|
}
|
|
if (len != e2_len) {
|
|
split = 1;
|
|
*erp = ext4_force_split_extent_at(handle, inode2,
|
|
&path2, lblk2 + len, 0);
|
|
if (*erp)
|
|
goto finish;
|
|
}
|
|
/* ext4_split_extent_at() may result in leaf extent split,
|
|
* path must to be revalidated. */
|
|
if (split)
|
|
goto repeat;
|
|
|
|
BUG_ON(e2_len != e1_len);
|
|
*erp = ext4_ext_get_access(handle, inode1, path1 + path1->p_depth);
|
|
if (unlikely(*erp))
|
|
goto finish;
|
|
*erp = ext4_ext_get_access(handle, inode2, path2 + path2->p_depth);
|
|
if (unlikely(*erp))
|
|
goto finish;
|
|
|
|
/* Both extents are fully inside boundaries. Swap it now */
|
|
tmp_ex = *ex1;
|
|
ext4_ext_store_pblock(ex1, ext4_ext_pblock(ex2));
|
|
ext4_ext_store_pblock(ex2, ext4_ext_pblock(&tmp_ex));
|
|
ex1->ee_len = cpu_to_le16(e2_len);
|
|
ex2->ee_len = cpu_to_le16(e1_len);
|
|
if (unwritten)
|
|
ext4_ext_mark_unwritten(ex2);
|
|
if (ext4_ext_is_unwritten(&tmp_ex))
|
|
ext4_ext_mark_unwritten(ex1);
|
|
|
|
ext4_ext_try_to_merge(handle, inode2, path2, ex2);
|
|
ext4_ext_try_to_merge(handle, inode1, path1, ex1);
|
|
*erp = ext4_ext_dirty(handle, inode2, path2 +
|
|
path2->p_depth);
|
|
if (unlikely(*erp))
|
|
goto finish;
|
|
*erp = ext4_ext_dirty(handle, inode1, path1 +
|
|
path1->p_depth);
|
|
/*
|
|
* Looks scarry ah..? second inode already points to new blocks,
|
|
* and it was successfully dirtied. But luckily error may happen
|
|
* only due to journal error, so full transaction will be
|
|
* aborted anyway.
|
|
*/
|
|
if (unlikely(*erp))
|
|
goto finish;
|
|
lblk1 += len;
|
|
lblk2 += len;
|
|
replaced_count += len;
|
|
count -= len;
|
|
|
|
repeat:
|
|
ext4_ext_drop_refs(path1);
|
|
kfree(path1);
|
|
ext4_ext_drop_refs(path2);
|
|
kfree(path2);
|
|
path1 = path2 = NULL;
|
|
}
|
|
return replaced_count;
|
|
}
|