mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 21:29:28 +07:00
91a6a6cfee
Conflicts: arch/x86/mm/mem_encrypt.c Signed-off-by: Ingo Molnar <mingo@kernel.org>
873 lines
24 KiB
C
873 lines
24 KiB
C
/*
|
|
* AMD Memory Encryption Support
|
|
*
|
|
* Copyright (C) 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define DISABLE_BRANCH_PROFILING
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/mem_encrypt.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/bootparam.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/cmdline.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
static char sme_cmdline_arg[] __initdata = "mem_encrypt";
|
|
static char sme_cmdline_on[] __initdata = "on";
|
|
static char sme_cmdline_off[] __initdata = "off";
|
|
|
|
/*
|
|
* Since SME related variables are set early in the boot process they must
|
|
* reside in the .data section so as not to be zeroed out when the .bss
|
|
* section is later cleared.
|
|
*/
|
|
u64 sme_me_mask __section(.data) = 0;
|
|
EXPORT_SYMBOL(sme_me_mask);
|
|
DEFINE_STATIC_KEY_FALSE(sev_enable_key);
|
|
EXPORT_SYMBOL_GPL(sev_enable_key);
|
|
|
|
static bool sev_enabled __section(.data);
|
|
|
|
/* Buffer used for early in-place encryption by BSP, no locking needed */
|
|
static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
|
|
|
|
/*
|
|
* This routine does not change the underlying encryption setting of the
|
|
* page(s) that map this memory. It assumes that eventually the memory is
|
|
* meant to be accessed as either encrypted or decrypted but the contents
|
|
* are currently not in the desired state.
|
|
*
|
|
* This routine follows the steps outlined in the AMD64 Architecture
|
|
* Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
|
|
*/
|
|
static void __init __sme_early_enc_dec(resource_size_t paddr,
|
|
unsigned long size, bool enc)
|
|
{
|
|
void *src, *dst;
|
|
size_t len;
|
|
|
|
if (!sme_me_mask)
|
|
return;
|
|
|
|
wbinvd();
|
|
|
|
/*
|
|
* There are limited number of early mapping slots, so map (at most)
|
|
* one page at time.
|
|
*/
|
|
while (size) {
|
|
len = min_t(size_t, sizeof(sme_early_buffer), size);
|
|
|
|
/*
|
|
* Create mappings for the current and desired format of
|
|
* the memory. Use a write-protected mapping for the source.
|
|
*/
|
|
src = enc ? early_memremap_decrypted_wp(paddr, len) :
|
|
early_memremap_encrypted_wp(paddr, len);
|
|
|
|
dst = enc ? early_memremap_encrypted(paddr, len) :
|
|
early_memremap_decrypted(paddr, len);
|
|
|
|
/*
|
|
* If a mapping can't be obtained to perform the operation,
|
|
* then eventual access of that area in the desired mode
|
|
* will cause a crash.
|
|
*/
|
|
BUG_ON(!src || !dst);
|
|
|
|
/*
|
|
* Use a temporary buffer, of cache-line multiple size, to
|
|
* avoid data corruption as documented in the APM.
|
|
*/
|
|
memcpy(sme_early_buffer, src, len);
|
|
memcpy(dst, sme_early_buffer, len);
|
|
|
|
early_memunmap(dst, len);
|
|
early_memunmap(src, len);
|
|
|
|
paddr += len;
|
|
size -= len;
|
|
}
|
|
}
|
|
|
|
void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
|
|
{
|
|
__sme_early_enc_dec(paddr, size, true);
|
|
}
|
|
|
|
void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
|
|
{
|
|
__sme_early_enc_dec(paddr, size, false);
|
|
}
|
|
|
|
static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
|
|
bool map)
|
|
{
|
|
unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
|
|
pmdval_t pmd_flags, pmd;
|
|
|
|
/* Use early_pmd_flags but remove the encryption mask */
|
|
pmd_flags = __sme_clr(early_pmd_flags);
|
|
|
|
do {
|
|
pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
|
|
__early_make_pgtable((unsigned long)vaddr, pmd);
|
|
|
|
vaddr += PMD_SIZE;
|
|
paddr += PMD_SIZE;
|
|
size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
|
|
} while (size);
|
|
|
|
__native_flush_tlb();
|
|
}
|
|
|
|
void __init sme_unmap_bootdata(char *real_mode_data)
|
|
{
|
|
struct boot_params *boot_data;
|
|
unsigned long cmdline_paddr;
|
|
|
|
if (!sme_active())
|
|
return;
|
|
|
|
/* Get the command line address before unmapping the real_mode_data */
|
|
boot_data = (struct boot_params *)real_mode_data;
|
|
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
|
|
|
|
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
|
|
|
|
if (!cmdline_paddr)
|
|
return;
|
|
|
|
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
|
|
}
|
|
|
|
void __init sme_map_bootdata(char *real_mode_data)
|
|
{
|
|
struct boot_params *boot_data;
|
|
unsigned long cmdline_paddr;
|
|
|
|
if (!sme_active())
|
|
return;
|
|
|
|
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
|
|
|
|
/* Get the command line address after mapping the real_mode_data */
|
|
boot_data = (struct boot_params *)real_mode_data;
|
|
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
|
|
|
|
if (!cmdline_paddr)
|
|
return;
|
|
|
|
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
|
|
}
|
|
|
|
void __init sme_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!sme_me_mask)
|
|
return;
|
|
|
|
early_pmd_flags = __sme_set(early_pmd_flags);
|
|
|
|
__supported_pte_mask = __sme_set(__supported_pte_mask);
|
|
|
|
/* Update the protection map with memory encryption mask */
|
|
for (i = 0; i < ARRAY_SIZE(protection_map); i++)
|
|
protection_map[i] = pgprot_encrypted(protection_map[i]);
|
|
|
|
if (sev_active())
|
|
swiotlb_force = SWIOTLB_FORCE;
|
|
}
|
|
|
|
static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
|
|
gfp_t gfp, unsigned long attrs)
|
|
{
|
|
unsigned long dma_mask;
|
|
unsigned int order;
|
|
struct page *page;
|
|
void *vaddr = NULL;
|
|
|
|
dma_mask = dma_alloc_coherent_mask(dev, gfp);
|
|
order = get_order(size);
|
|
|
|
/*
|
|
* Memory will be memset to zero after marking decrypted, so don't
|
|
* bother clearing it before.
|
|
*/
|
|
gfp &= ~__GFP_ZERO;
|
|
|
|
page = alloc_pages_node(dev_to_node(dev), gfp, order);
|
|
if (page) {
|
|
dma_addr_t addr;
|
|
|
|
/*
|
|
* Since we will be clearing the encryption bit, check the
|
|
* mask with it already cleared.
|
|
*/
|
|
addr = __sme_clr(phys_to_dma(dev, page_to_phys(page)));
|
|
if ((addr + size) > dma_mask) {
|
|
__free_pages(page, get_order(size));
|
|
} else {
|
|
vaddr = page_address(page);
|
|
*dma_handle = addr;
|
|
}
|
|
}
|
|
|
|
if (!vaddr)
|
|
vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
|
|
|
|
if (!vaddr)
|
|
return NULL;
|
|
|
|
/* Clear the SME encryption bit for DMA use if not swiotlb area */
|
|
if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) {
|
|
set_memory_decrypted((unsigned long)vaddr, 1 << order);
|
|
memset(vaddr, 0, PAGE_SIZE << order);
|
|
*dma_handle = __sme_clr(*dma_handle);
|
|
}
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
static void sev_free(struct device *dev, size_t size, void *vaddr,
|
|
dma_addr_t dma_handle, unsigned long attrs)
|
|
{
|
|
/* Set the SME encryption bit for re-use if not swiotlb area */
|
|
if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle)))
|
|
set_memory_encrypted((unsigned long)vaddr,
|
|
1 << get_order(size));
|
|
|
|
swiotlb_free_coherent(dev, size, vaddr, dma_handle);
|
|
}
|
|
|
|
static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
|
|
{
|
|
pgprot_t old_prot, new_prot;
|
|
unsigned long pfn, pa, size;
|
|
pte_t new_pte;
|
|
|
|
switch (level) {
|
|
case PG_LEVEL_4K:
|
|
pfn = pte_pfn(*kpte);
|
|
old_prot = pte_pgprot(*kpte);
|
|
break;
|
|
case PG_LEVEL_2M:
|
|
pfn = pmd_pfn(*(pmd_t *)kpte);
|
|
old_prot = pmd_pgprot(*(pmd_t *)kpte);
|
|
break;
|
|
case PG_LEVEL_1G:
|
|
pfn = pud_pfn(*(pud_t *)kpte);
|
|
old_prot = pud_pgprot(*(pud_t *)kpte);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
new_prot = old_prot;
|
|
if (enc)
|
|
pgprot_val(new_prot) |= _PAGE_ENC;
|
|
else
|
|
pgprot_val(new_prot) &= ~_PAGE_ENC;
|
|
|
|
/* If prot is same then do nothing. */
|
|
if (pgprot_val(old_prot) == pgprot_val(new_prot))
|
|
return;
|
|
|
|
pa = pfn << page_level_shift(level);
|
|
size = page_level_size(level);
|
|
|
|
/*
|
|
* We are going to perform in-place en-/decryption and change the
|
|
* physical page attribute from C=1 to C=0 or vice versa. Flush the
|
|
* caches to ensure that data gets accessed with the correct C-bit.
|
|
*/
|
|
clflush_cache_range(__va(pa), size);
|
|
|
|
/* Encrypt/decrypt the contents in-place */
|
|
if (enc)
|
|
sme_early_encrypt(pa, size);
|
|
else
|
|
sme_early_decrypt(pa, size);
|
|
|
|
/* Change the page encryption mask. */
|
|
new_pte = pfn_pte(pfn, new_prot);
|
|
set_pte_atomic(kpte, new_pte);
|
|
}
|
|
|
|
static int __init early_set_memory_enc_dec(unsigned long vaddr,
|
|
unsigned long size, bool enc)
|
|
{
|
|
unsigned long vaddr_end, vaddr_next;
|
|
unsigned long psize, pmask;
|
|
int split_page_size_mask;
|
|
int level, ret;
|
|
pte_t *kpte;
|
|
|
|
vaddr_next = vaddr;
|
|
vaddr_end = vaddr + size;
|
|
|
|
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
|
|
kpte = lookup_address(vaddr, &level);
|
|
if (!kpte || pte_none(*kpte)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (level == PG_LEVEL_4K) {
|
|
__set_clr_pte_enc(kpte, level, enc);
|
|
vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
psize = page_level_size(level);
|
|
pmask = page_level_mask(level);
|
|
|
|
/*
|
|
* Check whether we can change the large page in one go.
|
|
* We request a split when the address is not aligned and
|
|
* the number of pages to set/clear encryption bit is smaller
|
|
* than the number of pages in the large page.
|
|
*/
|
|
if (vaddr == (vaddr & pmask) &&
|
|
((vaddr_end - vaddr) >= psize)) {
|
|
__set_clr_pte_enc(kpte, level, enc);
|
|
vaddr_next = (vaddr & pmask) + psize;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The virtual address is part of a larger page, create the next
|
|
* level page table mapping (4K or 2M). If it is part of a 2M
|
|
* page then we request a split of the large page into 4K
|
|
* chunks. A 1GB large page is split into 2M pages, resp.
|
|
*/
|
|
if (level == PG_LEVEL_2M)
|
|
split_page_size_mask = 0;
|
|
else
|
|
split_page_size_mask = 1 << PG_LEVEL_2M;
|
|
|
|
kernel_physical_mapping_init(__pa(vaddr & pmask),
|
|
__pa((vaddr_end & pmask) + psize),
|
|
split_page_size_mask);
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
out:
|
|
__flush_tlb_all();
|
|
return ret;
|
|
}
|
|
|
|
int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
|
|
{
|
|
return early_set_memory_enc_dec(vaddr, size, false);
|
|
}
|
|
|
|
int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
|
|
{
|
|
return early_set_memory_enc_dec(vaddr, size, true);
|
|
}
|
|
|
|
/*
|
|
* SME and SEV are very similar but they are not the same, so there are
|
|
* times that the kernel will need to distinguish between SME and SEV. The
|
|
* sme_active() and sev_active() functions are used for this. When a
|
|
* distinction isn't needed, the mem_encrypt_active() function can be used.
|
|
*
|
|
* The trampoline code is a good example for this requirement. Before
|
|
* paging is activated, SME will access all memory as decrypted, but SEV
|
|
* will access all memory as encrypted. So, when APs are being brought
|
|
* up under SME the trampoline area cannot be encrypted, whereas under SEV
|
|
* the trampoline area must be encrypted.
|
|
*/
|
|
bool sme_active(void)
|
|
{
|
|
return sme_me_mask && !sev_enabled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sme_active);
|
|
|
|
bool sev_active(void)
|
|
{
|
|
return sme_me_mask && sev_enabled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sev_active);
|
|
|
|
static const struct dma_map_ops sev_dma_ops = {
|
|
.alloc = sev_alloc,
|
|
.free = sev_free,
|
|
.map_page = swiotlb_map_page,
|
|
.unmap_page = swiotlb_unmap_page,
|
|
.map_sg = swiotlb_map_sg_attrs,
|
|
.unmap_sg = swiotlb_unmap_sg_attrs,
|
|
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
|
|
.sync_single_for_device = swiotlb_sync_single_for_device,
|
|
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
|
|
.sync_sg_for_device = swiotlb_sync_sg_for_device,
|
|
.mapping_error = swiotlb_dma_mapping_error,
|
|
};
|
|
|
|
/* Architecture __weak replacement functions */
|
|
void __init mem_encrypt_init(void)
|
|
{
|
|
if (!sme_me_mask)
|
|
return;
|
|
|
|
/* Call into SWIOTLB to update the SWIOTLB DMA buffers */
|
|
swiotlb_update_mem_attributes();
|
|
|
|
/*
|
|
* With SEV, DMA operations cannot use encryption. New DMA ops
|
|
* are required in order to mark the DMA areas as decrypted or
|
|
* to use bounce buffers.
|
|
*/
|
|
if (sev_active())
|
|
dma_ops = &sev_dma_ops;
|
|
|
|
/*
|
|
* With SEV, we need to unroll the rep string I/O instructions.
|
|
*/
|
|
if (sev_active())
|
|
static_branch_enable(&sev_enable_key);
|
|
|
|
pr_info("AMD %s active\n",
|
|
sev_active() ? "Secure Encrypted Virtualization (SEV)"
|
|
: "Secure Memory Encryption (SME)");
|
|
}
|
|
|
|
void swiotlb_set_mem_attributes(void *vaddr, unsigned long size)
|
|
{
|
|
WARN(PAGE_ALIGN(size) != size,
|
|
"size is not page-aligned (%#lx)\n", size);
|
|
|
|
/* Make the SWIOTLB buffer area decrypted */
|
|
set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT);
|
|
}
|
|
|
|
static void __init sme_clear_pgd(pgd_t *pgd_base, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long pgd_start, pgd_end, pgd_size;
|
|
pgd_t *pgd_p;
|
|
|
|
pgd_start = start & PGDIR_MASK;
|
|
pgd_end = end & PGDIR_MASK;
|
|
|
|
pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1);
|
|
pgd_size *= sizeof(pgd_t);
|
|
|
|
pgd_p = pgd_base + pgd_index(start);
|
|
|
|
memset(pgd_p, 0, pgd_size);
|
|
}
|
|
|
|
#define PGD_FLAGS _KERNPG_TABLE_NOENC
|
|
#define P4D_FLAGS _KERNPG_TABLE_NOENC
|
|
#define PUD_FLAGS _KERNPG_TABLE_NOENC
|
|
#define PMD_FLAGS (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
|
|
|
|
static void __init *sme_populate_pgd(pgd_t *pgd_base, void *pgtable_area,
|
|
unsigned long vaddr, pmdval_t pmd_val)
|
|
{
|
|
pgd_t *pgd_p;
|
|
p4d_t *p4d_p;
|
|
pud_t *pud_p;
|
|
pmd_t *pmd_p;
|
|
|
|
pgd_p = pgd_base + pgd_index(vaddr);
|
|
if (native_pgd_val(*pgd_p)) {
|
|
if (IS_ENABLED(CONFIG_X86_5LEVEL))
|
|
p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
|
|
else
|
|
pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK);
|
|
} else {
|
|
pgd_t pgd;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
p4d_p = pgtable_area;
|
|
memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
|
|
pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D;
|
|
|
|
pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS);
|
|
} else {
|
|
pud_p = pgtable_area;
|
|
memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
|
|
pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
|
|
|
|
pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS);
|
|
}
|
|
native_set_pgd(pgd_p, pgd);
|
|
}
|
|
|
|
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
p4d_p += p4d_index(vaddr);
|
|
if (native_p4d_val(*p4d_p)) {
|
|
pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK);
|
|
} else {
|
|
p4d_t p4d;
|
|
|
|
pud_p = pgtable_area;
|
|
memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
|
|
pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD;
|
|
|
|
p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS);
|
|
native_set_p4d(p4d_p, p4d);
|
|
}
|
|
}
|
|
|
|
pud_p += pud_index(vaddr);
|
|
if (native_pud_val(*pud_p)) {
|
|
if (native_pud_val(*pud_p) & _PAGE_PSE)
|
|
goto out;
|
|
|
|
pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK);
|
|
} else {
|
|
pud_t pud;
|
|
|
|
pmd_p = pgtable_area;
|
|
memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
|
|
pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD;
|
|
|
|
pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS);
|
|
native_set_pud(pud_p, pud);
|
|
}
|
|
|
|
pmd_p += pmd_index(vaddr);
|
|
if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE))
|
|
native_set_pmd(pmd_p, native_make_pmd(pmd_val));
|
|
|
|
out:
|
|
return pgtable_area;
|
|
}
|
|
|
|
static unsigned long __init sme_pgtable_calc(unsigned long len)
|
|
{
|
|
unsigned long p4d_size, pud_size, pmd_size;
|
|
unsigned long total;
|
|
|
|
/*
|
|
* Perform a relatively simplistic calculation of the pagetable
|
|
* entries that are needed. That mappings will be covered by 2MB
|
|
* PMD entries so we can conservatively calculate the required
|
|
* number of P4D, PUD and PMD structures needed to perform the
|
|
* mappings. Incrementing the count for each covers the case where
|
|
* the addresses cross entries.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
|
|
p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
|
|
pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1;
|
|
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
} else {
|
|
p4d_size = 0;
|
|
pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1;
|
|
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
}
|
|
pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1;
|
|
pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
|
|
|
|
total = p4d_size + pud_size + pmd_size;
|
|
|
|
/*
|
|
* Now calculate the added pagetable structures needed to populate
|
|
* the new pagetables.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
|
|
p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D;
|
|
pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE;
|
|
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
} else {
|
|
p4d_size = 0;
|
|
pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE;
|
|
pud_size *= sizeof(pud_t) * PTRS_PER_PUD;
|
|
}
|
|
pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE;
|
|
pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD;
|
|
|
|
total += p4d_size + pud_size + pmd_size;
|
|
|
|
return total;
|
|
}
|
|
|
|
void __init sme_encrypt_kernel(void)
|
|
{
|
|
unsigned long workarea_start, workarea_end, workarea_len;
|
|
unsigned long execute_start, execute_end, execute_len;
|
|
unsigned long kernel_start, kernel_end, kernel_len;
|
|
unsigned long pgtable_area_len;
|
|
unsigned long paddr, pmd_flags;
|
|
unsigned long decrypted_base;
|
|
void *pgtable_area;
|
|
pgd_t *pgd;
|
|
|
|
if (!sme_active())
|
|
return;
|
|
|
|
/*
|
|
* Prepare for encrypting the kernel by building new pagetables with
|
|
* the necessary attributes needed to encrypt the kernel in place.
|
|
*
|
|
* One range of virtual addresses will map the memory occupied
|
|
* by the kernel as encrypted.
|
|
*
|
|
* Another range of virtual addresses will map the memory occupied
|
|
* by the kernel as decrypted and write-protected.
|
|
*
|
|
* The use of write-protect attribute will prevent any of the
|
|
* memory from being cached.
|
|
*/
|
|
|
|
/* Physical addresses gives us the identity mapped virtual addresses */
|
|
kernel_start = __pa_symbol(_text);
|
|
kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
|
|
kernel_len = kernel_end - kernel_start;
|
|
|
|
/* Set the encryption workarea to be immediately after the kernel */
|
|
workarea_start = kernel_end;
|
|
|
|
/*
|
|
* Calculate required number of workarea bytes needed:
|
|
* executable encryption area size:
|
|
* stack page (PAGE_SIZE)
|
|
* encryption routine page (PAGE_SIZE)
|
|
* intermediate copy buffer (PMD_PAGE_SIZE)
|
|
* pagetable structures for the encryption of the kernel
|
|
* pagetable structures for workarea (in case not currently mapped)
|
|
*/
|
|
execute_start = workarea_start;
|
|
execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
|
|
execute_len = execute_end - execute_start;
|
|
|
|
/*
|
|
* One PGD for both encrypted and decrypted mappings and a set of
|
|
* PUDs and PMDs for each of the encrypted and decrypted mappings.
|
|
*/
|
|
pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
|
|
pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
|
|
|
|
/* PUDs and PMDs needed in the current pagetables for the workarea */
|
|
pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
|
|
|
|
/*
|
|
* The total workarea includes the executable encryption area and
|
|
* the pagetable area.
|
|
*/
|
|
workarea_len = execute_len + pgtable_area_len;
|
|
workarea_end = workarea_start + workarea_len;
|
|
|
|
/*
|
|
* Set the address to the start of where newly created pagetable
|
|
* structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
|
|
* structures are created when the workarea is added to the current
|
|
* pagetables and when the new encrypted and decrypted kernel
|
|
* mappings are populated.
|
|
*/
|
|
pgtable_area = (void *)execute_end;
|
|
|
|
/*
|
|
* Make sure the current pagetable structure has entries for
|
|
* addressing the workarea.
|
|
*/
|
|
pgd = (pgd_t *)native_read_cr3_pa();
|
|
paddr = workarea_start;
|
|
while (paddr < workarea_end) {
|
|
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
|
|
paddr,
|
|
paddr + PMD_FLAGS);
|
|
|
|
paddr += PMD_PAGE_SIZE;
|
|
}
|
|
|
|
/* Flush the TLB - no globals so cr3 is enough */
|
|
native_write_cr3(__native_read_cr3());
|
|
|
|
/*
|
|
* A new pagetable structure is being built to allow for the kernel
|
|
* to be encrypted. It starts with an empty PGD that will then be
|
|
* populated with new PUDs and PMDs as the encrypted and decrypted
|
|
* kernel mappings are created.
|
|
*/
|
|
pgd = pgtable_area;
|
|
memset(pgd, 0, sizeof(*pgd) * PTRS_PER_PGD);
|
|
pgtable_area += sizeof(*pgd) * PTRS_PER_PGD;
|
|
|
|
/* Add encrypted kernel (identity) mappings */
|
|
pmd_flags = PMD_FLAGS | _PAGE_ENC;
|
|
paddr = kernel_start;
|
|
while (paddr < kernel_end) {
|
|
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
|
|
paddr,
|
|
paddr + pmd_flags);
|
|
|
|
paddr += PMD_PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* A different PGD index/entry must be used to get different
|
|
* pagetable entries for the decrypted mapping. Choose the next
|
|
* PGD index and convert it to a virtual address to be used as
|
|
* the base of the mapping.
|
|
*/
|
|
decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
|
|
decrypted_base <<= PGDIR_SHIFT;
|
|
|
|
/* Add decrypted, write-protected kernel (non-identity) mappings */
|
|
pmd_flags = (PMD_FLAGS & ~_PAGE_CACHE_MASK) | (_PAGE_PAT | _PAGE_PWT);
|
|
paddr = kernel_start;
|
|
while (paddr < kernel_end) {
|
|
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
|
|
paddr + decrypted_base,
|
|
paddr + pmd_flags);
|
|
|
|
paddr += PMD_PAGE_SIZE;
|
|
}
|
|
|
|
/* Add decrypted workarea mappings to both kernel mappings */
|
|
paddr = workarea_start;
|
|
while (paddr < workarea_end) {
|
|
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
|
|
paddr,
|
|
paddr + PMD_FLAGS);
|
|
|
|
pgtable_area = sme_populate_pgd(pgd, pgtable_area,
|
|
paddr + decrypted_base,
|
|
paddr + PMD_FLAGS);
|
|
|
|
paddr += PMD_PAGE_SIZE;
|
|
}
|
|
|
|
/* Perform the encryption */
|
|
sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
|
|
kernel_len, workarea_start, (unsigned long)pgd);
|
|
|
|
/*
|
|
* At this point we are running encrypted. Remove the mappings for
|
|
* the decrypted areas - all that is needed for this is to remove
|
|
* the PGD entry/entries.
|
|
*/
|
|
sme_clear_pgd(pgd, kernel_start + decrypted_base,
|
|
kernel_end + decrypted_base);
|
|
|
|
sme_clear_pgd(pgd, workarea_start + decrypted_base,
|
|
workarea_end + decrypted_base);
|
|
|
|
/* Flush the TLB - no globals so cr3 is enough */
|
|
native_write_cr3(__native_read_cr3());
|
|
}
|
|
|
|
void __init __nostackprotector sme_enable(struct boot_params *bp)
|
|
{
|
|
const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
|
|
unsigned int eax, ebx, ecx, edx;
|
|
unsigned long feature_mask;
|
|
bool active_by_default;
|
|
unsigned long me_mask;
|
|
char buffer[16];
|
|
u64 msr;
|
|
|
|
/* Check for the SME/SEV support leaf */
|
|
eax = 0x80000000;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (eax < 0x8000001f)
|
|
return;
|
|
|
|
#define AMD_SME_BIT BIT(0)
|
|
#define AMD_SEV_BIT BIT(1)
|
|
/*
|
|
* Set the feature mask (SME or SEV) based on whether we are
|
|
* running under a hypervisor.
|
|
*/
|
|
eax = 1;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
|
|
|
|
/*
|
|
* Check for the SME/SEV feature:
|
|
* CPUID Fn8000_001F[EAX]
|
|
* - Bit 0 - Secure Memory Encryption support
|
|
* - Bit 1 - Secure Encrypted Virtualization support
|
|
* CPUID Fn8000_001F[EBX]
|
|
* - Bits 5:0 - Pagetable bit position used to indicate encryption
|
|
*/
|
|
eax = 0x8000001f;
|
|
ecx = 0;
|
|
native_cpuid(&eax, &ebx, &ecx, &edx);
|
|
if (!(eax & feature_mask))
|
|
return;
|
|
|
|
me_mask = 1UL << (ebx & 0x3f);
|
|
|
|
/* Check if memory encryption is enabled */
|
|
if (feature_mask == AMD_SME_BIT) {
|
|
/* For SME, check the SYSCFG MSR */
|
|
msr = __rdmsr(MSR_K8_SYSCFG);
|
|
if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
|
|
return;
|
|
} else {
|
|
/* For SEV, check the SEV MSR */
|
|
msr = __rdmsr(MSR_AMD64_SEV);
|
|
if (!(msr & MSR_AMD64_SEV_ENABLED))
|
|
return;
|
|
|
|
/* SEV state cannot be controlled by a command line option */
|
|
sme_me_mask = me_mask;
|
|
sev_enabled = true;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Fixups have not been applied to phys_base yet and we're running
|
|
* identity mapped, so we must obtain the address to the SME command
|
|
* line argument data using rip-relative addressing.
|
|
*/
|
|
asm ("lea sme_cmdline_arg(%%rip), %0"
|
|
: "=r" (cmdline_arg)
|
|
: "p" (sme_cmdline_arg));
|
|
asm ("lea sme_cmdline_on(%%rip), %0"
|
|
: "=r" (cmdline_on)
|
|
: "p" (sme_cmdline_on));
|
|
asm ("lea sme_cmdline_off(%%rip), %0"
|
|
: "=r" (cmdline_off)
|
|
: "p" (sme_cmdline_off));
|
|
|
|
if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
|
|
active_by_default = true;
|
|
else
|
|
active_by_default = false;
|
|
|
|
cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
|
|
((u64)bp->ext_cmd_line_ptr << 32));
|
|
|
|
cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
|
|
|
|
if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
|
|
sme_me_mask = me_mask;
|
|
else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
|
|
sme_me_mask = 0;
|
|
else
|
|
sme_me_mask = active_by_default ? me_mask : 0;
|
|
}
|