mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 21:06:08 +07:00
e77b704125
The Kconfig currently controlling compilation of tree.c is: init/Kconfig:config TREE_RCU init/Kconfig: bool ...and update.c and sync.c are "obj-y" meaning that none are ever built as a module by anyone. Since MODULE_ALIAS is a no-op for non-modular code, we can remove them from these files. We leave moduleparam.h behind since the files instantiate some boot time configuration parameters with module_param() still. Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Lai Jiangshan <jiangshanlai@gmail.com> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
899 lines
28 KiB
C
899 lines
28 KiB
C
/*
|
|
* Read-Copy Update mechanism for mutual exclusion
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you can access it online at
|
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
|
*
|
|
* Copyright IBM Corporation, 2001
|
|
*
|
|
* Authors: Dipankar Sarma <dipankar@in.ibm.com>
|
|
* Manfred Spraul <manfred@colorfullife.com>
|
|
*
|
|
* Based on the original work by Paul McKenney <paulmck@us.ibm.com>
|
|
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
|
|
* Papers:
|
|
* http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
|
|
* http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
|
|
*
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
|
* http://lse.sourceforge.net/locking/rcupdate.html
|
|
*
|
|
*/
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/export.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/tick.h>
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
|
|
#include "rcu.h"
|
|
|
|
#ifdef MODULE_PARAM_PREFIX
|
|
#undef MODULE_PARAM_PREFIX
|
|
#endif
|
|
#define MODULE_PARAM_PREFIX "rcupdate."
|
|
|
|
#ifndef CONFIG_TINY_RCU
|
|
module_param(rcu_expedited, int, 0);
|
|
module_param(rcu_normal, int, 0);
|
|
static int rcu_normal_after_boot;
|
|
module_param(rcu_normal_after_boot, int, 0);
|
|
#endif /* #ifndef CONFIG_TINY_RCU */
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
/**
|
|
* rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
|
|
*
|
|
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
|
|
* RCU-sched read-side critical section. In absence of
|
|
* CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
|
|
* critical section unless it can prove otherwise. Note that disabling
|
|
* of preemption (including disabling irqs) counts as an RCU-sched
|
|
* read-side critical section. This is useful for debug checks in functions
|
|
* that required that they be called within an RCU-sched read-side
|
|
* critical section.
|
|
*
|
|
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot
|
|
* and while lockdep is disabled.
|
|
*
|
|
* Note that if the CPU is in the idle loop from an RCU point of
|
|
* view (ie: that we are in the section between rcu_idle_enter() and
|
|
* rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
|
|
* did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
|
|
* that are in such a section, considering these as in extended quiescent
|
|
* state, so such a CPU is effectively never in an RCU read-side critical
|
|
* section regardless of what RCU primitives it invokes. This state of
|
|
* affairs is required --- we need to keep an RCU-free window in idle
|
|
* where the CPU may possibly enter into low power mode. This way we can
|
|
* notice an extended quiescent state to other CPUs that started a grace
|
|
* period. Otherwise we would delay any grace period as long as we run in
|
|
* the idle task.
|
|
*
|
|
* Similarly, we avoid claiming an SRCU read lock held if the current
|
|
* CPU is offline.
|
|
*/
|
|
int rcu_read_lock_sched_held(void)
|
|
{
|
|
int lockdep_opinion = 0;
|
|
|
|
if (!debug_lockdep_rcu_enabled())
|
|
return 1;
|
|
if (!rcu_is_watching())
|
|
return 0;
|
|
if (!rcu_lockdep_current_cpu_online())
|
|
return 0;
|
|
if (debug_locks)
|
|
lockdep_opinion = lock_is_held(&rcu_sched_lock_map);
|
|
return lockdep_opinion || !preemptible();
|
|
}
|
|
EXPORT_SYMBOL(rcu_read_lock_sched_held);
|
|
#endif
|
|
|
|
#ifndef CONFIG_TINY_RCU
|
|
|
|
/*
|
|
* Should expedited grace-period primitives always fall back to their
|
|
* non-expedited counterparts? Intended for use within RCU. Note
|
|
* that if the user specifies both rcu_expedited and rcu_normal, then
|
|
* rcu_normal wins.
|
|
*/
|
|
bool rcu_gp_is_normal(void)
|
|
{
|
|
return READ_ONCE(rcu_normal);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_gp_is_normal);
|
|
|
|
static atomic_t rcu_expedited_nesting =
|
|
ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT) ? 1 : 0);
|
|
|
|
/*
|
|
* Should normal grace-period primitives be expedited? Intended for
|
|
* use within RCU. Note that this function takes the rcu_expedited
|
|
* sysfs/boot variable into account as well as the rcu_expedite_gp()
|
|
* nesting. So looping on rcu_unexpedite_gp() until rcu_gp_is_expedited()
|
|
* returns false is a -really- bad idea.
|
|
*/
|
|
bool rcu_gp_is_expedited(void)
|
|
{
|
|
return rcu_expedited || atomic_read(&rcu_expedited_nesting);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_gp_is_expedited);
|
|
|
|
/**
|
|
* rcu_expedite_gp - Expedite future RCU grace periods
|
|
*
|
|
* After a call to this function, future calls to synchronize_rcu() and
|
|
* friends act as the corresponding synchronize_rcu_expedited() function
|
|
* had instead been called.
|
|
*/
|
|
void rcu_expedite_gp(void)
|
|
{
|
|
atomic_inc(&rcu_expedited_nesting);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_expedite_gp);
|
|
|
|
/**
|
|
* rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
|
|
*
|
|
* Undo a prior call to rcu_expedite_gp(). If all prior calls to
|
|
* rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
|
|
* and if the rcu_expedited sysfs/boot parameter is not set, then all
|
|
* subsequent calls to synchronize_rcu() and friends will return to
|
|
* their normal non-expedited behavior.
|
|
*/
|
|
void rcu_unexpedite_gp(void)
|
|
{
|
|
atomic_dec(&rcu_expedited_nesting);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_unexpedite_gp);
|
|
|
|
/*
|
|
* Inform RCU of the end of the in-kernel boot sequence.
|
|
*/
|
|
void rcu_end_inkernel_boot(void)
|
|
{
|
|
if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT))
|
|
rcu_unexpedite_gp();
|
|
if (rcu_normal_after_boot)
|
|
WRITE_ONCE(rcu_normal, 1);
|
|
}
|
|
|
|
#endif /* #ifndef CONFIG_TINY_RCU */
|
|
|
|
#ifdef CONFIG_PREEMPT_RCU
|
|
|
|
/*
|
|
* Preemptible RCU implementation for rcu_read_lock().
|
|
* Just increment ->rcu_read_lock_nesting, shared state will be updated
|
|
* if we block.
|
|
*/
|
|
void __rcu_read_lock(void)
|
|
{
|
|
current->rcu_read_lock_nesting++;
|
|
barrier(); /* critical section after entry code. */
|
|
}
|
|
EXPORT_SYMBOL_GPL(__rcu_read_lock);
|
|
|
|
/*
|
|
* Preemptible RCU implementation for rcu_read_unlock().
|
|
* Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
|
|
* rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
|
|
* invoke rcu_read_unlock_special() to clean up after a context switch
|
|
* in an RCU read-side critical section and other special cases.
|
|
*/
|
|
void __rcu_read_unlock(void)
|
|
{
|
|
struct task_struct *t = current;
|
|
|
|
if (t->rcu_read_lock_nesting != 1) {
|
|
--t->rcu_read_lock_nesting;
|
|
} else {
|
|
barrier(); /* critical section before exit code. */
|
|
t->rcu_read_lock_nesting = INT_MIN;
|
|
barrier(); /* assign before ->rcu_read_unlock_special load */
|
|
if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
|
|
rcu_read_unlock_special(t);
|
|
barrier(); /* ->rcu_read_unlock_special load before assign */
|
|
t->rcu_read_lock_nesting = 0;
|
|
}
|
|
#ifdef CONFIG_PROVE_LOCKING
|
|
{
|
|
int rrln = READ_ONCE(t->rcu_read_lock_nesting);
|
|
|
|
WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2);
|
|
}
|
|
#endif /* #ifdef CONFIG_PROVE_LOCKING */
|
|
}
|
|
EXPORT_SYMBOL_GPL(__rcu_read_unlock);
|
|
|
|
#endif /* #ifdef CONFIG_PREEMPT_RCU */
|
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
static struct lock_class_key rcu_lock_key;
|
|
struct lockdep_map rcu_lock_map =
|
|
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key);
|
|
EXPORT_SYMBOL_GPL(rcu_lock_map);
|
|
|
|
static struct lock_class_key rcu_bh_lock_key;
|
|
struct lockdep_map rcu_bh_lock_map =
|
|
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key);
|
|
EXPORT_SYMBOL_GPL(rcu_bh_lock_map);
|
|
|
|
static struct lock_class_key rcu_sched_lock_key;
|
|
struct lockdep_map rcu_sched_lock_map =
|
|
STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key);
|
|
EXPORT_SYMBOL_GPL(rcu_sched_lock_map);
|
|
|
|
static struct lock_class_key rcu_callback_key;
|
|
struct lockdep_map rcu_callback_map =
|
|
STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key);
|
|
EXPORT_SYMBOL_GPL(rcu_callback_map);
|
|
|
|
int notrace debug_lockdep_rcu_enabled(void)
|
|
{
|
|
return rcu_scheduler_active && debug_locks &&
|
|
current->lockdep_recursion == 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled);
|
|
|
|
/**
|
|
* rcu_read_lock_held() - might we be in RCU read-side critical section?
|
|
*
|
|
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
|
|
* read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
|
|
* this assumes we are in an RCU read-side critical section unless it can
|
|
* prove otherwise. This is useful for debug checks in functions that
|
|
* require that they be called within an RCU read-side critical section.
|
|
*
|
|
* Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
|
|
* and while lockdep is disabled.
|
|
*
|
|
* Note that rcu_read_lock() and the matching rcu_read_unlock() must
|
|
* occur in the same context, for example, it is illegal to invoke
|
|
* rcu_read_unlock() in process context if the matching rcu_read_lock()
|
|
* was invoked from within an irq handler.
|
|
*
|
|
* Note that rcu_read_lock() is disallowed if the CPU is either idle or
|
|
* offline from an RCU perspective, so check for those as well.
|
|
*/
|
|
int rcu_read_lock_held(void)
|
|
{
|
|
if (!debug_lockdep_rcu_enabled())
|
|
return 1;
|
|
if (!rcu_is_watching())
|
|
return 0;
|
|
if (!rcu_lockdep_current_cpu_online())
|
|
return 0;
|
|
return lock_is_held(&rcu_lock_map);
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_read_lock_held);
|
|
|
|
/**
|
|
* rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
|
|
*
|
|
* Check for bottom half being disabled, which covers both the
|
|
* CONFIG_PROVE_RCU and not cases. Note that if someone uses
|
|
* rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
|
|
* will show the situation. This is useful for debug checks in functions
|
|
* that require that they be called within an RCU read-side critical
|
|
* section.
|
|
*
|
|
* Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
|
|
*
|
|
* Note that rcu_read_lock() is disallowed if the CPU is either idle or
|
|
* offline from an RCU perspective, so check for those as well.
|
|
*/
|
|
int rcu_read_lock_bh_held(void)
|
|
{
|
|
if (!debug_lockdep_rcu_enabled())
|
|
return 1;
|
|
if (!rcu_is_watching())
|
|
return 0;
|
|
if (!rcu_lockdep_current_cpu_online())
|
|
return 0;
|
|
return in_softirq() || irqs_disabled();
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held);
|
|
|
|
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
/**
|
|
* wakeme_after_rcu() - Callback function to awaken a task after grace period
|
|
* @head: Pointer to rcu_head member within rcu_synchronize structure
|
|
*
|
|
* Awaken the corresponding task now that a grace period has elapsed.
|
|
*/
|
|
void wakeme_after_rcu(struct rcu_head *head)
|
|
{
|
|
struct rcu_synchronize *rcu;
|
|
|
|
rcu = container_of(head, struct rcu_synchronize, head);
|
|
complete(&rcu->completion);
|
|
}
|
|
EXPORT_SYMBOL_GPL(wakeme_after_rcu);
|
|
|
|
void __wait_rcu_gp(bool checktiny, int n, call_rcu_func_t *crcu_array,
|
|
struct rcu_synchronize *rs_array)
|
|
{
|
|
int i;
|
|
|
|
/* Initialize and register callbacks for each flavor specified. */
|
|
for (i = 0; i < n; i++) {
|
|
if (checktiny &&
|
|
(crcu_array[i] == call_rcu ||
|
|
crcu_array[i] == call_rcu_bh)) {
|
|
might_sleep();
|
|
continue;
|
|
}
|
|
init_rcu_head_on_stack(&rs_array[i].head);
|
|
init_completion(&rs_array[i].completion);
|
|
(crcu_array[i])(&rs_array[i].head, wakeme_after_rcu);
|
|
}
|
|
|
|
/* Wait for all callbacks to be invoked. */
|
|
for (i = 0; i < n; i++) {
|
|
if (checktiny &&
|
|
(crcu_array[i] == call_rcu ||
|
|
crcu_array[i] == call_rcu_bh))
|
|
continue;
|
|
wait_for_completion(&rs_array[i].completion);
|
|
destroy_rcu_head_on_stack(&rs_array[i].head);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(__wait_rcu_gp);
|
|
|
|
#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
|
|
void init_rcu_head(struct rcu_head *head)
|
|
{
|
|
debug_object_init(head, &rcuhead_debug_descr);
|
|
}
|
|
|
|
void destroy_rcu_head(struct rcu_head *head)
|
|
{
|
|
debug_object_free(head, &rcuhead_debug_descr);
|
|
}
|
|
|
|
static bool rcuhead_is_static_object(void *addr)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
|
|
* @head: pointer to rcu_head structure to be initialized
|
|
*
|
|
* This function informs debugobjects of a new rcu_head structure that
|
|
* has been allocated as an auto variable on the stack. This function
|
|
* is not required for rcu_head structures that are statically defined or
|
|
* that are dynamically allocated on the heap. This function has no
|
|
* effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
|
|
*/
|
|
void init_rcu_head_on_stack(struct rcu_head *head)
|
|
{
|
|
debug_object_init_on_stack(head, &rcuhead_debug_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(init_rcu_head_on_stack);
|
|
|
|
/**
|
|
* destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
|
|
* @head: pointer to rcu_head structure to be initialized
|
|
*
|
|
* This function informs debugobjects that an on-stack rcu_head structure
|
|
* is about to go out of scope. As with init_rcu_head_on_stack(), this
|
|
* function is not required for rcu_head structures that are statically
|
|
* defined or that are dynamically allocated on the heap. Also as with
|
|
* init_rcu_head_on_stack(), this function has no effect for
|
|
* !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
|
|
*/
|
|
void destroy_rcu_head_on_stack(struct rcu_head *head)
|
|
{
|
|
debug_object_free(head, &rcuhead_debug_descr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack);
|
|
|
|
struct debug_obj_descr rcuhead_debug_descr = {
|
|
.name = "rcu_head",
|
|
.is_static_object = rcuhead_is_static_object,
|
|
};
|
|
EXPORT_SYMBOL_GPL(rcuhead_debug_descr);
|
|
#endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
|
|
|
|
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
|
|
void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp,
|
|
unsigned long secs,
|
|
unsigned long c_old, unsigned long c)
|
|
{
|
|
trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c);
|
|
}
|
|
EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read);
|
|
#else
|
|
#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
#ifdef CONFIG_RCU_STALL_COMMON
|
|
|
|
#ifdef CONFIG_PROVE_RCU
|
|
#define RCU_STALL_DELAY_DELTA (5 * HZ)
|
|
#else
|
|
#define RCU_STALL_DELAY_DELTA 0
|
|
#endif
|
|
|
|
int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
|
|
static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
|
|
|
|
module_param(rcu_cpu_stall_suppress, int, 0644);
|
|
module_param(rcu_cpu_stall_timeout, int, 0644);
|
|
|
|
int rcu_jiffies_till_stall_check(void)
|
|
{
|
|
int till_stall_check = READ_ONCE(rcu_cpu_stall_timeout);
|
|
|
|
/*
|
|
* Limit check must be consistent with the Kconfig limits
|
|
* for CONFIG_RCU_CPU_STALL_TIMEOUT.
|
|
*/
|
|
if (till_stall_check < 3) {
|
|
WRITE_ONCE(rcu_cpu_stall_timeout, 3);
|
|
till_stall_check = 3;
|
|
} else if (till_stall_check > 300) {
|
|
WRITE_ONCE(rcu_cpu_stall_timeout, 300);
|
|
till_stall_check = 300;
|
|
}
|
|
return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
|
|
}
|
|
|
|
void rcu_sysrq_start(void)
|
|
{
|
|
if (!rcu_cpu_stall_suppress)
|
|
rcu_cpu_stall_suppress = 2;
|
|
}
|
|
|
|
void rcu_sysrq_end(void)
|
|
{
|
|
if (rcu_cpu_stall_suppress == 2)
|
|
rcu_cpu_stall_suppress = 0;
|
|
}
|
|
|
|
static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
|
|
{
|
|
rcu_cpu_stall_suppress = 1;
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block rcu_panic_block = {
|
|
.notifier_call = rcu_panic,
|
|
};
|
|
|
|
static int __init check_cpu_stall_init(void)
|
|
{
|
|
atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
|
|
return 0;
|
|
}
|
|
early_initcall(check_cpu_stall_init);
|
|
|
|
#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
|
|
|
|
#ifdef CONFIG_TASKS_RCU
|
|
|
|
/*
|
|
* Simple variant of RCU whose quiescent states are voluntary context switch,
|
|
* user-space execution, and idle. As such, grace periods can take one good
|
|
* long time. There are no read-side primitives similar to rcu_read_lock()
|
|
* and rcu_read_unlock() because this implementation is intended to get
|
|
* the system into a safe state for some of the manipulations involved in
|
|
* tracing and the like. Finally, this implementation does not support
|
|
* high call_rcu_tasks() rates from multiple CPUs. If this is required,
|
|
* per-CPU callback lists will be needed.
|
|
*/
|
|
|
|
/* Global list of callbacks and associated lock. */
|
|
static struct rcu_head *rcu_tasks_cbs_head;
|
|
static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
|
|
static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq);
|
|
static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
|
|
|
|
/* Track exiting tasks in order to allow them to be waited for. */
|
|
DEFINE_SRCU(tasks_rcu_exit_srcu);
|
|
|
|
/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
|
|
static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10;
|
|
module_param(rcu_task_stall_timeout, int, 0644);
|
|
|
|
static void rcu_spawn_tasks_kthread(void);
|
|
static struct task_struct *rcu_tasks_kthread_ptr;
|
|
|
|
/*
|
|
* Post an RCU-tasks callback. First call must be from process context
|
|
* after the scheduler if fully operational.
|
|
*/
|
|
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
|
|
{
|
|
unsigned long flags;
|
|
bool needwake;
|
|
bool havetask = READ_ONCE(rcu_tasks_kthread_ptr);
|
|
|
|
rhp->next = NULL;
|
|
rhp->func = func;
|
|
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
|
|
needwake = !rcu_tasks_cbs_head;
|
|
*rcu_tasks_cbs_tail = rhp;
|
|
rcu_tasks_cbs_tail = &rhp->next;
|
|
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
|
|
/* We can't create the thread unless interrupts are enabled. */
|
|
if ((needwake && havetask) ||
|
|
(!havetask && !irqs_disabled_flags(flags))) {
|
|
rcu_spawn_tasks_kthread();
|
|
wake_up(&rcu_tasks_cbs_wq);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(call_rcu_tasks);
|
|
|
|
/**
|
|
* synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
|
|
*
|
|
* Control will return to the caller some time after a full rcu-tasks
|
|
* grace period has elapsed, in other words after all currently
|
|
* executing rcu-tasks read-side critical sections have elapsed. These
|
|
* read-side critical sections are delimited by calls to schedule(),
|
|
* cond_resched_rcu_qs(), idle execution, userspace execution, calls
|
|
* to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
|
|
*
|
|
* This is a very specialized primitive, intended only for a few uses in
|
|
* tracing and other situations requiring manipulation of function
|
|
* preambles and profiling hooks. The synchronize_rcu_tasks() function
|
|
* is not (yet) intended for heavy use from multiple CPUs.
|
|
*
|
|
* Note that this guarantee implies further memory-ordering guarantees.
|
|
* On systems with more than one CPU, when synchronize_rcu_tasks() returns,
|
|
* each CPU is guaranteed to have executed a full memory barrier since the
|
|
* end of its last RCU-tasks read-side critical section whose beginning
|
|
* preceded the call to synchronize_rcu_tasks(). In addition, each CPU
|
|
* having an RCU-tasks read-side critical section that extends beyond
|
|
* the return from synchronize_rcu_tasks() is guaranteed to have executed
|
|
* a full memory barrier after the beginning of synchronize_rcu_tasks()
|
|
* and before the beginning of that RCU-tasks read-side critical section.
|
|
* Note that these guarantees include CPUs that are offline, idle, or
|
|
* executing in user mode, as well as CPUs that are executing in the kernel.
|
|
*
|
|
* Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
|
|
* to its caller on CPU B, then both CPU A and CPU B are guaranteed
|
|
* to have executed a full memory barrier during the execution of
|
|
* synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
|
|
* (but again only if the system has more than one CPU).
|
|
*/
|
|
void synchronize_rcu_tasks(void)
|
|
{
|
|
/* Complain if the scheduler has not started. */
|
|
RCU_LOCKDEP_WARN(!rcu_scheduler_active,
|
|
"synchronize_rcu_tasks called too soon");
|
|
|
|
/* Wait for the grace period. */
|
|
wait_rcu_gp(call_rcu_tasks);
|
|
}
|
|
EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
|
|
|
|
/**
|
|
* rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
|
|
*
|
|
* Although the current implementation is guaranteed to wait, it is not
|
|
* obligated to, for example, if there are no pending callbacks.
|
|
*/
|
|
void rcu_barrier_tasks(void)
|
|
{
|
|
/* There is only one callback queue, so this is easy. ;-) */
|
|
synchronize_rcu_tasks();
|
|
}
|
|
EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
|
|
|
|
/* See if tasks are still holding out, complain if so. */
|
|
static void check_holdout_task(struct task_struct *t,
|
|
bool needreport, bool *firstreport)
|
|
{
|
|
int cpu;
|
|
|
|
if (!READ_ONCE(t->rcu_tasks_holdout) ||
|
|
t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
|
|
!READ_ONCE(t->on_rq) ||
|
|
(IS_ENABLED(CONFIG_NO_HZ_FULL) &&
|
|
!is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
|
|
WRITE_ONCE(t->rcu_tasks_holdout, false);
|
|
list_del_init(&t->rcu_tasks_holdout_list);
|
|
put_task_struct(t);
|
|
return;
|
|
}
|
|
if (!needreport)
|
|
return;
|
|
if (*firstreport) {
|
|
pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
|
|
*firstreport = false;
|
|
}
|
|
cpu = task_cpu(t);
|
|
pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
|
|
t, ".I"[is_idle_task(t)],
|
|
"N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
|
|
t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
|
|
t->rcu_tasks_idle_cpu, cpu);
|
|
sched_show_task(t);
|
|
}
|
|
|
|
/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
|
|
static int __noreturn rcu_tasks_kthread(void *arg)
|
|
{
|
|
unsigned long flags;
|
|
struct task_struct *g, *t;
|
|
unsigned long lastreport;
|
|
struct rcu_head *list;
|
|
struct rcu_head *next;
|
|
LIST_HEAD(rcu_tasks_holdouts);
|
|
|
|
/* Run on housekeeping CPUs by default. Sysadm can move if desired. */
|
|
housekeeping_affine(current);
|
|
|
|
/*
|
|
* Each pass through the following loop makes one check for
|
|
* newly arrived callbacks, and, if there are some, waits for
|
|
* one RCU-tasks grace period and then invokes the callbacks.
|
|
* This loop is terminated by the system going down. ;-)
|
|
*/
|
|
for (;;) {
|
|
|
|
/* Pick up any new callbacks. */
|
|
raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
|
|
list = rcu_tasks_cbs_head;
|
|
rcu_tasks_cbs_head = NULL;
|
|
rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
|
|
raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
|
|
|
|
/* If there were none, wait a bit and start over. */
|
|
if (!list) {
|
|
wait_event_interruptible(rcu_tasks_cbs_wq,
|
|
rcu_tasks_cbs_head);
|
|
if (!rcu_tasks_cbs_head) {
|
|
WARN_ON(signal_pending(current));
|
|
schedule_timeout_interruptible(HZ/10);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Wait for all pre-existing t->on_rq and t->nvcsw
|
|
* transitions to complete. Invoking synchronize_sched()
|
|
* suffices because all these transitions occur with
|
|
* interrupts disabled. Without this synchronize_sched(),
|
|
* a read-side critical section that started before the
|
|
* grace period might be incorrectly seen as having started
|
|
* after the grace period.
|
|
*
|
|
* This synchronize_sched() also dispenses with the
|
|
* need for a memory barrier on the first store to
|
|
* ->rcu_tasks_holdout, as it forces the store to happen
|
|
* after the beginning of the grace period.
|
|
*/
|
|
synchronize_sched();
|
|
|
|
/*
|
|
* There were callbacks, so we need to wait for an
|
|
* RCU-tasks grace period. Start off by scanning
|
|
* the task list for tasks that are not already
|
|
* voluntarily blocked. Mark these tasks and make
|
|
* a list of them in rcu_tasks_holdouts.
|
|
*/
|
|
rcu_read_lock();
|
|
for_each_process_thread(g, t) {
|
|
if (t != current && READ_ONCE(t->on_rq) &&
|
|
!is_idle_task(t)) {
|
|
get_task_struct(t);
|
|
t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
|
|
WRITE_ONCE(t->rcu_tasks_holdout, true);
|
|
list_add(&t->rcu_tasks_holdout_list,
|
|
&rcu_tasks_holdouts);
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
/*
|
|
* Wait for tasks that are in the process of exiting.
|
|
* This does only part of the job, ensuring that all
|
|
* tasks that were previously exiting reach the point
|
|
* where they have disabled preemption, allowing the
|
|
* later synchronize_sched() to finish the job.
|
|
*/
|
|
synchronize_srcu(&tasks_rcu_exit_srcu);
|
|
|
|
/*
|
|
* Each pass through the following loop scans the list
|
|
* of holdout tasks, removing any that are no longer
|
|
* holdouts. When the list is empty, we are done.
|
|
*/
|
|
lastreport = jiffies;
|
|
while (!list_empty(&rcu_tasks_holdouts)) {
|
|
bool firstreport;
|
|
bool needreport;
|
|
int rtst;
|
|
struct task_struct *t1;
|
|
|
|
schedule_timeout_interruptible(HZ);
|
|
rtst = READ_ONCE(rcu_task_stall_timeout);
|
|
needreport = rtst > 0 &&
|
|
time_after(jiffies, lastreport + rtst);
|
|
if (needreport)
|
|
lastreport = jiffies;
|
|
firstreport = true;
|
|
WARN_ON(signal_pending(current));
|
|
list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts,
|
|
rcu_tasks_holdout_list) {
|
|
check_holdout_task(t, needreport, &firstreport);
|
|
cond_resched();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Because ->on_rq and ->nvcsw are not guaranteed
|
|
* to have a full memory barriers prior to them in the
|
|
* schedule() path, memory reordering on other CPUs could
|
|
* cause their RCU-tasks read-side critical sections to
|
|
* extend past the end of the grace period. However,
|
|
* because these ->nvcsw updates are carried out with
|
|
* interrupts disabled, we can use synchronize_sched()
|
|
* to force the needed ordering on all such CPUs.
|
|
*
|
|
* This synchronize_sched() also confines all
|
|
* ->rcu_tasks_holdout accesses to be within the grace
|
|
* period, avoiding the need for memory barriers for
|
|
* ->rcu_tasks_holdout accesses.
|
|
*
|
|
* In addition, this synchronize_sched() waits for exiting
|
|
* tasks to complete their final preempt_disable() region
|
|
* of execution, cleaning up after the synchronize_srcu()
|
|
* above.
|
|
*/
|
|
synchronize_sched();
|
|
|
|
/* Invoke the callbacks. */
|
|
while (list) {
|
|
next = list->next;
|
|
local_bh_disable();
|
|
list->func(list);
|
|
local_bh_enable();
|
|
list = next;
|
|
cond_resched();
|
|
}
|
|
schedule_timeout_uninterruptible(HZ/10);
|
|
}
|
|
}
|
|
|
|
/* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
|
|
static void rcu_spawn_tasks_kthread(void)
|
|
{
|
|
static DEFINE_MUTEX(rcu_tasks_kthread_mutex);
|
|
struct task_struct *t;
|
|
|
|
if (READ_ONCE(rcu_tasks_kthread_ptr)) {
|
|
smp_mb(); /* Ensure caller sees full kthread. */
|
|
return;
|
|
}
|
|
mutex_lock(&rcu_tasks_kthread_mutex);
|
|
if (rcu_tasks_kthread_ptr) {
|
|
mutex_unlock(&rcu_tasks_kthread_mutex);
|
|
return;
|
|
}
|
|
t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
|
|
BUG_ON(IS_ERR(t));
|
|
smp_mb(); /* Ensure others see full kthread. */
|
|
WRITE_ONCE(rcu_tasks_kthread_ptr, t);
|
|
mutex_unlock(&rcu_tasks_kthread_mutex);
|
|
}
|
|
|
|
#endif /* #ifdef CONFIG_TASKS_RCU */
|
|
|
|
#ifdef CONFIG_PROVE_RCU
|
|
|
|
/*
|
|
* Early boot self test parameters, one for each flavor
|
|
*/
|
|
static bool rcu_self_test;
|
|
static bool rcu_self_test_bh;
|
|
static bool rcu_self_test_sched;
|
|
|
|
module_param(rcu_self_test, bool, 0444);
|
|
module_param(rcu_self_test_bh, bool, 0444);
|
|
module_param(rcu_self_test_sched, bool, 0444);
|
|
|
|
static int rcu_self_test_counter;
|
|
|
|
static void test_callback(struct rcu_head *r)
|
|
{
|
|
rcu_self_test_counter++;
|
|
pr_info("RCU test callback executed %d\n", rcu_self_test_counter);
|
|
}
|
|
|
|
static void early_boot_test_call_rcu(void)
|
|
{
|
|
static struct rcu_head head;
|
|
|
|
call_rcu(&head, test_callback);
|
|
}
|
|
|
|
static void early_boot_test_call_rcu_bh(void)
|
|
{
|
|
static struct rcu_head head;
|
|
|
|
call_rcu_bh(&head, test_callback);
|
|
}
|
|
|
|
static void early_boot_test_call_rcu_sched(void)
|
|
{
|
|
static struct rcu_head head;
|
|
|
|
call_rcu_sched(&head, test_callback);
|
|
}
|
|
|
|
void rcu_early_boot_tests(void)
|
|
{
|
|
pr_info("Running RCU self tests\n");
|
|
|
|
if (rcu_self_test)
|
|
early_boot_test_call_rcu();
|
|
if (rcu_self_test_bh)
|
|
early_boot_test_call_rcu_bh();
|
|
if (rcu_self_test_sched)
|
|
early_boot_test_call_rcu_sched();
|
|
}
|
|
|
|
static int rcu_verify_early_boot_tests(void)
|
|
{
|
|
int ret = 0;
|
|
int early_boot_test_counter = 0;
|
|
|
|
if (rcu_self_test) {
|
|
early_boot_test_counter++;
|
|
rcu_barrier();
|
|
}
|
|
if (rcu_self_test_bh) {
|
|
early_boot_test_counter++;
|
|
rcu_barrier_bh();
|
|
}
|
|
if (rcu_self_test_sched) {
|
|
early_boot_test_counter++;
|
|
rcu_barrier_sched();
|
|
}
|
|
|
|
if (rcu_self_test_counter != early_boot_test_counter) {
|
|
WARN_ON(1);
|
|
ret = -1;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
late_initcall(rcu_verify_early_boot_tests);
|
|
#else
|
|
void rcu_early_boot_tests(void) {}
|
|
#endif /* CONFIG_PROVE_RCU */
|