linux_dsm_epyc7002/drivers/nvme/target/core.c
Minwoo Im a5448fdc46 nvmet: introduce target-side trace
This patch introduces target-side request tracing.  As Christoph
suggested, the trace would not be in a core or module to avoid
disadvantages like cache miss:
  http://lists.infradead.org/pipermail/linux-nvme/2019-June/024721.html

The target-side trace code is entirely based on the Johannes's trace code
from the host side.  It has lots of codes duplicated, but it would be
better than having advantages mentioned above.

It also traces not only fabrics commands, but also nvme normal commands.
Once the codes to be shared gets bigger, then we can make it common as
suggsted.

This also removed the create_sq and create_cq trace parsing functions
because it will be done by the connect fabrics command.

Example:
  echo 1 > /sys/kernel/debug/tracing/event/nvmet/nvmet_req_init/enable
  echo 1 > /sys/kernel/debug/tracing/event/nvmet/nvmet_req_complete/enable
  cat /sys/kernel/debug/tracing/trace

Signed-off-by: Minwoo Im <minwoo.im.dev@gmail.com>
[hch: fixed the symbol namespace and a an endianess conversion]
Signed-off-by: Christoph Hellwig <hch@lst.de>
2019-06-21 11:15:46 +02:00

1488 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Common code for the NVMe target.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/random.h>
#include <linux/rculist.h>
#include <linux/pci-p2pdma.h>
#include <linux/scatterlist.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "nvmet.h"
struct workqueue_struct *buffered_io_wq;
static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
static DEFINE_IDA(cntlid_ida);
/*
* This read/write semaphore is used to synchronize access to configuration
* information on a target system that will result in discovery log page
* information change for at least one host.
* The full list of resources to protected by this semaphore is:
*
* - subsystems list
* - per-subsystem allowed hosts list
* - allow_any_host subsystem attribute
* - nvmet_genctr
* - the nvmet_transports array
*
* When updating any of those lists/structures write lock should be obtained,
* while when reading (popolating discovery log page or checking host-subsystem
* link) read lock is obtained to allow concurrent reads.
*/
DECLARE_RWSEM(nvmet_config_sem);
u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
u64 nvmet_ana_chgcnt;
DECLARE_RWSEM(nvmet_ana_sem);
inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
{
u16 status;
switch (errno) {
case -ENOSPC:
req->error_loc = offsetof(struct nvme_rw_command, length);
status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
break;
case -EREMOTEIO:
req->error_loc = offsetof(struct nvme_rw_command, slba);
status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
break;
case -EOPNOTSUPP:
req->error_loc = offsetof(struct nvme_common_command, opcode);
switch (req->cmd->common.opcode) {
case nvme_cmd_dsm:
case nvme_cmd_write_zeroes:
status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
break;
default:
status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
}
break;
case -ENODATA:
req->error_loc = offsetof(struct nvme_rw_command, nsid);
status = NVME_SC_ACCESS_DENIED;
break;
case -EIO:
/* FALLTHRU */
default:
req->error_loc = offsetof(struct nvme_common_command, opcode);
status = NVME_SC_INTERNAL | NVME_SC_DNR;
}
return status;
}
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
const char *subsysnqn);
u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
size_t len)
{
if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
}
return 0;
}
u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
{
if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
}
return 0;
}
u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
{
if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
return NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR;
}
return 0;
}
static unsigned int nvmet_max_nsid(struct nvmet_subsys *subsys)
{
struct nvmet_ns *ns;
if (list_empty(&subsys->namespaces))
return 0;
ns = list_last_entry(&subsys->namespaces, struct nvmet_ns, dev_link);
return ns->nsid;
}
static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
{
return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
}
static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
{
struct nvmet_req *req;
while (1) {
mutex_lock(&ctrl->lock);
if (!ctrl->nr_async_event_cmds) {
mutex_unlock(&ctrl->lock);
return;
}
req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
mutex_unlock(&ctrl->lock);
nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_SC_DNR);
}
}
static void nvmet_async_event_work(struct work_struct *work)
{
struct nvmet_ctrl *ctrl =
container_of(work, struct nvmet_ctrl, async_event_work);
struct nvmet_async_event *aen;
struct nvmet_req *req;
while (1) {
mutex_lock(&ctrl->lock);
aen = list_first_entry_or_null(&ctrl->async_events,
struct nvmet_async_event, entry);
if (!aen || !ctrl->nr_async_event_cmds) {
mutex_unlock(&ctrl->lock);
return;
}
req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
nvmet_set_result(req, nvmet_async_event_result(aen));
list_del(&aen->entry);
kfree(aen);
mutex_unlock(&ctrl->lock);
nvmet_req_complete(req, 0);
}
}
void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
u8 event_info, u8 log_page)
{
struct nvmet_async_event *aen;
aen = kmalloc(sizeof(*aen), GFP_KERNEL);
if (!aen)
return;
aen->event_type = event_type;
aen->event_info = event_info;
aen->log_page = log_page;
mutex_lock(&ctrl->lock);
list_add_tail(&aen->entry, &ctrl->async_events);
mutex_unlock(&ctrl->lock);
schedule_work(&ctrl->async_event_work);
}
static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
{
u32 i;
mutex_lock(&ctrl->lock);
if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
goto out_unlock;
for (i = 0; i < ctrl->nr_changed_ns; i++) {
if (ctrl->changed_ns_list[i] == nsid)
goto out_unlock;
}
if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
ctrl->nr_changed_ns = U32_MAX;
goto out_unlock;
}
ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
out_unlock:
mutex_unlock(&ctrl->lock);
}
void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
{
struct nvmet_ctrl *ctrl;
lockdep_assert_held(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
continue;
nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
NVME_AER_NOTICE_NS_CHANGED,
NVME_LOG_CHANGED_NS);
}
}
void nvmet_send_ana_event(struct nvmet_subsys *subsys,
struct nvmet_port *port)
{
struct nvmet_ctrl *ctrl;
mutex_lock(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
if (port && ctrl->port != port)
continue;
if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
continue;
nvmet_add_async_event(ctrl, NVME_AER_TYPE_NOTICE,
NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
}
mutex_unlock(&subsys->lock);
}
void nvmet_port_send_ana_event(struct nvmet_port *port)
{
struct nvmet_subsys_link *p;
down_read(&nvmet_config_sem);
list_for_each_entry(p, &port->subsystems, entry)
nvmet_send_ana_event(p->subsys, port);
up_read(&nvmet_config_sem);
}
int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
{
int ret = 0;
down_write(&nvmet_config_sem);
if (nvmet_transports[ops->type])
ret = -EINVAL;
else
nvmet_transports[ops->type] = ops;
up_write(&nvmet_config_sem);
return ret;
}
EXPORT_SYMBOL_GPL(nvmet_register_transport);
void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
{
down_write(&nvmet_config_sem);
nvmet_transports[ops->type] = NULL;
up_write(&nvmet_config_sem);
}
EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
int nvmet_enable_port(struct nvmet_port *port)
{
const struct nvmet_fabrics_ops *ops;
int ret;
lockdep_assert_held(&nvmet_config_sem);
ops = nvmet_transports[port->disc_addr.trtype];
if (!ops) {
up_write(&nvmet_config_sem);
request_module("nvmet-transport-%d", port->disc_addr.trtype);
down_write(&nvmet_config_sem);
ops = nvmet_transports[port->disc_addr.trtype];
if (!ops) {
pr_err("transport type %d not supported\n",
port->disc_addr.trtype);
return -EINVAL;
}
}
if (!try_module_get(ops->owner))
return -EINVAL;
ret = ops->add_port(port);
if (ret) {
module_put(ops->owner);
return ret;
}
/* If the transport didn't set inline_data_size, then disable it. */
if (port->inline_data_size < 0)
port->inline_data_size = 0;
port->enabled = true;
port->tr_ops = ops;
return 0;
}
void nvmet_disable_port(struct nvmet_port *port)
{
const struct nvmet_fabrics_ops *ops;
lockdep_assert_held(&nvmet_config_sem);
port->enabled = false;
port->tr_ops = NULL;
ops = nvmet_transports[port->disc_addr.trtype];
ops->remove_port(port);
module_put(ops->owner);
}
static void nvmet_keep_alive_timer(struct work_struct *work)
{
struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
struct nvmet_ctrl, ka_work);
bool cmd_seen = ctrl->cmd_seen;
ctrl->cmd_seen = false;
if (cmd_seen) {
pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
ctrl->cntlid);
schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
return;
}
pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
ctrl->cntlid, ctrl->kato);
nvmet_ctrl_fatal_error(ctrl);
}
static void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
pr_debug("ctrl %d start keep-alive timer for %d secs\n",
ctrl->cntlid, ctrl->kato);
INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
}
static void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
{
pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
cancel_delayed_work_sync(&ctrl->ka_work);
}
static struct nvmet_ns *__nvmet_find_namespace(struct nvmet_ctrl *ctrl,
__le32 nsid)
{
struct nvmet_ns *ns;
list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link) {
if (ns->nsid == le32_to_cpu(nsid))
return ns;
}
return NULL;
}
struct nvmet_ns *nvmet_find_namespace(struct nvmet_ctrl *ctrl, __le32 nsid)
{
struct nvmet_ns *ns;
rcu_read_lock();
ns = __nvmet_find_namespace(ctrl, nsid);
if (ns)
percpu_ref_get(&ns->ref);
rcu_read_unlock();
return ns;
}
static void nvmet_destroy_namespace(struct percpu_ref *ref)
{
struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
complete(&ns->disable_done);
}
void nvmet_put_namespace(struct nvmet_ns *ns)
{
percpu_ref_put(&ns->ref);
}
static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
{
nvmet_bdev_ns_disable(ns);
nvmet_file_ns_disable(ns);
}
static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
{
int ret;
struct pci_dev *p2p_dev;
if (!ns->use_p2pmem)
return 0;
if (!ns->bdev) {
pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
return -EINVAL;
}
if (!blk_queue_pci_p2pdma(ns->bdev->bd_queue)) {
pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
ns->device_path);
return -EINVAL;
}
if (ns->p2p_dev) {
ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
if (ret < 0)
return -EINVAL;
} else {
/*
* Right now we just check that there is p2pmem available so
* we can report an error to the user right away if there
* is not. We'll find the actual device to use once we
* setup the controller when the port's device is available.
*/
p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
if (!p2p_dev) {
pr_err("no peer-to-peer memory is available for %s\n",
ns->device_path);
return -EINVAL;
}
pci_dev_put(p2p_dev);
}
return 0;
}
/*
* Note: ctrl->subsys->lock should be held when calling this function
*/
static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
struct nvmet_ns *ns)
{
struct device *clients[2];
struct pci_dev *p2p_dev;
int ret;
if (!ctrl->p2p_client || !ns->use_p2pmem)
return;
if (ns->p2p_dev) {
ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
if (ret < 0)
return;
p2p_dev = pci_dev_get(ns->p2p_dev);
} else {
clients[0] = ctrl->p2p_client;
clients[1] = nvmet_ns_dev(ns);
p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
if (!p2p_dev) {
pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
dev_name(ctrl->p2p_client), ns->device_path);
return;
}
}
ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
if (ret < 0)
pci_dev_put(p2p_dev);
pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
ns->nsid);
}
int nvmet_ns_enable(struct nvmet_ns *ns)
{
struct nvmet_subsys *subsys = ns->subsys;
struct nvmet_ctrl *ctrl;
int ret;
mutex_lock(&subsys->lock);
ret = 0;
if (ns->enabled)
goto out_unlock;
ret = -EMFILE;
if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
goto out_unlock;
ret = nvmet_bdev_ns_enable(ns);
if (ret == -ENOTBLK)
ret = nvmet_file_ns_enable(ns);
if (ret)
goto out_unlock;
ret = nvmet_p2pmem_ns_enable(ns);
if (ret)
goto out_dev_disable;
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
nvmet_p2pmem_ns_add_p2p(ctrl, ns);
ret = percpu_ref_init(&ns->ref, nvmet_destroy_namespace,
0, GFP_KERNEL);
if (ret)
goto out_dev_put;
if (ns->nsid > subsys->max_nsid)
subsys->max_nsid = ns->nsid;
/*
* The namespaces list needs to be sorted to simplify the implementation
* of the Identify Namepace List subcommand.
*/
if (list_empty(&subsys->namespaces)) {
list_add_tail_rcu(&ns->dev_link, &subsys->namespaces);
} else {
struct nvmet_ns *old;
list_for_each_entry_rcu(old, &subsys->namespaces, dev_link) {
BUG_ON(ns->nsid == old->nsid);
if (ns->nsid < old->nsid)
break;
}
list_add_tail_rcu(&ns->dev_link, &old->dev_link);
}
subsys->nr_namespaces++;
nvmet_ns_changed(subsys, ns->nsid);
ns->enabled = true;
ret = 0;
out_unlock:
mutex_unlock(&subsys->lock);
return ret;
out_dev_put:
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
out_dev_disable:
nvmet_ns_dev_disable(ns);
goto out_unlock;
}
void nvmet_ns_disable(struct nvmet_ns *ns)
{
struct nvmet_subsys *subsys = ns->subsys;
struct nvmet_ctrl *ctrl;
mutex_lock(&subsys->lock);
if (!ns->enabled)
goto out_unlock;
ns->enabled = false;
list_del_rcu(&ns->dev_link);
if (ns->nsid == subsys->max_nsid)
subsys->max_nsid = nvmet_max_nsid(subsys);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
mutex_unlock(&subsys->lock);
/*
* Now that we removed the namespaces from the lookup list, we
* can kill the per_cpu ref and wait for any remaining references
* to be dropped, as well as a RCU grace period for anyone only
* using the namepace under rcu_read_lock(). Note that we can't
* use call_rcu here as we need to ensure the namespaces have
* been fully destroyed before unloading the module.
*/
percpu_ref_kill(&ns->ref);
synchronize_rcu();
wait_for_completion(&ns->disable_done);
percpu_ref_exit(&ns->ref);
mutex_lock(&subsys->lock);
subsys->nr_namespaces--;
nvmet_ns_changed(subsys, ns->nsid);
nvmet_ns_dev_disable(ns);
out_unlock:
mutex_unlock(&subsys->lock);
}
void nvmet_ns_free(struct nvmet_ns *ns)
{
nvmet_ns_disable(ns);
down_write(&nvmet_ana_sem);
nvmet_ana_group_enabled[ns->anagrpid]--;
up_write(&nvmet_ana_sem);
kfree(ns->device_path);
kfree(ns);
}
struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
{
struct nvmet_ns *ns;
ns = kzalloc(sizeof(*ns), GFP_KERNEL);
if (!ns)
return NULL;
INIT_LIST_HEAD(&ns->dev_link);
init_completion(&ns->disable_done);
ns->nsid = nsid;
ns->subsys = subsys;
down_write(&nvmet_ana_sem);
ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
nvmet_ana_group_enabled[ns->anagrpid]++;
up_write(&nvmet_ana_sem);
uuid_gen(&ns->uuid);
ns->buffered_io = false;
return ns;
}
static void nvmet_update_sq_head(struct nvmet_req *req)
{
if (req->sq->size) {
u32 old_sqhd, new_sqhd;
do {
old_sqhd = req->sq->sqhd;
new_sqhd = (old_sqhd + 1) % req->sq->size;
} while (cmpxchg(&req->sq->sqhd, old_sqhd, new_sqhd) !=
old_sqhd);
}
req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
}
static void nvmet_set_error(struct nvmet_req *req, u16 status)
{
struct nvmet_ctrl *ctrl = req->sq->ctrl;
struct nvme_error_slot *new_error_slot;
unsigned long flags;
req->cqe->status = cpu_to_le16(status << 1);
if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
return;
spin_lock_irqsave(&ctrl->error_lock, flags);
ctrl->err_counter++;
new_error_slot =
&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
new_error_slot->sqid = cpu_to_le16(req->sq->qid);
new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
new_error_slot->status_field = cpu_to_le16(status << 1);
new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
new_error_slot->lba = cpu_to_le64(req->error_slba);
new_error_slot->nsid = req->cmd->common.nsid;
spin_unlock_irqrestore(&ctrl->error_lock, flags);
/* set the more bit for this request */
req->cqe->status |= cpu_to_le16(1 << 14);
}
static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
{
if (!req->sq->sqhd_disabled)
nvmet_update_sq_head(req);
req->cqe->sq_id = cpu_to_le16(req->sq->qid);
req->cqe->command_id = req->cmd->common.command_id;
if (unlikely(status))
nvmet_set_error(req, status);
trace_nvmet_req_complete(req);
if (req->ns)
nvmet_put_namespace(req->ns);
req->ops->queue_response(req);
}
void nvmet_req_complete(struct nvmet_req *req, u16 status)
{
__nvmet_req_complete(req, status);
percpu_ref_put(&req->sq->ref);
}
EXPORT_SYMBOL_GPL(nvmet_req_complete);
void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
u16 qid, u16 size)
{
cq->qid = qid;
cq->size = size;
ctrl->cqs[qid] = cq;
}
void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
u16 qid, u16 size)
{
sq->sqhd = 0;
sq->qid = qid;
sq->size = size;
ctrl->sqs[qid] = sq;
}
static void nvmet_confirm_sq(struct percpu_ref *ref)
{
struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
complete(&sq->confirm_done);
}
void nvmet_sq_destroy(struct nvmet_sq *sq)
{
/*
* If this is the admin queue, complete all AERs so that our
* queue doesn't have outstanding requests on it.
*/
if (sq->ctrl && sq->ctrl->sqs && sq->ctrl->sqs[0] == sq)
nvmet_async_events_free(sq->ctrl);
percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
wait_for_completion(&sq->confirm_done);
wait_for_completion(&sq->free_done);
percpu_ref_exit(&sq->ref);
if (sq->ctrl) {
nvmet_ctrl_put(sq->ctrl);
sq->ctrl = NULL; /* allows reusing the queue later */
}
}
EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
static void nvmet_sq_free(struct percpu_ref *ref)
{
struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
complete(&sq->free_done);
}
int nvmet_sq_init(struct nvmet_sq *sq)
{
int ret;
ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
if (ret) {
pr_err("percpu_ref init failed!\n");
return ret;
}
init_completion(&sq->free_done);
init_completion(&sq->confirm_done);
return 0;
}
EXPORT_SYMBOL_GPL(nvmet_sq_init);
static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
struct nvmet_ns *ns)
{
enum nvme_ana_state state = port->ana_state[ns->anagrpid];
if (unlikely(state == NVME_ANA_INACCESSIBLE))
return NVME_SC_ANA_INACCESSIBLE;
if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
return NVME_SC_ANA_PERSISTENT_LOSS;
if (unlikely(state == NVME_ANA_CHANGE))
return NVME_SC_ANA_TRANSITION;
return 0;
}
static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
{
if (unlikely(req->ns->readonly)) {
switch (req->cmd->common.opcode) {
case nvme_cmd_read:
case nvme_cmd_flush:
break;
default:
return NVME_SC_NS_WRITE_PROTECTED;
}
}
return 0;
}
static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
{
struct nvme_command *cmd = req->cmd;
u16 ret;
ret = nvmet_check_ctrl_status(req, cmd);
if (unlikely(ret))
return ret;
req->ns = nvmet_find_namespace(req->sq->ctrl, cmd->rw.nsid);
if (unlikely(!req->ns)) {
req->error_loc = offsetof(struct nvme_common_command, nsid);
return NVME_SC_INVALID_NS | NVME_SC_DNR;
}
ret = nvmet_check_ana_state(req->port, req->ns);
if (unlikely(ret)) {
req->error_loc = offsetof(struct nvme_common_command, nsid);
return ret;
}
ret = nvmet_io_cmd_check_access(req);
if (unlikely(ret)) {
req->error_loc = offsetof(struct nvme_common_command, nsid);
return ret;
}
if (req->ns->file)
return nvmet_file_parse_io_cmd(req);
else
return nvmet_bdev_parse_io_cmd(req);
}
bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
{
u8 flags = req->cmd->common.flags;
u16 status;
req->cq = cq;
req->sq = sq;
req->ops = ops;
req->sg = NULL;
req->sg_cnt = 0;
req->transfer_len = 0;
req->cqe->status = 0;
req->cqe->sq_head = 0;
req->ns = NULL;
req->error_loc = NVMET_NO_ERROR_LOC;
req->error_slba = 0;
trace_nvmet_req_init(req, req->cmd);
/* no support for fused commands yet */
if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
req->error_loc = offsetof(struct nvme_common_command, flags);
status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
goto fail;
}
/*
* For fabrics, PSDT field shall describe metadata pointer (MPTR) that
* contains an address of a single contiguous physical buffer that is
* byte aligned.
*/
if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
req->error_loc = offsetof(struct nvme_common_command, flags);
status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
goto fail;
}
if (unlikely(!req->sq->ctrl))
/* will return an error for any Non-connect command: */
status = nvmet_parse_connect_cmd(req);
else if (likely(req->sq->qid != 0))
status = nvmet_parse_io_cmd(req);
else if (nvme_is_fabrics(req->cmd))
status = nvmet_parse_fabrics_cmd(req);
else if (req->sq->ctrl->subsys->type == NVME_NQN_DISC)
status = nvmet_parse_discovery_cmd(req);
else
status = nvmet_parse_admin_cmd(req);
if (status)
goto fail;
if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
status = NVME_SC_INVALID_FIELD | NVME_SC_DNR;
goto fail;
}
if (sq->ctrl)
sq->ctrl->cmd_seen = true;
return true;
fail:
__nvmet_req_complete(req, status);
return false;
}
EXPORT_SYMBOL_GPL(nvmet_req_init);
void nvmet_req_uninit(struct nvmet_req *req)
{
percpu_ref_put(&req->sq->ref);
if (req->ns)
nvmet_put_namespace(req->ns);
}
EXPORT_SYMBOL_GPL(nvmet_req_uninit);
void nvmet_req_execute(struct nvmet_req *req)
{
if (unlikely(req->data_len != req->transfer_len)) {
req->error_loc = offsetof(struct nvme_common_command, dptr);
nvmet_req_complete(req, NVME_SC_SGL_INVALID_DATA | NVME_SC_DNR);
} else
req->execute(req);
}
EXPORT_SYMBOL_GPL(nvmet_req_execute);
int nvmet_req_alloc_sgl(struct nvmet_req *req)
{
struct pci_dev *p2p_dev = NULL;
if (IS_ENABLED(CONFIG_PCI_P2PDMA)) {
if (req->sq->ctrl && req->ns)
p2p_dev = radix_tree_lookup(&req->sq->ctrl->p2p_ns_map,
req->ns->nsid);
req->p2p_dev = NULL;
if (req->sq->qid && p2p_dev) {
req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
req->transfer_len);
if (req->sg) {
req->p2p_dev = p2p_dev;
return 0;
}
}
/*
* If no P2P memory was available we fallback to using
* regular memory
*/
}
req->sg = sgl_alloc(req->transfer_len, GFP_KERNEL, &req->sg_cnt);
if (!req->sg)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgl);
void nvmet_req_free_sgl(struct nvmet_req *req)
{
if (req->p2p_dev)
pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
else
sgl_free(req->sg);
req->sg = NULL;
req->sg_cnt = 0;
}
EXPORT_SYMBOL_GPL(nvmet_req_free_sgl);
static inline bool nvmet_cc_en(u32 cc)
{
return (cc >> NVME_CC_EN_SHIFT) & 0x1;
}
static inline u8 nvmet_cc_css(u32 cc)
{
return (cc >> NVME_CC_CSS_SHIFT) & 0x7;
}
static inline u8 nvmet_cc_mps(u32 cc)
{
return (cc >> NVME_CC_MPS_SHIFT) & 0xf;
}
static inline u8 nvmet_cc_ams(u32 cc)
{
return (cc >> NVME_CC_AMS_SHIFT) & 0x7;
}
static inline u8 nvmet_cc_shn(u32 cc)
{
return (cc >> NVME_CC_SHN_SHIFT) & 0x3;
}
static inline u8 nvmet_cc_iosqes(u32 cc)
{
return (cc >> NVME_CC_IOSQES_SHIFT) & 0xf;
}
static inline u8 nvmet_cc_iocqes(u32 cc)
{
return (cc >> NVME_CC_IOCQES_SHIFT) & 0xf;
}
static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
{
lockdep_assert_held(&ctrl->lock);
if (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES ||
nvmet_cc_mps(ctrl->cc) != 0 ||
nvmet_cc_ams(ctrl->cc) != 0 ||
nvmet_cc_css(ctrl->cc) != 0) {
ctrl->csts = NVME_CSTS_CFS;
return;
}
ctrl->csts = NVME_CSTS_RDY;
/*
* Controllers that are not yet enabled should not really enforce the
* keep alive timeout, but we still want to track a timeout and cleanup
* in case a host died before it enabled the controller. Hence, simply
* reset the keep alive timer when the controller is enabled.
*/
mod_delayed_work(system_wq, &ctrl->ka_work, ctrl->kato * HZ);
}
static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
{
lockdep_assert_held(&ctrl->lock);
/* XXX: tear down queues? */
ctrl->csts &= ~NVME_CSTS_RDY;
ctrl->cc = 0;
}
void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
{
u32 old;
mutex_lock(&ctrl->lock);
old = ctrl->cc;
ctrl->cc = new;
if (nvmet_cc_en(new) && !nvmet_cc_en(old))
nvmet_start_ctrl(ctrl);
if (!nvmet_cc_en(new) && nvmet_cc_en(old))
nvmet_clear_ctrl(ctrl);
if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
nvmet_clear_ctrl(ctrl);
ctrl->csts |= NVME_CSTS_SHST_CMPLT;
}
if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
mutex_unlock(&ctrl->lock);
}
static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
{
/* command sets supported: NVMe command set: */
ctrl->cap = (1ULL << 37);
/* CC.EN timeout in 500msec units: */
ctrl->cap |= (15ULL << 24);
/* maximum queue entries supported: */
ctrl->cap |= NVMET_QUEUE_SIZE - 1;
}
u16 nvmet_ctrl_find_get(const char *subsysnqn, const char *hostnqn, u16 cntlid,
struct nvmet_req *req, struct nvmet_ctrl **ret)
{
struct nvmet_subsys *subsys;
struct nvmet_ctrl *ctrl;
u16 status = 0;
subsys = nvmet_find_get_subsys(req->port, subsysnqn);
if (!subsys) {
pr_warn("connect request for invalid subsystem %s!\n",
subsysnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
return NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
}
mutex_lock(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
if (ctrl->cntlid == cntlid) {
if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
pr_warn("hostnqn mismatch.\n");
continue;
}
if (!kref_get_unless_zero(&ctrl->ref))
continue;
*ret = ctrl;
goto out;
}
}
pr_warn("could not find controller %d for subsys %s / host %s\n",
cntlid, subsysnqn, hostnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
out:
mutex_unlock(&subsys->lock);
nvmet_subsys_put(subsys);
return status;
}
u16 nvmet_check_ctrl_status(struct nvmet_req *req, struct nvme_command *cmd)
{
if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
cmd->common.opcode, req->sq->qid);
return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
}
if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
cmd->common.opcode, req->sq->qid);
return NVME_SC_CMD_SEQ_ERROR | NVME_SC_DNR;
}
return 0;
}
bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
{
struct nvmet_host_link *p;
lockdep_assert_held(&nvmet_config_sem);
if (subsys->allow_any_host)
return true;
if (subsys->type == NVME_NQN_DISC) /* allow all access to disc subsys */
return true;
list_for_each_entry(p, &subsys->hosts, entry) {
if (!strcmp(nvmet_host_name(p->host), hostnqn))
return true;
}
return false;
}
/*
* Note: ctrl->subsys->lock should be held when calling this function
*/
static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
struct nvmet_req *req)
{
struct nvmet_ns *ns;
if (!req->p2p_client)
return;
ctrl->p2p_client = get_device(req->p2p_client);
list_for_each_entry_rcu(ns, &ctrl->subsys->namespaces, dev_link)
nvmet_p2pmem_ns_add_p2p(ctrl, ns);
}
/*
* Note: ctrl->subsys->lock should be held when calling this function
*/
static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
{
struct radix_tree_iter iter;
void __rcu **slot;
radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
pci_dev_put(radix_tree_deref_slot(slot));
put_device(ctrl->p2p_client);
}
static void nvmet_fatal_error_handler(struct work_struct *work)
{
struct nvmet_ctrl *ctrl =
container_of(work, struct nvmet_ctrl, fatal_err_work);
pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
ctrl->ops->delete_ctrl(ctrl);
}
u16 nvmet_alloc_ctrl(const char *subsysnqn, const char *hostnqn,
struct nvmet_req *req, u32 kato, struct nvmet_ctrl **ctrlp)
{
struct nvmet_subsys *subsys;
struct nvmet_ctrl *ctrl;
int ret;
u16 status;
status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
subsys = nvmet_find_get_subsys(req->port, subsysnqn);
if (!subsys) {
pr_warn("connect request for invalid subsystem %s!\n",
subsysnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
goto out;
}
status = NVME_SC_CONNECT_INVALID_PARAM | NVME_SC_DNR;
down_read(&nvmet_config_sem);
if (!nvmet_host_allowed(subsys, hostnqn)) {
pr_info("connect by host %s for subsystem %s not allowed\n",
hostnqn, subsysnqn);
req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(hostnqn);
up_read(&nvmet_config_sem);
status = NVME_SC_CONNECT_INVALID_HOST | NVME_SC_DNR;
goto out_put_subsystem;
}
up_read(&nvmet_config_sem);
status = NVME_SC_INTERNAL;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
goto out_put_subsystem;
mutex_init(&ctrl->lock);
nvmet_init_cap(ctrl);
ctrl->port = req->port;
INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
INIT_LIST_HEAD(&ctrl->async_events);
INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
memcpy(ctrl->subsysnqn, subsysnqn, NVMF_NQN_SIZE);
memcpy(ctrl->hostnqn, hostnqn, NVMF_NQN_SIZE);
kref_init(&ctrl->ref);
ctrl->subsys = subsys;
WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
sizeof(__le32), GFP_KERNEL);
if (!ctrl->changed_ns_list)
goto out_free_ctrl;
ctrl->cqs = kcalloc(subsys->max_qid + 1,
sizeof(struct nvmet_cq *),
GFP_KERNEL);
if (!ctrl->cqs)
goto out_free_changed_ns_list;
ctrl->sqs = kcalloc(subsys->max_qid + 1,
sizeof(struct nvmet_sq *),
GFP_KERNEL);
if (!ctrl->sqs)
goto out_free_cqs;
ret = ida_simple_get(&cntlid_ida,
NVME_CNTLID_MIN, NVME_CNTLID_MAX,
GFP_KERNEL);
if (ret < 0) {
status = NVME_SC_CONNECT_CTRL_BUSY | NVME_SC_DNR;
goto out_free_sqs;
}
ctrl->cntlid = ret;
ctrl->ops = req->ops;
/*
* Discovery controllers may use some arbitrary high value
* in order to cleanup stale discovery sessions
*/
if ((ctrl->subsys->type == NVME_NQN_DISC) && !kato)
kato = NVMET_DISC_KATO_MS;
/* keep-alive timeout in seconds */
ctrl->kato = DIV_ROUND_UP(kato, 1000);
ctrl->err_counter = 0;
spin_lock_init(&ctrl->error_lock);
nvmet_start_keep_alive_timer(ctrl);
mutex_lock(&subsys->lock);
list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
nvmet_setup_p2p_ns_map(ctrl, req);
mutex_unlock(&subsys->lock);
*ctrlp = ctrl;
return 0;
out_free_sqs:
kfree(ctrl->sqs);
out_free_cqs:
kfree(ctrl->cqs);
out_free_changed_ns_list:
kfree(ctrl->changed_ns_list);
out_free_ctrl:
kfree(ctrl);
out_put_subsystem:
nvmet_subsys_put(subsys);
out:
return status;
}
static void nvmet_ctrl_free(struct kref *ref)
{
struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
struct nvmet_subsys *subsys = ctrl->subsys;
mutex_lock(&subsys->lock);
nvmet_release_p2p_ns_map(ctrl);
list_del(&ctrl->subsys_entry);
mutex_unlock(&subsys->lock);
nvmet_stop_keep_alive_timer(ctrl);
flush_work(&ctrl->async_event_work);
cancel_work_sync(&ctrl->fatal_err_work);
ida_simple_remove(&cntlid_ida, ctrl->cntlid);
kfree(ctrl->sqs);
kfree(ctrl->cqs);
kfree(ctrl->changed_ns_list);
kfree(ctrl);
nvmet_subsys_put(subsys);
}
void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
{
kref_put(&ctrl->ref, nvmet_ctrl_free);
}
void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
{
mutex_lock(&ctrl->lock);
if (!(ctrl->csts & NVME_CSTS_CFS)) {
ctrl->csts |= NVME_CSTS_CFS;
schedule_work(&ctrl->fatal_err_work);
}
mutex_unlock(&ctrl->lock);
}
EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
const char *subsysnqn)
{
struct nvmet_subsys_link *p;
if (!port)
return NULL;
if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
return NULL;
return nvmet_disc_subsys;
}
down_read(&nvmet_config_sem);
list_for_each_entry(p, &port->subsystems, entry) {
if (!strncmp(p->subsys->subsysnqn, subsysnqn,
NVMF_NQN_SIZE)) {
if (!kref_get_unless_zero(&p->subsys->ref))
break;
up_read(&nvmet_config_sem);
return p->subsys;
}
}
up_read(&nvmet_config_sem);
return NULL;
}
struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
enum nvme_subsys_type type)
{
struct nvmet_subsys *subsys;
subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
if (!subsys)
return ERR_PTR(-ENOMEM);
subsys->ver = NVME_VS(1, 3, 0); /* NVMe 1.3.0 */
/* generate a random serial number as our controllers are ephemeral: */
get_random_bytes(&subsys->serial, sizeof(subsys->serial));
switch (type) {
case NVME_NQN_NVME:
subsys->max_qid = NVMET_NR_QUEUES;
break;
case NVME_NQN_DISC:
subsys->max_qid = 0;
break;
default:
pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
kfree(subsys);
return ERR_PTR(-EINVAL);
}
subsys->type = type;
subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
GFP_KERNEL);
if (!subsys->subsysnqn) {
kfree(subsys);
return ERR_PTR(-ENOMEM);
}
kref_init(&subsys->ref);
mutex_init(&subsys->lock);
INIT_LIST_HEAD(&subsys->namespaces);
INIT_LIST_HEAD(&subsys->ctrls);
INIT_LIST_HEAD(&subsys->hosts);
return subsys;
}
static void nvmet_subsys_free(struct kref *ref)
{
struct nvmet_subsys *subsys =
container_of(ref, struct nvmet_subsys, ref);
WARN_ON_ONCE(!list_empty(&subsys->namespaces));
kfree(subsys->subsysnqn);
kfree(subsys);
}
void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
{
struct nvmet_ctrl *ctrl;
mutex_lock(&subsys->lock);
list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
ctrl->ops->delete_ctrl(ctrl);
mutex_unlock(&subsys->lock);
}
void nvmet_subsys_put(struct nvmet_subsys *subsys)
{
kref_put(&subsys->ref, nvmet_subsys_free);
}
static int __init nvmet_init(void)
{
int error;
nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
WQ_MEM_RECLAIM, 0);
if (!buffered_io_wq) {
error = -ENOMEM;
goto out;
}
error = nvmet_init_discovery();
if (error)
goto out_free_work_queue;
error = nvmet_init_configfs();
if (error)
goto out_exit_discovery;
return 0;
out_exit_discovery:
nvmet_exit_discovery();
out_free_work_queue:
destroy_workqueue(buffered_io_wq);
out:
return error;
}
static void __exit nvmet_exit(void)
{
nvmet_exit_configfs();
nvmet_exit_discovery();
ida_destroy(&cntlid_ida);
destroy_workqueue(buffered_io_wq);
BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
}
module_init(nvmet_init);
module_exit(nvmet_exit);
MODULE_LICENSE("GPL v2");