mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 05:50:52 +07:00
6beea0cda8
update_ts_time_stat currently updates idle time even if we are in iowait loop at the moment. The only real users of the idle counter (via get_cpu_idle_time_us) are CPU governors and they expect to get cumulative time for both idle and iowait times. The value (idle_sleeptime) is also printed to userspace by print_cpu but it prints both idle and iowait times so the idle part is misleading. Let's clean this up and fix update_ts_time_stat to account both counters properly and update consumers of idle to consider iowait time as well. If we do this we might use get_cpu_{idle,iowait}_time_us from other contexts as well and we will get expected values. Signed-off-by: Michal Hocko <mhocko@suse.cz> Cc: Dave Jones <davej@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alexey Dobriyan <adobriyan@gmail.com> Link: http://lkml.kernel.org/r/e9c909c221a8da402c4da07e4cd968c3218f8eb1.1314172057.git.mhocko@suse.cz Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
628 lines
16 KiB
C
628 lines
16 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_conservative.c
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* Jun Nakajima <jun.nakajima@intel.com>
|
|
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/hrtimer.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/sched.h>
|
|
|
|
/*
|
|
* dbs is used in this file as a shortform for demandbased switching
|
|
* It helps to keep variable names smaller, simpler
|
|
*/
|
|
|
|
#define DEF_FREQUENCY_UP_THRESHOLD (80)
|
|
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
|
|
|
|
/*
|
|
* The polling frequency of this governor depends on the capability of
|
|
* the processor. Default polling frequency is 1000 times the transition
|
|
* latency of the processor. The governor will work on any processor with
|
|
* transition latency <= 10mS, using appropriate sampling
|
|
* rate.
|
|
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
|
|
* this governor will not work.
|
|
* All times here are in uS.
|
|
*/
|
|
#define MIN_SAMPLING_RATE_RATIO (2)
|
|
|
|
static unsigned int min_sampling_rate;
|
|
|
|
#define LATENCY_MULTIPLIER (1000)
|
|
#define MIN_LATENCY_MULTIPLIER (100)
|
|
#define DEF_SAMPLING_DOWN_FACTOR (1)
|
|
#define MAX_SAMPLING_DOWN_FACTOR (10)
|
|
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
|
|
|
|
static void do_dbs_timer(struct work_struct *work);
|
|
|
|
struct cpu_dbs_info_s {
|
|
cputime64_t prev_cpu_idle;
|
|
cputime64_t prev_cpu_wall;
|
|
cputime64_t prev_cpu_nice;
|
|
struct cpufreq_policy *cur_policy;
|
|
struct delayed_work work;
|
|
unsigned int down_skip;
|
|
unsigned int requested_freq;
|
|
int cpu;
|
|
unsigned int enable:1;
|
|
/*
|
|
* percpu mutex that serializes governor limit change with
|
|
* do_dbs_timer invocation. We do not want do_dbs_timer to run
|
|
* when user is changing the governor or limits.
|
|
*/
|
|
struct mutex timer_mutex;
|
|
};
|
|
static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
|
|
|
|
static unsigned int dbs_enable; /* number of CPUs using this policy */
|
|
|
|
/*
|
|
* dbs_mutex protects dbs_enable in governor start/stop.
|
|
*/
|
|
static DEFINE_MUTEX(dbs_mutex);
|
|
|
|
static struct dbs_tuners {
|
|
unsigned int sampling_rate;
|
|
unsigned int sampling_down_factor;
|
|
unsigned int up_threshold;
|
|
unsigned int down_threshold;
|
|
unsigned int ignore_nice;
|
|
unsigned int freq_step;
|
|
} dbs_tuners_ins = {
|
|
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
|
|
.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
|
|
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
|
|
.ignore_nice = 0,
|
|
.freq_step = 5,
|
|
};
|
|
|
|
static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
|
|
cputime64_t *wall)
|
|
{
|
|
cputime64_t idle_time;
|
|
cputime64_t cur_wall_time;
|
|
cputime64_t busy_time;
|
|
|
|
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
|
|
busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
|
|
kstat_cpu(cpu).cpustat.system);
|
|
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
|
|
busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
|
|
|
|
idle_time = cputime64_sub(cur_wall_time, busy_time);
|
|
if (wall)
|
|
*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
|
|
|
|
return (cputime64_t)jiffies_to_usecs(idle_time);
|
|
}
|
|
|
|
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
|
|
{
|
|
u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
|
|
|
|
if (idle_time == -1ULL)
|
|
return get_cpu_idle_time_jiffy(cpu, wall);
|
|
else
|
|
idle_time += get_cpu_iowait_time_us(cpu, wall);
|
|
|
|
return idle_time;
|
|
}
|
|
|
|
/* keep track of frequency transitions */
|
|
static int
|
|
dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
|
void *data)
|
|
{
|
|
struct cpufreq_freqs *freq = data;
|
|
struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
|
|
freq->cpu);
|
|
|
|
struct cpufreq_policy *policy;
|
|
|
|
if (!this_dbs_info->enable)
|
|
return 0;
|
|
|
|
policy = this_dbs_info->cur_policy;
|
|
|
|
/*
|
|
* we only care if our internally tracked freq moves outside
|
|
* the 'valid' ranges of freqency available to us otherwise
|
|
* we do not change it
|
|
*/
|
|
if (this_dbs_info->requested_freq > policy->max
|
|
|| this_dbs_info->requested_freq < policy->min)
|
|
this_dbs_info->requested_freq = freq->new;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct notifier_block dbs_cpufreq_notifier_block = {
|
|
.notifier_call = dbs_cpufreq_notifier
|
|
};
|
|
|
|
/************************** sysfs interface ************************/
|
|
static ssize_t show_sampling_rate_min(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%u\n", min_sampling_rate);
|
|
}
|
|
|
|
define_one_global_ro(sampling_rate_min);
|
|
|
|
/* cpufreq_conservative Governor Tunables */
|
|
#define show_one(file_name, object) \
|
|
static ssize_t show_##file_name \
|
|
(struct kobject *kobj, struct attribute *attr, char *buf) \
|
|
{ \
|
|
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
|
|
}
|
|
show_one(sampling_rate, sampling_rate);
|
|
show_one(sampling_down_factor, sampling_down_factor);
|
|
show_one(up_threshold, up_threshold);
|
|
show_one(down_threshold, down_threshold);
|
|
show_one(ignore_nice_load, ignore_nice);
|
|
show_one(freq_step, freq_step);
|
|
|
|
static ssize_t store_sampling_down_factor(struct kobject *a,
|
|
struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
|
|
return -EINVAL;
|
|
|
|
dbs_tuners_ins.sampling_down_factor = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1 || input > 100 ||
|
|
input <= dbs_tuners_ins.down_threshold)
|
|
return -EINVAL;
|
|
|
|
dbs_tuners_ins.up_threshold = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
/* cannot be lower than 11 otherwise freq will not fall */
|
|
if (ret != 1 || input < 11 || input > 100 ||
|
|
input >= dbs_tuners_ins.up_threshold)
|
|
return -EINVAL;
|
|
|
|
dbs_tuners_ins.down_threshold = input;
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
|
|
unsigned int j;
|
|
|
|
ret = sscanf(buf, "%u", &input);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 1)
|
|
input = 1;
|
|
|
|
if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
|
|
return count;
|
|
|
|
dbs_tuners_ins.ignore_nice = input;
|
|
|
|
/* we need to re-evaluate prev_cpu_idle */
|
|
for_each_online_cpu(j) {
|
|
struct cpu_dbs_info_s *dbs_info;
|
|
dbs_info = &per_cpu(cs_cpu_dbs_info, j);
|
|
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
|
|
&dbs_info->prev_cpu_wall);
|
|
if (dbs_tuners_ins.ignore_nice)
|
|
dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
|
|
const char *buf, size_t count)
|
|
{
|
|
unsigned int input;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &input);
|
|
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
if (input > 100)
|
|
input = 100;
|
|
|
|
/* no need to test here if freq_step is zero as the user might actually
|
|
* want this, they would be crazy though :) */
|
|
dbs_tuners_ins.freq_step = input;
|
|
return count;
|
|
}
|
|
|
|
define_one_global_rw(sampling_rate);
|
|
define_one_global_rw(sampling_down_factor);
|
|
define_one_global_rw(up_threshold);
|
|
define_one_global_rw(down_threshold);
|
|
define_one_global_rw(ignore_nice_load);
|
|
define_one_global_rw(freq_step);
|
|
|
|
static struct attribute *dbs_attributes[] = {
|
|
&sampling_rate_min.attr,
|
|
&sampling_rate.attr,
|
|
&sampling_down_factor.attr,
|
|
&up_threshold.attr,
|
|
&down_threshold.attr,
|
|
&ignore_nice_load.attr,
|
|
&freq_step.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group dbs_attr_group = {
|
|
.attrs = dbs_attributes,
|
|
.name = "conservative",
|
|
};
|
|
|
|
/************************** sysfs end ************************/
|
|
|
|
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
|
|
{
|
|
unsigned int load = 0;
|
|
unsigned int max_load = 0;
|
|
unsigned int freq_target;
|
|
|
|
struct cpufreq_policy *policy;
|
|
unsigned int j;
|
|
|
|
policy = this_dbs_info->cur_policy;
|
|
|
|
/*
|
|
* Every sampling_rate, we check, if current idle time is less
|
|
* than 20% (default), then we try to increase frequency
|
|
* Every sampling_rate*sampling_down_factor, we check, if current
|
|
* idle time is more than 80%, then we try to decrease frequency
|
|
*
|
|
* Any frequency increase takes it to the maximum frequency.
|
|
* Frequency reduction happens at minimum steps of
|
|
* 5% (default) of maximum frequency
|
|
*/
|
|
|
|
/* Get Absolute Load */
|
|
for_each_cpu(j, policy->cpus) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
cputime64_t cur_wall_time, cur_idle_time;
|
|
unsigned int idle_time, wall_time;
|
|
|
|
j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
|
|
|
|
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
|
|
|
|
wall_time = (unsigned int) cputime64_sub(cur_wall_time,
|
|
j_dbs_info->prev_cpu_wall);
|
|
j_dbs_info->prev_cpu_wall = cur_wall_time;
|
|
|
|
idle_time = (unsigned int) cputime64_sub(cur_idle_time,
|
|
j_dbs_info->prev_cpu_idle);
|
|
j_dbs_info->prev_cpu_idle = cur_idle_time;
|
|
|
|
if (dbs_tuners_ins.ignore_nice) {
|
|
cputime64_t cur_nice;
|
|
unsigned long cur_nice_jiffies;
|
|
|
|
cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
|
|
j_dbs_info->prev_cpu_nice);
|
|
/*
|
|
* Assumption: nice time between sampling periods will
|
|
* be less than 2^32 jiffies for 32 bit sys
|
|
*/
|
|
cur_nice_jiffies = (unsigned long)
|
|
cputime64_to_jiffies64(cur_nice);
|
|
|
|
j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
|
|
idle_time += jiffies_to_usecs(cur_nice_jiffies);
|
|
}
|
|
|
|
if (unlikely(!wall_time || wall_time < idle_time))
|
|
continue;
|
|
|
|
load = 100 * (wall_time - idle_time) / wall_time;
|
|
|
|
if (load > max_load)
|
|
max_load = load;
|
|
}
|
|
|
|
/*
|
|
* break out if we 'cannot' reduce the speed as the user might
|
|
* want freq_step to be zero
|
|
*/
|
|
if (dbs_tuners_ins.freq_step == 0)
|
|
return;
|
|
|
|
/* Check for frequency increase */
|
|
if (max_load > dbs_tuners_ins.up_threshold) {
|
|
this_dbs_info->down_skip = 0;
|
|
|
|
/* if we are already at full speed then break out early */
|
|
if (this_dbs_info->requested_freq == policy->max)
|
|
return;
|
|
|
|
freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
|
|
|
|
/* max freq cannot be less than 100. But who knows.... */
|
|
if (unlikely(freq_target == 0))
|
|
freq_target = 5;
|
|
|
|
this_dbs_info->requested_freq += freq_target;
|
|
if (this_dbs_info->requested_freq > policy->max)
|
|
this_dbs_info->requested_freq = policy->max;
|
|
|
|
__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
|
|
CPUFREQ_RELATION_H);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The optimal frequency is the frequency that is the lowest that
|
|
* can support the current CPU usage without triggering the up
|
|
* policy. To be safe, we focus 10 points under the threshold.
|
|
*/
|
|
if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
|
|
freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
|
|
|
|
this_dbs_info->requested_freq -= freq_target;
|
|
if (this_dbs_info->requested_freq < policy->min)
|
|
this_dbs_info->requested_freq = policy->min;
|
|
|
|
/*
|
|
* if we cannot reduce the frequency anymore, break out early
|
|
*/
|
|
if (policy->cur == policy->min)
|
|
return;
|
|
|
|
__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
|
|
CPUFREQ_RELATION_H);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void do_dbs_timer(struct work_struct *work)
|
|
{
|
|
struct cpu_dbs_info_s *dbs_info =
|
|
container_of(work, struct cpu_dbs_info_s, work.work);
|
|
unsigned int cpu = dbs_info->cpu;
|
|
|
|
/* We want all CPUs to do sampling nearly on same jiffy */
|
|
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
|
|
delay -= jiffies % delay;
|
|
|
|
mutex_lock(&dbs_info->timer_mutex);
|
|
|
|
dbs_check_cpu(dbs_info);
|
|
|
|
schedule_delayed_work_on(cpu, &dbs_info->work, delay);
|
|
mutex_unlock(&dbs_info->timer_mutex);
|
|
}
|
|
|
|
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
|
|
{
|
|
/* We want all CPUs to do sampling nearly on same jiffy */
|
|
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
|
|
delay -= jiffies % delay;
|
|
|
|
dbs_info->enable = 1;
|
|
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
|
|
schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
|
|
}
|
|
|
|
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
|
|
{
|
|
dbs_info->enable = 0;
|
|
cancel_delayed_work_sync(&dbs_info->work);
|
|
}
|
|
|
|
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
|
|
unsigned int event)
|
|
{
|
|
unsigned int cpu = policy->cpu;
|
|
struct cpu_dbs_info_s *this_dbs_info;
|
|
unsigned int j;
|
|
int rc;
|
|
|
|
this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
|
|
|
|
switch (event) {
|
|
case CPUFREQ_GOV_START:
|
|
if ((!cpu_online(cpu)) || (!policy->cur))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
|
|
for_each_cpu(j, policy->cpus) {
|
|
struct cpu_dbs_info_s *j_dbs_info;
|
|
j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
|
|
j_dbs_info->cur_policy = policy;
|
|
|
|
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
|
|
&j_dbs_info->prev_cpu_wall);
|
|
if (dbs_tuners_ins.ignore_nice) {
|
|
j_dbs_info->prev_cpu_nice =
|
|
kstat_cpu(j).cpustat.nice;
|
|
}
|
|
}
|
|
this_dbs_info->down_skip = 0;
|
|
this_dbs_info->requested_freq = policy->cur;
|
|
|
|
mutex_init(&this_dbs_info->timer_mutex);
|
|
dbs_enable++;
|
|
/*
|
|
* Start the timerschedule work, when this governor
|
|
* is used for first time
|
|
*/
|
|
if (dbs_enable == 1) {
|
|
unsigned int latency;
|
|
/* policy latency is in nS. Convert it to uS first */
|
|
latency = policy->cpuinfo.transition_latency / 1000;
|
|
if (latency == 0)
|
|
latency = 1;
|
|
|
|
rc = sysfs_create_group(cpufreq_global_kobject,
|
|
&dbs_attr_group);
|
|
if (rc) {
|
|
mutex_unlock(&dbs_mutex);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* conservative does not implement micro like ondemand
|
|
* governor, thus we are bound to jiffes/HZ
|
|
*/
|
|
min_sampling_rate =
|
|
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
|
|
/* Bring kernel and HW constraints together */
|
|
min_sampling_rate = max(min_sampling_rate,
|
|
MIN_LATENCY_MULTIPLIER * latency);
|
|
dbs_tuners_ins.sampling_rate =
|
|
max(min_sampling_rate,
|
|
latency * LATENCY_MULTIPLIER);
|
|
|
|
cpufreq_register_notifier(
|
|
&dbs_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
}
|
|
mutex_unlock(&dbs_mutex);
|
|
|
|
dbs_timer_init(this_dbs_info);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_STOP:
|
|
dbs_timer_exit(this_dbs_info);
|
|
|
|
mutex_lock(&dbs_mutex);
|
|
dbs_enable--;
|
|
mutex_destroy(&this_dbs_info->timer_mutex);
|
|
|
|
/*
|
|
* Stop the timerschedule work, when this governor
|
|
* is used for first time
|
|
*/
|
|
if (dbs_enable == 0)
|
|
cpufreq_unregister_notifier(
|
|
&dbs_cpufreq_notifier_block,
|
|
CPUFREQ_TRANSITION_NOTIFIER);
|
|
|
|
mutex_unlock(&dbs_mutex);
|
|
if (!dbs_enable)
|
|
sysfs_remove_group(cpufreq_global_kobject,
|
|
&dbs_attr_group);
|
|
|
|
break;
|
|
|
|
case CPUFREQ_GOV_LIMITS:
|
|
mutex_lock(&this_dbs_info->timer_mutex);
|
|
if (policy->max < this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(
|
|
this_dbs_info->cur_policy,
|
|
policy->max, CPUFREQ_RELATION_H);
|
|
else if (policy->min > this_dbs_info->cur_policy->cur)
|
|
__cpufreq_driver_target(
|
|
this_dbs_info->cur_policy,
|
|
policy->min, CPUFREQ_RELATION_L);
|
|
mutex_unlock(&this_dbs_info->timer_mutex);
|
|
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_conservative = {
|
|
.name = "conservative",
|
|
.governor = cpufreq_governor_dbs,
|
|
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init cpufreq_gov_dbs_init(void)
|
|
{
|
|
return cpufreq_register_governor(&cpufreq_gov_conservative);
|
|
}
|
|
|
|
static void __exit cpufreq_gov_dbs_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_conservative);
|
|
}
|
|
|
|
|
|
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
|
|
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
|
|
"Low Latency Frequency Transition capable processors "
|
|
"optimised for use in a battery environment");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
|
|
fs_initcall(cpufreq_gov_dbs_init);
|
|
#else
|
|
module_init(cpufreq_gov_dbs_init);
|
|
#endif
|
|
module_exit(cpufreq_gov_dbs_exit);
|