mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-11 20:36:45 +07:00
2c3c3d02f2
Make the error count a per-NIC variable. Reset this the count after an hour if it has not reached the critical value. Set the critical value back to 5. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: David S. Miller <davem@davemloft.net>
3212 lines
90 KiB
C
3212 lines
90 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2006-2008 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/i2c-algo-bit.h>
|
|
#include <linux/mii.h>
|
|
#include "net_driver.h"
|
|
#include "bitfield.h"
|
|
#include "efx.h"
|
|
#include "mac.h"
|
|
#include "spi.h"
|
|
#include "falcon.h"
|
|
#include "falcon_hwdefs.h"
|
|
#include "falcon_io.h"
|
|
#include "mdio_10g.h"
|
|
#include "phy.h"
|
|
#include "boards.h"
|
|
#include "workarounds.h"
|
|
|
|
/* Falcon hardware control.
|
|
* Falcon is the internal codename for the SFC4000 controller that is
|
|
* present in SFE400X evaluation boards
|
|
*/
|
|
|
|
/**
|
|
* struct falcon_nic_data - Falcon NIC state
|
|
* @next_buffer_table: First available buffer table id
|
|
* @pci_dev2: The secondary PCI device if present
|
|
* @i2c_data: Operations and state for I2C bit-bashing algorithm
|
|
* @int_error_count: Number of internal errors seen recently
|
|
* @int_error_expire: Time at which error count will be expired
|
|
*/
|
|
struct falcon_nic_data {
|
|
unsigned next_buffer_table;
|
|
struct pci_dev *pci_dev2;
|
|
struct i2c_algo_bit_data i2c_data;
|
|
|
|
unsigned int_error_count;
|
|
unsigned long int_error_expire;
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Configurable values
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
static int disable_dma_stats;
|
|
|
|
/* This is set to 16 for a good reason. In summary, if larger than
|
|
* 16, the descriptor cache holds more than a default socket
|
|
* buffer's worth of packets (for UDP we can only have at most one
|
|
* socket buffer's worth outstanding). This combined with the fact
|
|
* that we only get 1 TX event per descriptor cache means the NIC
|
|
* goes idle.
|
|
*/
|
|
#define TX_DC_ENTRIES 16
|
|
#define TX_DC_ENTRIES_ORDER 0
|
|
#define TX_DC_BASE 0x130000
|
|
|
|
#define RX_DC_ENTRIES 64
|
|
#define RX_DC_ENTRIES_ORDER 2
|
|
#define RX_DC_BASE 0x100000
|
|
|
|
static const unsigned int
|
|
/* "Large" EEPROM device: Atmel AT25640 or similar
|
|
* 8 KB, 16-bit address, 32 B write block */
|
|
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
|
|
| (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
|
|
| (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
|
|
/* Default flash device: Atmel AT25F1024
|
|
* 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
|
|
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
|
|
| (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
|
|
| (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
|
|
| (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
|
|
| (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
|
|
|
|
/* RX FIFO XOFF watermark
|
|
*
|
|
* When the amount of the RX FIFO increases used increases past this
|
|
* watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
|
|
* This also has an effect on RX/TX arbitration
|
|
*/
|
|
static int rx_xoff_thresh_bytes = -1;
|
|
module_param(rx_xoff_thresh_bytes, int, 0644);
|
|
MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
|
|
|
|
/* RX FIFO XON watermark
|
|
*
|
|
* When the amount of the RX FIFO used decreases below this
|
|
* watermark send XON. Only used if TX flow control is enabled (ethtool -A)
|
|
* This also has an effect on RX/TX arbitration
|
|
*/
|
|
static int rx_xon_thresh_bytes = -1;
|
|
module_param(rx_xon_thresh_bytes, int, 0644);
|
|
MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
|
|
|
|
/* TX descriptor ring size - min 512 max 4k */
|
|
#define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K
|
|
#define FALCON_TXD_RING_SIZE 1024
|
|
#define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1)
|
|
|
|
/* RX descriptor ring size - min 512 max 4k */
|
|
#define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K
|
|
#define FALCON_RXD_RING_SIZE 1024
|
|
#define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1)
|
|
|
|
/* Event queue size - max 32k */
|
|
#define FALCON_EVQ_ORDER EVQ_SIZE_4K
|
|
#define FALCON_EVQ_SIZE 4096
|
|
#define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1)
|
|
|
|
/* If FALCON_MAX_INT_ERRORS internal errors occur within
|
|
* FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
|
|
* disable it.
|
|
*/
|
|
#define FALCON_INT_ERROR_EXPIRE 3600
|
|
#define FALCON_MAX_INT_ERRORS 5
|
|
|
|
/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
|
|
*/
|
|
#define FALCON_FLUSH_INTERVAL 10
|
|
#define FALCON_FLUSH_POLL_COUNT 100
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon constants
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* DMA address mask */
|
|
#define FALCON_DMA_MASK DMA_BIT_MASK(46)
|
|
|
|
/* TX DMA length mask (13-bit) */
|
|
#define FALCON_TX_DMA_MASK (4096 - 1)
|
|
|
|
/* Size and alignment of special buffers (4KB) */
|
|
#define FALCON_BUF_SIZE 4096
|
|
|
|
/* Dummy SRAM size code */
|
|
#define SRM_NB_BSZ_ONCHIP_ONLY (-1)
|
|
|
|
/* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */
|
|
#define PCI_EXP_DEVCAP_PWR_VAL_LBN 18
|
|
#define PCI_EXP_DEVCAP_PWR_SCL_LBN 26
|
|
#define PCI_EXP_DEVCTL_PAYLOAD_LBN 5
|
|
#define PCI_EXP_LNKSTA_LNK_WID 0x3f0
|
|
#define PCI_EXP_LNKSTA_LNK_WID_LBN 4
|
|
|
|
#define FALCON_IS_DUAL_FUNC(efx) \
|
|
(falcon_rev(efx) < FALCON_REV_B0)
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon hardware access
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Read the current event from the event queue */
|
|
static inline efx_qword_t *falcon_event(struct efx_channel *channel,
|
|
unsigned int index)
|
|
{
|
|
return (((efx_qword_t *) (channel->eventq.addr)) + index);
|
|
}
|
|
|
|
/* See if an event is present
|
|
*
|
|
* We check both the high and low dword of the event for all ones. We
|
|
* wrote all ones when we cleared the event, and no valid event can
|
|
* have all ones in either its high or low dwords. This approach is
|
|
* robust against reordering.
|
|
*
|
|
* Note that using a single 64-bit comparison is incorrect; even
|
|
* though the CPU read will be atomic, the DMA write may not be.
|
|
*/
|
|
static inline int falcon_event_present(efx_qword_t *event)
|
|
{
|
|
return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
|
|
EFX_DWORD_IS_ALL_ONES(event->dword[1])));
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* I2C bus - this is a bit-bashing interface using GPIO pins
|
|
* Note that it uses the output enables to tristate the outputs
|
|
* SDA is the data pin and SCL is the clock
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
static void falcon_setsda(void *data, int state)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, !state);
|
|
falcon_write(efx, ®, GPIO_CTL_REG_KER);
|
|
}
|
|
|
|
static void falcon_setscl(void *data, int state)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, !state);
|
|
falcon_write(efx, ®, GPIO_CTL_REG_KER);
|
|
}
|
|
|
|
static int falcon_getsda(void *data)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
return EFX_OWORD_FIELD(reg, GPIO3_IN);
|
|
}
|
|
|
|
static int falcon_getscl(void *data)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
falcon_read(efx, ®, GPIO_CTL_REG_KER);
|
|
return EFX_OWORD_FIELD(reg, GPIO0_IN);
|
|
}
|
|
|
|
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
|
|
.setsda = falcon_setsda,
|
|
.setscl = falcon_setscl,
|
|
.getsda = falcon_getsda,
|
|
.getscl = falcon_getscl,
|
|
.udelay = 5,
|
|
/* Wait up to 50 ms for slave to let us pull SCL high */
|
|
.timeout = DIV_ROUND_UP(HZ, 20),
|
|
};
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon special buffer handling
|
|
* Special buffers are used for event queues and the TX and RX
|
|
* descriptor rings.
|
|
*
|
|
*************************************************************************/
|
|
|
|
/*
|
|
* Initialise a Falcon special buffer
|
|
*
|
|
* This will define a buffer (previously allocated via
|
|
* falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
|
|
* it to be used for event queues, descriptor rings etc.
|
|
*/
|
|
static void
|
|
falcon_init_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer)
|
|
{
|
|
efx_qword_t buf_desc;
|
|
int index;
|
|
dma_addr_t dma_addr;
|
|
int i;
|
|
|
|
EFX_BUG_ON_PARANOID(!buffer->addr);
|
|
|
|
/* Write buffer descriptors to NIC */
|
|
for (i = 0; i < buffer->entries; i++) {
|
|
index = buffer->index + i;
|
|
dma_addr = buffer->dma_addr + (i * 4096);
|
|
EFX_LOG(efx, "mapping special buffer %d at %llx\n",
|
|
index, (unsigned long long)dma_addr);
|
|
EFX_POPULATE_QWORD_4(buf_desc,
|
|
IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K,
|
|
BUF_ADR_REGION, 0,
|
|
BUF_ADR_FBUF, (dma_addr >> 12),
|
|
BUF_OWNER_ID_FBUF, 0);
|
|
falcon_write_sram(efx, &buf_desc, index);
|
|
}
|
|
}
|
|
|
|
/* Unmaps a buffer from Falcon and clears the buffer table entries */
|
|
static void
|
|
falcon_fini_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer)
|
|
{
|
|
efx_oword_t buf_tbl_upd;
|
|
unsigned int start = buffer->index;
|
|
unsigned int end = (buffer->index + buffer->entries - 1);
|
|
|
|
if (!buffer->entries)
|
|
return;
|
|
|
|
EFX_LOG(efx, "unmapping special buffers %d-%d\n",
|
|
buffer->index, buffer->index + buffer->entries - 1);
|
|
|
|
EFX_POPULATE_OWORD_4(buf_tbl_upd,
|
|
BUF_UPD_CMD, 0,
|
|
BUF_CLR_CMD, 1,
|
|
BUF_CLR_END_ID, end,
|
|
BUF_CLR_START_ID, start);
|
|
falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new Falcon special buffer
|
|
*
|
|
* This allocates memory for a new buffer, clears it and allocates a
|
|
* new buffer ID range. It does not write into Falcon's buffer table.
|
|
*
|
|
* This call will allocate 4KB buffers, since Falcon can't use 8KB
|
|
* buffers for event queues and descriptor rings.
|
|
*/
|
|
static int falcon_alloc_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer,
|
|
unsigned int len)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
|
|
len = ALIGN(len, FALCON_BUF_SIZE);
|
|
|
|
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
|
|
&buffer->dma_addr);
|
|
if (!buffer->addr)
|
|
return -ENOMEM;
|
|
buffer->len = len;
|
|
buffer->entries = len / FALCON_BUF_SIZE;
|
|
BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1));
|
|
|
|
/* All zeros is a potentially valid event so memset to 0xff */
|
|
memset(buffer->addr, 0xff, len);
|
|
|
|
/* Select new buffer ID */
|
|
buffer->index = nic_data->next_buffer_table;
|
|
nic_data->next_buffer_table += buffer->entries;
|
|
|
|
EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
|
|
"(virt %p phys %lx)\n", buffer->index,
|
|
buffer->index + buffer->entries - 1,
|
|
(unsigned long long)buffer->dma_addr, len,
|
|
buffer->addr, virt_to_phys(buffer->addr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void falcon_free_special_buffer(struct efx_nic *efx,
|
|
struct efx_special_buffer *buffer)
|
|
{
|
|
if (!buffer->addr)
|
|
return;
|
|
|
|
EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
|
|
"(virt %p phys %lx)\n", buffer->index,
|
|
buffer->index + buffer->entries - 1,
|
|
(unsigned long long)buffer->dma_addr, buffer->len,
|
|
buffer->addr, virt_to_phys(buffer->addr));
|
|
|
|
pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
|
|
buffer->dma_addr);
|
|
buffer->addr = NULL;
|
|
buffer->entries = 0;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon generic buffer handling
|
|
* These buffers are used for interrupt status and MAC stats
|
|
*
|
|
**************************************************************************/
|
|
|
|
static int falcon_alloc_buffer(struct efx_nic *efx,
|
|
struct efx_buffer *buffer, unsigned int len)
|
|
{
|
|
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
|
|
&buffer->dma_addr);
|
|
if (!buffer->addr)
|
|
return -ENOMEM;
|
|
buffer->len = len;
|
|
memset(buffer->addr, 0, len);
|
|
return 0;
|
|
}
|
|
|
|
static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
|
|
{
|
|
if (buffer->addr) {
|
|
pci_free_consistent(efx->pci_dev, buffer->len,
|
|
buffer->addr, buffer->dma_addr);
|
|
buffer->addr = NULL;
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon TX path
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Returns a pointer to the specified transmit descriptor in the TX
|
|
* descriptor queue belonging to the specified channel.
|
|
*/
|
|
static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue,
|
|
unsigned int index)
|
|
{
|
|
return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
|
|
}
|
|
|
|
/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
|
|
static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue)
|
|
{
|
|
unsigned write_ptr;
|
|
efx_dword_t reg;
|
|
|
|
write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
|
|
EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr);
|
|
falcon_writel_page(tx_queue->efx, ®,
|
|
TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue);
|
|
}
|
|
|
|
|
|
/* For each entry inserted into the software descriptor ring, create a
|
|
* descriptor in the hardware TX descriptor ring (in host memory), and
|
|
* write a doorbell.
|
|
*/
|
|
void falcon_push_buffers(struct efx_tx_queue *tx_queue)
|
|
{
|
|
|
|
struct efx_tx_buffer *buffer;
|
|
efx_qword_t *txd;
|
|
unsigned write_ptr;
|
|
|
|
BUG_ON(tx_queue->write_count == tx_queue->insert_count);
|
|
|
|
do {
|
|
write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK;
|
|
buffer = &tx_queue->buffer[write_ptr];
|
|
txd = falcon_tx_desc(tx_queue, write_ptr);
|
|
++tx_queue->write_count;
|
|
|
|
/* Create TX descriptor ring entry */
|
|
EFX_POPULATE_QWORD_5(*txd,
|
|
TX_KER_PORT, 0,
|
|
TX_KER_CONT, buffer->continuation,
|
|
TX_KER_BYTE_CNT, buffer->len,
|
|
TX_KER_BUF_REGION, 0,
|
|
TX_KER_BUF_ADR, buffer->dma_addr);
|
|
} while (tx_queue->write_count != tx_queue->insert_count);
|
|
|
|
wmb(); /* Ensure descriptors are written before they are fetched */
|
|
falcon_notify_tx_desc(tx_queue);
|
|
}
|
|
|
|
/* Allocate hardware resources for a TX queue */
|
|
int falcon_probe_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
return falcon_alloc_special_buffer(efx, &tx_queue->txd,
|
|
FALCON_TXD_RING_SIZE *
|
|
sizeof(efx_qword_t));
|
|
}
|
|
|
|
void falcon_init_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
efx_oword_t tx_desc_ptr;
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
|
|
tx_queue->flushed = false;
|
|
|
|
/* Pin TX descriptor ring */
|
|
falcon_init_special_buffer(efx, &tx_queue->txd);
|
|
|
|
/* Push TX descriptor ring to card */
|
|
EFX_POPULATE_OWORD_10(tx_desc_ptr,
|
|
TX_DESCQ_EN, 1,
|
|
TX_ISCSI_DDIG_EN, 0,
|
|
TX_ISCSI_HDIG_EN, 0,
|
|
TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
|
|
TX_DESCQ_EVQ_ID, tx_queue->channel->channel,
|
|
TX_DESCQ_OWNER_ID, 0,
|
|
TX_DESCQ_LABEL, tx_queue->queue,
|
|
TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER,
|
|
TX_DESCQ_TYPE, 0,
|
|
TX_NON_IP_DROP_DIS_B0, 1);
|
|
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
|
|
EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, !csum);
|
|
EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, !csum);
|
|
}
|
|
|
|
falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
|
|
tx_queue->queue);
|
|
|
|
if (falcon_rev(efx) < FALCON_REV_B0) {
|
|
efx_oword_t reg;
|
|
|
|
/* Only 128 bits in this register */
|
|
BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
|
|
|
|
falcon_read(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
|
|
if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
|
|
clear_bit_le(tx_queue->queue, (void *)®);
|
|
else
|
|
set_bit_le(tx_queue->queue, (void *)®);
|
|
falcon_write(efx, ®, TX_CHKSM_CFG_REG_KER_A1);
|
|
}
|
|
}
|
|
|
|
static void falcon_flush_tx_queue(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
efx_oword_t tx_flush_descq;
|
|
|
|
/* Post a flush command */
|
|
EFX_POPULATE_OWORD_2(tx_flush_descq,
|
|
TX_FLUSH_DESCQ_CMD, 1,
|
|
TX_FLUSH_DESCQ, tx_queue->queue);
|
|
falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER);
|
|
}
|
|
|
|
void falcon_fini_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
struct efx_nic *efx = tx_queue->efx;
|
|
efx_oword_t tx_desc_ptr;
|
|
|
|
/* The queue should have been flushed */
|
|
WARN_ON(!tx_queue->flushed);
|
|
|
|
/* Remove TX descriptor ring from card */
|
|
EFX_ZERO_OWORD(tx_desc_ptr);
|
|
falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
|
|
tx_queue->queue);
|
|
|
|
/* Unpin TX descriptor ring */
|
|
falcon_fini_special_buffer(efx, &tx_queue->txd);
|
|
}
|
|
|
|
/* Free buffers backing TX queue */
|
|
void falcon_remove_tx(struct efx_tx_queue *tx_queue)
|
|
{
|
|
falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon RX path
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Returns a pointer to the specified descriptor in the RX descriptor queue */
|
|
static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue,
|
|
unsigned int index)
|
|
{
|
|
return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
|
|
}
|
|
|
|
/* This creates an entry in the RX descriptor queue */
|
|
static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue,
|
|
unsigned index)
|
|
{
|
|
struct efx_rx_buffer *rx_buf;
|
|
efx_qword_t *rxd;
|
|
|
|
rxd = falcon_rx_desc(rx_queue, index);
|
|
rx_buf = efx_rx_buffer(rx_queue, index);
|
|
EFX_POPULATE_QWORD_3(*rxd,
|
|
RX_KER_BUF_SIZE,
|
|
rx_buf->len -
|
|
rx_queue->efx->type->rx_buffer_padding,
|
|
RX_KER_BUF_REGION, 0,
|
|
RX_KER_BUF_ADR, rx_buf->dma_addr);
|
|
}
|
|
|
|
/* This writes to the RX_DESC_WPTR register for the specified receive
|
|
* descriptor ring.
|
|
*/
|
|
void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue)
|
|
{
|
|
efx_dword_t reg;
|
|
unsigned write_ptr;
|
|
|
|
while (rx_queue->notified_count != rx_queue->added_count) {
|
|
falcon_build_rx_desc(rx_queue,
|
|
rx_queue->notified_count &
|
|
FALCON_RXD_RING_MASK);
|
|
++rx_queue->notified_count;
|
|
}
|
|
|
|
wmb();
|
|
write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK;
|
|
EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr);
|
|
falcon_writel_page(rx_queue->efx, ®,
|
|
RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue);
|
|
}
|
|
|
|
int falcon_probe_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
return falcon_alloc_special_buffer(efx, &rx_queue->rxd,
|
|
FALCON_RXD_RING_SIZE *
|
|
sizeof(efx_qword_t));
|
|
}
|
|
|
|
void falcon_init_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
efx_oword_t rx_desc_ptr;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
bool is_b0 = falcon_rev(efx) >= FALCON_REV_B0;
|
|
bool iscsi_digest_en = is_b0;
|
|
|
|
EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
|
|
rx_queue->queue, rx_queue->rxd.index,
|
|
rx_queue->rxd.index + rx_queue->rxd.entries - 1);
|
|
|
|
rx_queue->flushed = false;
|
|
|
|
/* Pin RX descriptor ring */
|
|
falcon_init_special_buffer(efx, &rx_queue->rxd);
|
|
|
|
/* Push RX descriptor ring to card */
|
|
EFX_POPULATE_OWORD_10(rx_desc_ptr,
|
|
RX_ISCSI_DDIG_EN, iscsi_digest_en,
|
|
RX_ISCSI_HDIG_EN, iscsi_digest_en,
|
|
RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
|
|
RX_DESCQ_EVQ_ID, rx_queue->channel->channel,
|
|
RX_DESCQ_OWNER_ID, 0,
|
|
RX_DESCQ_LABEL, rx_queue->queue,
|
|
RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER,
|
|
RX_DESCQ_TYPE, 0 /* kernel queue */ ,
|
|
/* For >=B0 this is scatter so disable */
|
|
RX_DESCQ_JUMBO, !is_b0,
|
|
RX_DESCQ_EN, 1);
|
|
falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
|
rx_queue->queue);
|
|
}
|
|
|
|
static void falcon_flush_rx_queue(struct efx_rx_queue *rx_queue)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
efx_oword_t rx_flush_descq;
|
|
|
|
/* Post a flush command */
|
|
EFX_POPULATE_OWORD_2(rx_flush_descq,
|
|
RX_FLUSH_DESCQ_CMD, 1,
|
|
RX_FLUSH_DESCQ, rx_queue->queue);
|
|
falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER);
|
|
}
|
|
|
|
void falcon_fini_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
efx_oword_t rx_desc_ptr;
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
|
|
/* The queue should already have been flushed */
|
|
WARN_ON(!rx_queue->flushed);
|
|
|
|
/* Remove RX descriptor ring from card */
|
|
EFX_ZERO_OWORD(rx_desc_ptr);
|
|
falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
|
|
rx_queue->queue);
|
|
|
|
/* Unpin RX descriptor ring */
|
|
falcon_fini_special_buffer(efx, &rx_queue->rxd);
|
|
}
|
|
|
|
/* Free buffers backing RX queue */
|
|
void falcon_remove_rx(struct efx_rx_queue *rx_queue)
|
|
{
|
|
falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon event queue processing
|
|
* Event queues are processed by per-channel tasklets.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Update a channel's event queue's read pointer (RPTR) register
|
|
*
|
|
* This writes the EVQ_RPTR_REG register for the specified channel's
|
|
* event queue.
|
|
*
|
|
* Note that EVQ_RPTR_REG contains the index of the "last read" event,
|
|
* whereas channel->eventq_read_ptr contains the index of the "next to
|
|
* read" event.
|
|
*/
|
|
void falcon_eventq_read_ack(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t reg;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr);
|
|
falcon_writel_table(efx, ®, efx->type->evq_rptr_tbl_base,
|
|
channel->channel);
|
|
}
|
|
|
|
/* Use HW to insert a SW defined event */
|
|
void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event)
|
|
{
|
|
efx_oword_t drv_ev_reg;
|
|
|
|
EFX_POPULATE_OWORD_2(drv_ev_reg,
|
|
DRV_EV_QID, channel->channel,
|
|
DRV_EV_DATA,
|
|
EFX_QWORD_FIELD64(*event, WHOLE_EVENT));
|
|
falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER);
|
|
}
|
|
|
|
/* Handle a transmit completion event
|
|
*
|
|
* Falcon batches TX completion events; the message we receive is of
|
|
* the form "complete all TX events up to this index".
|
|
*/
|
|
static void falcon_handle_tx_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
unsigned int tx_ev_desc_ptr;
|
|
unsigned int tx_ev_q_label;
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) {
|
|
/* Transmit completion */
|
|
tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR);
|
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
|
|
tx_queue = &efx->tx_queue[tx_ev_q_label];
|
|
efx_xmit_done(tx_queue, tx_ev_desc_ptr);
|
|
} else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) {
|
|
/* Rewrite the FIFO write pointer */
|
|
tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL);
|
|
tx_queue = &efx->tx_queue[tx_ev_q_label];
|
|
|
|
if (efx_dev_registered(efx))
|
|
netif_tx_lock(efx->net_dev);
|
|
falcon_notify_tx_desc(tx_queue);
|
|
if (efx_dev_registered(efx))
|
|
netif_tx_unlock(efx->net_dev);
|
|
} else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) &&
|
|
EFX_WORKAROUND_10727(efx)) {
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
|
} else {
|
|
EFX_ERR(efx, "channel %d unexpected TX event "
|
|
EFX_QWORD_FMT"\n", channel->channel,
|
|
EFX_QWORD_VAL(*event));
|
|
}
|
|
}
|
|
|
|
/* Detect errors included in the rx_evt_pkt_ok bit. */
|
|
static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
|
|
const efx_qword_t *event,
|
|
bool *rx_ev_pkt_ok,
|
|
bool *discard)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
|
|
bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
|
|
bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
|
|
bool rx_ev_other_err, rx_ev_pause_frm;
|
|
bool rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt;
|
|
unsigned rx_ev_pkt_type;
|
|
|
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
|
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
|
|
rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC);
|
|
rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE);
|
|
rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
|
|
RX_EV_BUF_OWNER_ID_ERR);
|
|
rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR);
|
|
rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
|
|
RX_EV_IP_HDR_CHKSUM_ERR);
|
|
rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
|
|
RX_EV_TCP_UDP_CHKSUM_ERR);
|
|
rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR);
|
|
rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC);
|
|
rx_ev_drib_nib = ((falcon_rev(efx) >= FALCON_REV_B0) ?
|
|
0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB));
|
|
rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR);
|
|
|
|
/* Every error apart from tobe_disc and pause_frm */
|
|
rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
|
|
rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
|
|
rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
|
|
|
|
/* Count errors that are not in MAC stats. Ignore expected
|
|
* checksum errors during self-test. */
|
|
if (rx_ev_frm_trunc)
|
|
++rx_queue->channel->n_rx_frm_trunc;
|
|
else if (rx_ev_tobe_disc)
|
|
++rx_queue->channel->n_rx_tobe_disc;
|
|
else if (!efx->loopback_selftest) {
|
|
if (rx_ev_ip_hdr_chksum_err)
|
|
++rx_queue->channel->n_rx_ip_hdr_chksum_err;
|
|
else if (rx_ev_tcp_udp_chksum_err)
|
|
++rx_queue->channel->n_rx_tcp_udp_chksum_err;
|
|
}
|
|
if (rx_ev_ip_frag_err)
|
|
++rx_queue->channel->n_rx_ip_frag_err;
|
|
|
|
/* The frame must be discarded if any of these are true. */
|
|
*discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
|
|
rx_ev_tobe_disc | rx_ev_pause_frm);
|
|
|
|
/* TOBE_DISC is expected on unicast mismatches; don't print out an
|
|
* error message. FRM_TRUNC indicates RXDP dropped the packet due
|
|
* to a FIFO overflow.
|
|
*/
|
|
#ifdef EFX_ENABLE_DEBUG
|
|
if (rx_ev_other_err) {
|
|
EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
|
|
EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
|
|
rx_queue->queue, EFX_QWORD_VAL(*event),
|
|
rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
|
|
rx_ev_ip_hdr_chksum_err ?
|
|
" [IP_HDR_CHKSUM_ERR]" : "",
|
|
rx_ev_tcp_udp_chksum_err ?
|
|
" [TCP_UDP_CHKSUM_ERR]" : "",
|
|
rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
|
|
rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
|
|
rx_ev_drib_nib ? " [DRIB_NIB]" : "",
|
|
rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
|
|
rx_ev_pause_frm ? " [PAUSE]" : "");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Handle receive events that are not in-order. */
|
|
static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue,
|
|
unsigned index)
|
|
{
|
|
struct efx_nic *efx = rx_queue->efx;
|
|
unsigned expected, dropped;
|
|
|
|
expected = rx_queue->removed_count & FALCON_RXD_RING_MASK;
|
|
dropped = ((index + FALCON_RXD_RING_SIZE - expected) &
|
|
FALCON_RXD_RING_MASK);
|
|
EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
|
|
dropped, index, expected);
|
|
|
|
efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
|
|
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
|
|
}
|
|
|
|
/* Handle a packet received event
|
|
*
|
|
* Falcon silicon gives a "discard" flag if it's a unicast packet with the
|
|
* wrong destination address
|
|
* Also "is multicast" and "matches multicast filter" flags can be used to
|
|
* discard non-matching multicast packets.
|
|
*/
|
|
static void falcon_handle_rx_event(struct efx_channel *channel,
|
|
const efx_qword_t *event)
|
|
{
|
|
unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
|
|
unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
|
|
unsigned expected_ptr;
|
|
bool rx_ev_pkt_ok, discard = false, checksummed;
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
/* Basic packet information */
|
|
rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT);
|
|
rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK);
|
|
rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE);
|
|
WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT));
|
|
WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1);
|
|
WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL) != channel->channel);
|
|
|
|
rx_queue = &efx->rx_queue[channel->channel];
|
|
|
|
rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR);
|
|
expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK;
|
|
if (unlikely(rx_ev_desc_ptr != expected_ptr))
|
|
falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
|
|
|
|
if (likely(rx_ev_pkt_ok)) {
|
|
/* If packet is marked as OK and packet type is TCP/IPv4 or
|
|
* UDP/IPv4, then we can rely on the hardware checksum.
|
|
*/
|
|
checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type);
|
|
} else {
|
|
falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok,
|
|
&discard);
|
|
checksummed = false;
|
|
}
|
|
|
|
/* Detect multicast packets that didn't match the filter */
|
|
rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT);
|
|
if (rx_ev_mcast_pkt) {
|
|
unsigned int rx_ev_mcast_hash_match =
|
|
EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH);
|
|
|
|
if (unlikely(!rx_ev_mcast_hash_match))
|
|
discard = true;
|
|
}
|
|
|
|
/* Handle received packet */
|
|
efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
|
|
checksummed, discard);
|
|
}
|
|
|
|
/* Global events are basically PHY events */
|
|
static void falcon_handle_global_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
bool handled = false;
|
|
|
|
if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) ||
|
|
EFX_QWORD_FIELD(*event, G_PHY1_INTR) ||
|
|
EFX_QWORD_FIELD(*event, XG_PHY_INTR) ||
|
|
EFX_QWORD_FIELD(*event, XFP_PHY_INTR)) {
|
|
efx->phy_op->clear_interrupt(efx);
|
|
queue_work(efx->workqueue, &efx->phy_work);
|
|
handled = true;
|
|
}
|
|
|
|
if ((falcon_rev(efx) >= FALCON_REV_B0) &&
|
|
EFX_QWORD_FIELD(*event, XG_MNT_INTR_B0)) {
|
|
queue_work(efx->workqueue, &efx->mac_work);
|
|
handled = true;
|
|
}
|
|
|
|
if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) {
|
|
EFX_ERR(efx, "channel %d seen global RX_RESET "
|
|
"event. Resetting.\n", channel->channel);
|
|
|
|
atomic_inc(&efx->rx_reset);
|
|
efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
|
|
RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
|
|
handled = true;
|
|
}
|
|
|
|
if (!handled)
|
|
EFX_ERR(efx, "channel %d unknown global event "
|
|
EFX_QWORD_FMT "\n", channel->channel,
|
|
EFX_QWORD_VAL(*event));
|
|
}
|
|
|
|
static void falcon_handle_driver_event(struct efx_channel *channel,
|
|
efx_qword_t *event)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
unsigned int ev_sub_code;
|
|
unsigned int ev_sub_data;
|
|
|
|
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
|
|
ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA);
|
|
|
|
switch (ev_sub_code) {
|
|
case TX_DESCQ_FLS_DONE_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case RX_DESCQ_FLS_DONE_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case EVQ_INIT_DONE_EV_DECODE:
|
|
EFX_LOG(efx, "channel %d EVQ %d initialised\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case SRM_UPD_DONE_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d SRAM update done\n",
|
|
channel->channel);
|
|
break;
|
|
case WAKE_UP_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case TIMER_EV_DECODE:
|
|
EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
|
|
channel->channel, ev_sub_data);
|
|
break;
|
|
case RX_RECOVERY_EV_DECODE:
|
|
EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
|
|
"Resetting.\n", channel->channel);
|
|
atomic_inc(&efx->rx_reset);
|
|
efx_schedule_reset(efx,
|
|
EFX_WORKAROUND_6555(efx) ?
|
|
RESET_TYPE_RX_RECOVERY :
|
|
RESET_TYPE_DISABLE);
|
|
break;
|
|
case RX_DSC_ERROR_EV_DECODE:
|
|
EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
|
|
" RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
|
|
efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
|
|
break;
|
|
case TX_DSC_ERROR_EV_DECODE:
|
|
EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
|
|
" TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
|
|
efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
|
|
break;
|
|
default:
|
|
EFX_TRACE(efx, "channel %d unknown driver event code %d "
|
|
"data %04x\n", channel->channel, ev_sub_code,
|
|
ev_sub_data);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int falcon_process_eventq(struct efx_channel *channel, int rx_quota)
|
|
{
|
|
unsigned int read_ptr;
|
|
efx_qword_t event, *p_event;
|
|
int ev_code;
|
|
int rx_packets = 0;
|
|
|
|
read_ptr = channel->eventq_read_ptr;
|
|
|
|
do {
|
|
p_event = falcon_event(channel, read_ptr);
|
|
event = *p_event;
|
|
|
|
if (!falcon_event_present(&event))
|
|
/* End of events */
|
|
break;
|
|
|
|
EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
|
|
channel->channel, EFX_QWORD_VAL(event));
|
|
|
|
/* Clear this event by marking it all ones */
|
|
EFX_SET_QWORD(*p_event);
|
|
|
|
ev_code = EFX_QWORD_FIELD(event, EV_CODE);
|
|
|
|
switch (ev_code) {
|
|
case RX_IP_EV_DECODE:
|
|
falcon_handle_rx_event(channel, &event);
|
|
++rx_packets;
|
|
break;
|
|
case TX_IP_EV_DECODE:
|
|
falcon_handle_tx_event(channel, &event);
|
|
break;
|
|
case DRV_GEN_EV_DECODE:
|
|
channel->eventq_magic
|
|
= EFX_QWORD_FIELD(event, EVQ_MAGIC);
|
|
EFX_LOG(channel->efx, "channel %d received generated "
|
|
"event "EFX_QWORD_FMT"\n", channel->channel,
|
|
EFX_QWORD_VAL(event));
|
|
break;
|
|
case GLOBAL_EV_DECODE:
|
|
falcon_handle_global_event(channel, &event);
|
|
break;
|
|
case DRIVER_EV_DECODE:
|
|
falcon_handle_driver_event(channel, &event);
|
|
break;
|
|
default:
|
|
EFX_ERR(channel->efx, "channel %d unknown event type %d"
|
|
" (data " EFX_QWORD_FMT ")\n", channel->channel,
|
|
ev_code, EFX_QWORD_VAL(event));
|
|
}
|
|
|
|
/* Increment read pointer */
|
|
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
|
|
|
|
} while (rx_packets < rx_quota);
|
|
|
|
channel->eventq_read_ptr = read_ptr;
|
|
return rx_packets;
|
|
}
|
|
|
|
void falcon_set_int_moderation(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t timer_cmd;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
/* Set timer register */
|
|
if (channel->irq_moderation) {
|
|
/* Round to resolution supported by hardware. The value we
|
|
* program is based at 0. So actual interrupt moderation
|
|
* achieved is ((x + 1) * res).
|
|
*/
|
|
unsigned int res = 5;
|
|
channel->irq_moderation -= (channel->irq_moderation % res);
|
|
if (channel->irq_moderation < res)
|
|
channel->irq_moderation = res;
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
TIMER_MODE, TIMER_MODE_INT_HLDOFF,
|
|
TIMER_VAL,
|
|
(channel->irq_moderation / res) - 1);
|
|
} else {
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
TIMER_MODE, TIMER_MODE_DIS,
|
|
TIMER_VAL, 0);
|
|
}
|
|
falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER,
|
|
channel->channel);
|
|
|
|
}
|
|
|
|
/* Allocate buffer table entries for event queue */
|
|
int falcon_probe_eventq(struct efx_channel *channel)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
unsigned int evq_size;
|
|
|
|
evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t);
|
|
return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size);
|
|
}
|
|
|
|
void falcon_init_eventq(struct efx_channel *channel)
|
|
{
|
|
efx_oword_t evq_ptr;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
|
|
channel->channel, channel->eventq.index,
|
|
channel->eventq.index + channel->eventq.entries - 1);
|
|
|
|
/* Pin event queue buffer */
|
|
falcon_init_special_buffer(efx, &channel->eventq);
|
|
|
|
/* Fill event queue with all ones (i.e. empty events) */
|
|
memset(channel->eventq.addr, 0xff, channel->eventq.len);
|
|
|
|
/* Push event queue to card */
|
|
EFX_POPULATE_OWORD_3(evq_ptr,
|
|
EVQ_EN, 1,
|
|
EVQ_SIZE, FALCON_EVQ_ORDER,
|
|
EVQ_BUF_BASE_ID, channel->eventq.index);
|
|
falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base,
|
|
channel->channel);
|
|
|
|
falcon_set_int_moderation(channel);
|
|
}
|
|
|
|
void falcon_fini_eventq(struct efx_channel *channel)
|
|
{
|
|
efx_oword_t eventq_ptr;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
/* Remove event queue from card */
|
|
EFX_ZERO_OWORD(eventq_ptr);
|
|
falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base,
|
|
channel->channel);
|
|
|
|
/* Unpin event queue */
|
|
falcon_fini_special_buffer(efx, &channel->eventq);
|
|
}
|
|
|
|
/* Free buffers backing event queue */
|
|
void falcon_remove_eventq(struct efx_channel *channel)
|
|
{
|
|
falcon_free_special_buffer(channel->efx, &channel->eventq);
|
|
}
|
|
|
|
|
|
/* Generates a test event on the event queue. A subsequent call to
|
|
* process_eventq() should pick up the event and place the value of
|
|
* "magic" into channel->eventq_magic;
|
|
*/
|
|
void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic)
|
|
{
|
|
efx_qword_t test_event;
|
|
|
|
EFX_POPULATE_QWORD_2(test_event,
|
|
EV_CODE, DRV_GEN_EV_DECODE,
|
|
EVQ_MAGIC, magic);
|
|
falcon_generate_event(channel, &test_event);
|
|
}
|
|
|
|
void falcon_sim_phy_event(struct efx_nic *efx)
|
|
{
|
|
efx_qword_t phy_event;
|
|
|
|
EFX_POPULATE_QWORD_1(phy_event, EV_CODE, GLOBAL_EV_DECODE);
|
|
if (EFX_IS10G(efx))
|
|
EFX_SET_OWORD_FIELD(phy_event, XG_PHY_INTR, 1);
|
|
else
|
|
EFX_SET_OWORD_FIELD(phy_event, G_PHY0_INTR, 1);
|
|
|
|
falcon_generate_event(&efx->channel[0], &phy_event);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Flush handling
|
|
*
|
|
**************************************************************************/
|
|
|
|
|
|
static void falcon_poll_flush_events(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel = &efx->channel[0];
|
|
struct efx_tx_queue *tx_queue;
|
|
struct efx_rx_queue *rx_queue;
|
|
unsigned int read_ptr = channel->eventq_read_ptr;
|
|
unsigned int end_ptr = (read_ptr - 1) & FALCON_EVQ_MASK;
|
|
|
|
do {
|
|
efx_qword_t *event = falcon_event(channel, read_ptr);
|
|
int ev_code, ev_sub_code, ev_queue;
|
|
bool ev_failed;
|
|
|
|
if (!falcon_event_present(event))
|
|
break;
|
|
|
|
ev_code = EFX_QWORD_FIELD(*event, EV_CODE);
|
|
ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE);
|
|
if (ev_code == DRIVER_EV_DECODE &&
|
|
ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) {
|
|
ev_queue = EFX_QWORD_FIELD(*event,
|
|
DRIVER_EV_TX_DESCQ_ID);
|
|
if (ev_queue < EFX_TX_QUEUE_COUNT) {
|
|
tx_queue = efx->tx_queue + ev_queue;
|
|
tx_queue->flushed = true;
|
|
}
|
|
} else if (ev_code == DRIVER_EV_DECODE &&
|
|
ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) {
|
|
ev_queue = EFX_QWORD_FIELD(*event,
|
|
DRIVER_EV_RX_DESCQ_ID);
|
|
ev_failed = EFX_QWORD_FIELD(*event,
|
|
DRIVER_EV_RX_FLUSH_FAIL);
|
|
if (ev_queue < efx->n_rx_queues) {
|
|
rx_queue = efx->rx_queue + ev_queue;
|
|
|
|
/* retry the rx flush */
|
|
if (ev_failed)
|
|
falcon_flush_rx_queue(rx_queue);
|
|
else
|
|
rx_queue->flushed = true;
|
|
}
|
|
}
|
|
|
|
read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK;
|
|
} while (read_ptr != end_ptr);
|
|
}
|
|
|
|
/* Handle tx and rx flushes at the same time, since they run in
|
|
* parallel in the hardware and there's no reason for us to
|
|
* serialise them */
|
|
int falcon_flush_queues(struct efx_nic *efx)
|
|
{
|
|
struct efx_rx_queue *rx_queue;
|
|
struct efx_tx_queue *tx_queue;
|
|
int i;
|
|
bool outstanding;
|
|
|
|
/* Issue flush requests */
|
|
efx_for_each_tx_queue(tx_queue, efx) {
|
|
tx_queue->flushed = false;
|
|
falcon_flush_tx_queue(tx_queue);
|
|
}
|
|
efx_for_each_rx_queue(rx_queue, efx) {
|
|
rx_queue->flushed = false;
|
|
falcon_flush_rx_queue(rx_queue);
|
|
}
|
|
|
|
/* Poll the evq looking for flush completions. Since we're not pushing
|
|
* any more rx or tx descriptors at this point, we're in no danger of
|
|
* overflowing the evq whilst we wait */
|
|
for (i = 0; i < FALCON_FLUSH_POLL_COUNT; ++i) {
|
|
msleep(FALCON_FLUSH_INTERVAL);
|
|
falcon_poll_flush_events(efx);
|
|
|
|
/* Check if every queue has been succesfully flushed */
|
|
outstanding = false;
|
|
efx_for_each_tx_queue(tx_queue, efx)
|
|
outstanding |= !tx_queue->flushed;
|
|
efx_for_each_rx_queue(rx_queue, efx)
|
|
outstanding |= !rx_queue->flushed;
|
|
if (!outstanding)
|
|
return 0;
|
|
}
|
|
|
|
/* Mark the queues as all flushed. We're going to return failure
|
|
* leading to a reset, or fake up success anyway. "flushed" now
|
|
* indicates that we tried to flush. */
|
|
efx_for_each_tx_queue(tx_queue, efx) {
|
|
if (!tx_queue->flushed)
|
|
EFX_ERR(efx, "tx queue %d flush command timed out\n",
|
|
tx_queue->queue);
|
|
tx_queue->flushed = true;
|
|
}
|
|
efx_for_each_rx_queue(rx_queue, efx) {
|
|
if (!rx_queue->flushed)
|
|
EFX_ERR(efx, "rx queue %d flush command timed out\n",
|
|
rx_queue->queue);
|
|
rx_queue->flushed = true;
|
|
}
|
|
|
|
if (EFX_WORKAROUND_7803(efx))
|
|
return 0;
|
|
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon hardware interrupts
|
|
* The hardware interrupt handler does very little work; all the event
|
|
* queue processing is carried out by per-channel tasklets.
|
|
*
|
|
**************************************************************************/
|
|
|
|
/* Enable/disable/generate Falcon interrupts */
|
|
static inline void falcon_interrupts(struct efx_nic *efx, int enabled,
|
|
int force)
|
|
{
|
|
efx_oword_t int_en_reg_ker;
|
|
|
|
EFX_POPULATE_OWORD_2(int_en_reg_ker,
|
|
KER_INT_KER, force,
|
|
DRV_INT_EN_KER, enabled);
|
|
falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER);
|
|
}
|
|
|
|
void falcon_enable_interrupts(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t int_adr_reg_ker;
|
|
struct efx_channel *channel;
|
|
|
|
EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
|
|
wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
|
|
|
|
/* Program address */
|
|
EFX_POPULATE_OWORD_2(int_adr_reg_ker,
|
|
NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx),
|
|
INT_ADR_KER, efx->irq_status.dma_addr);
|
|
falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER);
|
|
|
|
/* Enable interrupts */
|
|
falcon_interrupts(efx, 1, 0);
|
|
|
|
/* Force processing of all the channels to get the EVQ RPTRs up to
|
|
date */
|
|
efx_for_each_channel(channel, efx)
|
|
efx_schedule_channel(channel);
|
|
}
|
|
|
|
void falcon_disable_interrupts(struct efx_nic *efx)
|
|
{
|
|
/* Disable interrupts */
|
|
falcon_interrupts(efx, 0, 0);
|
|
}
|
|
|
|
/* Generate a Falcon test interrupt
|
|
* Interrupt must already have been enabled, otherwise nasty things
|
|
* may happen.
|
|
*/
|
|
void falcon_generate_interrupt(struct efx_nic *efx)
|
|
{
|
|
falcon_interrupts(efx, 1, 1);
|
|
}
|
|
|
|
/* Acknowledge a legacy interrupt from Falcon
|
|
*
|
|
* This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
|
|
*
|
|
* Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
|
|
* BIU. Interrupt acknowledge is read sensitive so must write instead
|
|
* (then read to ensure the BIU collector is flushed)
|
|
*
|
|
* NB most hardware supports MSI interrupts
|
|
*/
|
|
static inline void falcon_irq_ack_a1(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t reg;
|
|
|
|
EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e);
|
|
falcon_writel(efx, ®, INT_ACK_REG_KER_A1);
|
|
falcon_readl(efx, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1);
|
|
}
|
|
|
|
/* Process a fatal interrupt
|
|
* Disable bus mastering ASAP and schedule a reset
|
|
*/
|
|
static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
efx_oword_t fatal_intr;
|
|
int error, mem_perr;
|
|
|
|
falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER);
|
|
error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR);
|
|
|
|
EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
|
|
EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
|
|
EFX_OWORD_VAL(fatal_intr),
|
|
error ? "disabling bus mastering" : "no recognised error");
|
|
if (error == 0)
|
|
goto out;
|
|
|
|
/* If this is a memory parity error dump which blocks are offending */
|
|
mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER);
|
|
if (mem_perr) {
|
|
efx_oword_t reg;
|
|
falcon_read(efx, ®, MEM_STAT_REG_KER);
|
|
EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
|
|
EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
|
|
}
|
|
|
|
/* Disable both devices */
|
|
pci_clear_master(efx->pci_dev);
|
|
if (FALCON_IS_DUAL_FUNC(efx))
|
|
pci_clear_master(nic_data->pci_dev2);
|
|
falcon_disable_interrupts(efx);
|
|
|
|
/* Count errors and reset or disable the NIC accordingly */
|
|
if (nic_data->int_error_count == 0 ||
|
|
time_after(jiffies, nic_data->int_error_expire)) {
|
|
nic_data->int_error_count = 0;
|
|
nic_data->int_error_expire =
|
|
jiffies + FALCON_INT_ERROR_EXPIRE * HZ;
|
|
}
|
|
if (++nic_data->int_error_count < FALCON_MAX_INT_ERRORS) {
|
|
EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
|
|
} else {
|
|
EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
|
|
"NIC will be disabled\n");
|
|
efx_schedule_reset(efx, RESET_TYPE_DISABLE);
|
|
}
|
|
out:
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Handle a legacy interrupt from Falcon
|
|
* Acknowledges the interrupt and schedule event queue processing.
|
|
*/
|
|
static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id)
|
|
{
|
|
struct efx_nic *efx = dev_id;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
struct efx_channel *channel;
|
|
efx_dword_t reg;
|
|
u32 queues;
|
|
int syserr;
|
|
|
|
/* Read the ISR which also ACKs the interrupts */
|
|
falcon_readl(efx, ®, INT_ISR0_B0);
|
|
queues = EFX_EXTRACT_DWORD(reg, 0, 31);
|
|
|
|
/* Check to see if we have a serious error condition */
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
|
|
if (unlikely(syserr))
|
|
return falcon_fatal_interrupt(efx);
|
|
|
|
if (queues == 0)
|
|
return IRQ_NONE;
|
|
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
|
|
|
|
/* Schedule processing of any interrupting queues */
|
|
channel = &efx->channel[0];
|
|
while (queues) {
|
|
if (queues & 0x01)
|
|
efx_schedule_channel(channel);
|
|
channel++;
|
|
queues >>= 1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
|
|
{
|
|
struct efx_nic *efx = dev_id;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
struct efx_channel *channel;
|
|
int syserr;
|
|
int queues;
|
|
|
|
/* Check to see if this is our interrupt. If it isn't, we
|
|
* exit without having touched the hardware.
|
|
*/
|
|
if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
|
|
raw_smp_processor_id());
|
|
return IRQ_NONE;
|
|
}
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
|
|
|
|
/* Check to see if we have a serious error condition */
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
|
|
if (unlikely(syserr))
|
|
return falcon_fatal_interrupt(efx);
|
|
|
|
/* Determine interrupting queues, clear interrupt status
|
|
* register and acknowledge the device interrupt.
|
|
*/
|
|
BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS);
|
|
queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS);
|
|
EFX_ZERO_OWORD(*int_ker);
|
|
wmb(); /* Ensure the vector is cleared before interrupt ack */
|
|
falcon_irq_ack_a1(efx);
|
|
|
|
/* Schedule processing of any interrupting queues */
|
|
channel = &efx->channel[0];
|
|
while (queues) {
|
|
if (queues & 0x01)
|
|
efx_schedule_channel(channel);
|
|
channel++;
|
|
queues >>= 1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/* Handle an MSI interrupt from Falcon
|
|
*
|
|
* Handle an MSI hardware interrupt. This routine schedules event
|
|
* queue processing. No interrupt acknowledgement cycle is necessary.
|
|
* Also, we never need to check that the interrupt is for us, since
|
|
* MSI interrupts cannot be shared.
|
|
*/
|
|
static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct efx_channel *channel = dev_id;
|
|
struct efx_nic *efx = channel->efx;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
int syserr;
|
|
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
|
|
|
|
/* Check to see if we have a serious error condition */
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT);
|
|
if (unlikely(syserr))
|
|
return falcon_fatal_interrupt(efx);
|
|
|
|
/* Schedule processing of the channel */
|
|
efx_schedule_channel(channel);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
|
|
/* Setup RSS indirection table.
|
|
* This maps from the hash value of the packet to RXQ
|
|
*/
|
|
static void falcon_setup_rss_indir_table(struct efx_nic *efx)
|
|
{
|
|
int i = 0;
|
|
unsigned long offset;
|
|
efx_dword_t dword;
|
|
|
|
if (falcon_rev(efx) < FALCON_REV_B0)
|
|
return;
|
|
|
|
for (offset = RX_RSS_INDIR_TBL_B0;
|
|
offset < RX_RSS_INDIR_TBL_B0 + 0x800;
|
|
offset += 0x10) {
|
|
EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0,
|
|
i % efx->n_rx_queues);
|
|
falcon_writel(efx, &dword, offset);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* Hook interrupt handler(s)
|
|
* Try MSI and then legacy interrupts.
|
|
*/
|
|
int falcon_init_interrupt(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
int rc;
|
|
|
|
if (!EFX_INT_MODE_USE_MSI(efx)) {
|
|
irq_handler_t handler;
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
handler = falcon_legacy_interrupt_b0;
|
|
else
|
|
handler = falcon_legacy_interrupt_a1;
|
|
|
|
rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
|
|
efx->name, efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
|
|
efx->pci_dev->irq);
|
|
goto fail1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Hook MSI or MSI-X interrupt */
|
|
efx_for_each_channel(channel, efx) {
|
|
rc = request_irq(channel->irq, falcon_msi_interrupt,
|
|
IRQF_PROBE_SHARED, /* Not shared */
|
|
channel->name, channel);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail2:
|
|
efx_for_each_channel(channel, efx)
|
|
free_irq(channel->irq, channel);
|
|
fail1:
|
|
return rc;
|
|
}
|
|
|
|
void falcon_fini_interrupt(struct efx_nic *efx)
|
|
{
|
|
struct efx_channel *channel;
|
|
efx_oword_t reg;
|
|
|
|
/* Disable MSI/MSI-X interrupts */
|
|
efx_for_each_channel(channel, efx) {
|
|
if (channel->irq)
|
|
free_irq(channel->irq, channel);
|
|
}
|
|
|
|
/* ACK legacy interrupt */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
falcon_read(efx, ®, INT_ISR0_B0);
|
|
else
|
|
falcon_irq_ack_a1(efx);
|
|
|
|
/* Disable legacy interrupt */
|
|
if (efx->legacy_irq)
|
|
free_irq(efx->legacy_irq, efx);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* EEPROM/flash
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
|
|
|
|
static int falcon_spi_poll(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
falcon_read(efx, ®, EE_SPI_HCMD_REG_KER);
|
|
return EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
|
|
}
|
|
|
|
/* Wait for SPI command completion */
|
|
static int falcon_spi_wait(struct efx_nic *efx)
|
|
{
|
|
/* Most commands will finish quickly, so we start polling at
|
|
* very short intervals. Sometimes the command may have to
|
|
* wait for VPD or expansion ROM access outside of our
|
|
* control, so we allow up to 100 ms. */
|
|
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
if (!falcon_spi_poll(efx))
|
|
return 0;
|
|
udelay(10);
|
|
}
|
|
|
|
for (;;) {
|
|
if (!falcon_spi_poll(efx))
|
|
return 0;
|
|
if (time_after_eq(jiffies, timeout)) {
|
|
EFX_ERR(efx, "timed out waiting for SPI\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
}
|
|
|
|
int falcon_spi_cmd(const struct efx_spi_device *spi,
|
|
unsigned int command, int address,
|
|
const void *in, void *out, size_t len)
|
|
{
|
|
struct efx_nic *efx = spi->efx;
|
|
bool addressed = (address >= 0);
|
|
bool reading = (out != NULL);
|
|
efx_oword_t reg;
|
|
int rc;
|
|
|
|
/* Input validation */
|
|
if (len > FALCON_SPI_MAX_LEN)
|
|
return -EINVAL;
|
|
BUG_ON(!mutex_is_locked(&efx->spi_lock));
|
|
|
|
/* Check that previous command is not still running */
|
|
rc = falcon_spi_poll(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Program address register, if we have an address */
|
|
if (addressed) {
|
|
EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address);
|
|
falcon_write(efx, ®, EE_SPI_HADR_REG_KER);
|
|
}
|
|
|
|
/* Program data register, if we have data */
|
|
if (in != NULL) {
|
|
memcpy(®, in, len);
|
|
falcon_write(efx, ®, EE_SPI_HDATA_REG_KER);
|
|
}
|
|
|
|
/* Issue read/write command */
|
|
EFX_POPULATE_OWORD_7(reg,
|
|
EE_SPI_HCMD_CMD_EN, 1,
|
|
EE_SPI_HCMD_SF_SEL, spi->device_id,
|
|
EE_SPI_HCMD_DABCNT, len,
|
|
EE_SPI_HCMD_READ, reading,
|
|
EE_SPI_HCMD_DUBCNT, 0,
|
|
EE_SPI_HCMD_ADBCNT,
|
|
(addressed ? spi->addr_len : 0),
|
|
EE_SPI_HCMD_ENC, command);
|
|
falcon_write(efx, ®, EE_SPI_HCMD_REG_KER);
|
|
|
|
/* Wait for read/write to complete */
|
|
rc = falcon_spi_wait(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Read data */
|
|
if (out != NULL) {
|
|
falcon_read(efx, ®, EE_SPI_HDATA_REG_KER);
|
|
memcpy(out, ®, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t
|
|
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
|
|
{
|
|
return min(FALCON_SPI_MAX_LEN,
|
|
(spi->block_size - (start & (spi->block_size - 1))));
|
|
}
|
|
|
|
static inline u8
|
|
efx_spi_munge_command(const struct efx_spi_device *spi,
|
|
const u8 command, const unsigned int address)
|
|
{
|
|
return command | (((address >> 8) & spi->munge_address) << 3);
|
|
}
|
|
|
|
/* Wait up to 10 ms for buffered write completion */
|
|
int falcon_spi_wait_write(const struct efx_spi_device *spi)
|
|
{
|
|
struct efx_nic *efx = spi->efx;
|
|
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
|
|
u8 status;
|
|
int rc;
|
|
|
|
for (;;) {
|
|
rc = falcon_spi_cmd(spi, SPI_RDSR, -1, NULL,
|
|
&status, sizeof(status));
|
|
if (rc)
|
|
return rc;
|
|
if (!(status & SPI_STATUS_NRDY))
|
|
return 0;
|
|
if (time_after_eq(jiffies, timeout)) {
|
|
EFX_ERR(efx, "SPI write timeout on device %d"
|
|
" last status=0x%02x\n",
|
|
spi->device_id, status);
|
|
return -ETIMEDOUT;
|
|
}
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
}
|
|
|
|
int falcon_spi_read(const struct efx_spi_device *spi, loff_t start,
|
|
size_t len, size_t *retlen, u8 *buffer)
|
|
{
|
|
size_t block_len, pos = 0;
|
|
unsigned int command;
|
|
int rc = 0;
|
|
|
|
while (pos < len) {
|
|
block_len = min(len - pos, FALCON_SPI_MAX_LEN);
|
|
|
|
command = efx_spi_munge_command(spi, SPI_READ, start + pos);
|
|
rc = falcon_spi_cmd(spi, command, start + pos, NULL,
|
|
buffer + pos, block_len);
|
|
if (rc)
|
|
break;
|
|
pos += block_len;
|
|
|
|
/* Avoid locking up the system */
|
|
cond_resched();
|
|
if (signal_pending(current)) {
|
|
rc = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (retlen)
|
|
*retlen = pos;
|
|
return rc;
|
|
}
|
|
|
|
int falcon_spi_write(const struct efx_spi_device *spi, loff_t start,
|
|
size_t len, size_t *retlen, const u8 *buffer)
|
|
{
|
|
u8 verify_buffer[FALCON_SPI_MAX_LEN];
|
|
size_t block_len, pos = 0;
|
|
unsigned int command;
|
|
int rc = 0;
|
|
|
|
while (pos < len) {
|
|
rc = falcon_spi_cmd(spi, SPI_WREN, -1, NULL, NULL, 0);
|
|
if (rc)
|
|
break;
|
|
|
|
block_len = min(len - pos,
|
|
falcon_spi_write_limit(spi, start + pos));
|
|
command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
|
|
rc = falcon_spi_cmd(spi, command, start + pos,
|
|
buffer + pos, NULL, block_len);
|
|
if (rc)
|
|
break;
|
|
|
|
rc = falcon_spi_wait_write(spi);
|
|
if (rc)
|
|
break;
|
|
|
|
command = efx_spi_munge_command(spi, SPI_READ, start + pos);
|
|
rc = falcon_spi_cmd(spi, command, start + pos,
|
|
NULL, verify_buffer, block_len);
|
|
if (memcmp(verify_buffer, buffer + pos, block_len)) {
|
|
rc = -EIO;
|
|
break;
|
|
}
|
|
|
|
pos += block_len;
|
|
|
|
/* Avoid locking up the system */
|
|
cond_resched();
|
|
if (signal_pending(current)) {
|
|
rc = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (retlen)
|
|
*retlen = pos;
|
|
return rc;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* MAC wrapper
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
static int falcon_reset_macs(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
int count;
|
|
|
|
if (falcon_rev(efx) < FALCON_REV_B0) {
|
|
/* It's not safe to use GLB_CTL_REG to reset the
|
|
* macs, so instead use the internal MAC resets
|
|
*/
|
|
if (!EFX_IS10G(efx)) {
|
|
EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 1);
|
|
falcon_write(efx, ®, GM_CFG1_REG);
|
|
udelay(1000);
|
|
|
|
EFX_POPULATE_OWORD_1(reg, GM_SW_RST, 0);
|
|
falcon_write(efx, ®, GM_CFG1_REG);
|
|
udelay(1000);
|
|
return 0;
|
|
} else {
|
|
EFX_POPULATE_OWORD_1(reg, XM_CORE_RST, 1);
|
|
falcon_write(efx, ®, XM_GLB_CFG_REG);
|
|
|
|
for (count = 0; count < 10000; count++) {
|
|
falcon_read(efx, ®, XM_GLB_CFG_REG);
|
|
if (EFX_OWORD_FIELD(reg, XM_CORE_RST) == 0)
|
|
return 0;
|
|
udelay(10);
|
|
}
|
|
|
|
EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
}
|
|
|
|
/* MAC stats will fail whilst the TX fifo is draining. Serialise
|
|
* the drain sequence with the statistics fetch */
|
|
efx_stats_disable(efx);
|
|
|
|
falcon_read(efx, ®, MAC0_CTRL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, 1);
|
|
falcon_write(efx, ®, MAC0_CTRL_REG_KER);
|
|
|
|
falcon_read(efx, ®, GLB_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(reg, RST_XGTX, 1);
|
|
EFX_SET_OWORD_FIELD(reg, RST_XGRX, 1);
|
|
EFX_SET_OWORD_FIELD(reg, RST_EM, 1);
|
|
falcon_write(efx, ®, GLB_CTL_REG_KER);
|
|
|
|
count = 0;
|
|
while (1) {
|
|
falcon_read(efx, ®, GLB_CTL_REG_KER);
|
|
if (!EFX_OWORD_FIELD(reg, RST_XGTX) &&
|
|
!EFX_OWORD_FIELD(reg, RST_XGRX) &&
|
|
!EFX_OWORD_FIELD(reg, RST_EM)) {
|
|
EFX_LOG(efx, "Completed MAC reset after %d loops\n",
|
|
count);
|
|
break;
|
|
}
|
|
if (count > 20) {
|
|
EFX_ERR(efx, "MAC reset failed\n");
|
|
break;
|
|
}
|
|
count++;
|
|
udelay(10);
|
|
}
|
|
|
|
efx_stats_enable(efx);
|
|
|
|
/* If we've reset the EM block and the link is up, then
|
|
* we'll have to kick the XAUI link so the PHY can recover */
|
|
if (efx->link_up && EFX_IS10G(efx) && EFX_WORKAROUND_5147(efx))
|
|
falcon_reset_xaui(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void falcon_drain_tx_fifo(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
|
|
if ((falcon_rev(efx) < FALCON_REV_B0) ||
|
|
(efx->loopback_mode != LOOPBACK_NONE))
|
|
return;
|
|
|
|
falcon_read(efx, ®, MAC0_CTRL_REG_KER);
|
|
/* There is no point in draining more than once */
|
|
if (EFX_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0))
|
|
return;
|
|
|
|
falcon_reset_macs(efx);
|
|
}
|
|
|
|
void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
|
|
if (falcon_rev(efx) < FALCON_REV_B0)
|
|
return;
|
|
|
|
/* Isolate the MAC -> RX */
|
|
falcon_read(efx, ®, RX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 0);
|
|
falcon_write(efx, ®, RX_CFG_REG_KER);
|
|
|
|
if (!efx->link_up)
|
|
falcon_drain_tx_fifo(efx);
|
|
}
|
|
|
|
void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
int link_speed;
|
|
bool tx_fc;
|
|
|
|
switch (efx->link_speed) {
|
|
case 10000: link_speed = 3; break;
|
|
case 1000: link_speed = 2; break;
|
|
case 100: link_speed = 1; break;
|
|
default: link_speed = 0; break;
|
|
}
|
|
/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
|
|
* as advertised. Disable to ensure packets are not
|
|
* indefinitely held and TX queue can be flushed at any point
|
|
* while the link is down. */
|
|
EFX_POPULATE_OWORD_5(reg,
|
|
MAC_XOFF_VAL, 0xffff /* max pause time */,
|
|
MAC_BCAD_ACPT, 1,
|
|
MAC_UC_PROM, efx->promiscuous,
|
|
MAC_LINK_STATUS, 1, /* always set */
|
|
MAC_SPEED, link_speed);
|
|
/* On B0, MAC backpressure can be disabled and packets get
|
|
* discarded. */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0,
|
|
!efx->link_up);
|
|
}
|
|
|
|
falcon_write(efx, ®, MAC0_CTRL_REG_KER);
|
|
|
|
/* Restore the multicast hash registers. */
|
|
falcon_set_multicast_hash(efx);
|
|
|
|
/* Transmission of pause frames when RX crosses the threshold is
|
|
* covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
|
|
* Action on receipt of pause frames is controller by XM_DIS_FCNTL */
|
|
tx_fc = !!(efx->link_fc & EFX_FC_TX);
|
|
falcon_read(efx, ®, RX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc);
|
|
|
|
/* Unisolate the MAC -> RX */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1);
|
|
falcon_write(efx, ®, RX_CFG_REG_KER);
|
|
}
|
|
|
|
int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset)
|
|
{
|
|
efx_oword_t reg;
|
|
u32 *dma_done;
|
|
int i;
|
|
|
|
if (disable_dma_stats)
|
|
return 0;
|
|
|
|
/* Statistics fetch will fail if the MAC is in TX drain */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
efx_oword_t temp;
|
|
falcon_read(efx, &temp, MAC0_CTRL_REG_KER);
|
|
if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0))
|
|
return 0;
|
|
}
|
|
|
|
dma_done = (efx->stats_buffer.addr + done_offset);
|
|
*dma_done = FALCON_STATS_NOT_DONE;
|
|
wmb(); /* ensure done flag is clear */
|
|
|
|
/* Initiate DMA transfer of stats */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MAC_STAT_DMA_CMD, 1,
|
|
MAC_STAT_DMA_ADR,
|
|
efx->stats_buffer.dma_addr);
|
|
falcon_write(efx, ®, MAC0_STAT_DMA_REG_KER);
|
|
|
|
/* Wait for transfer to complete */
|
|
for (i = 0; i < 400; i++) {
|
|
if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) {
|
|
rmb(); /* Ensure the stats are valid. */
|
|
return 0;
|
|
}
|
|
udelay(10);
|
|
}
|
|
|
|
EFX_ERR(efx, "timed out waiting for statistics\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* PHY access via GMII
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* Use the top bit of the MII PHY id to indicate the PHY type
|
|
* (1G/10G), with the remaining bits as the actual PHY id.
|
|
*
|
|
* This allows us to avoid leaking information from the mii_if_info
|
|
* structure into other data structures.
|
|
*/
|
|
#define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR)
|
|
#define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1)
|
|
#define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1)
|
|
#define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1)
|
|
#define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1))
|
|
|
|
|
|
/* Packing the clause 45 port and device fields into a single value */
|
|
#define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN)
|
|
#define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH
|
|
#define MD_DEV_ADR_COMP_LBN 0
|
|
#define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH
|
|
|
|
|
|
/* Wait for GMII access to complete */
|
|
static int falcon_gmii_wait(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t md_stat;
|
|
int count;
|
|
|
|
/* wait upto 50ms - taken max from datasheet */
|
|
for (count = 0; count < 5000; count++) {
|
|
falcon_readl(efx, &md_stat, MD_STAT_REG_KER);
|
|
if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) {
|
|
if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 ||
|
|
EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) {
|
|
EFX_ERR(efx, "error from GMII access "
|
|
EFX_DWORD_FMT"\n",
|
|
EFX_DWORD_VAL(md_stat));
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
udelay(10);
|
|
}
|
|
EFX_ERR(efx, "timed out waiting for GMII\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Writes a GMII register of a PHY connected to Falcon using MDIO. */
|
|
static void falcon_mdio_write(struct net_device *net_dev, int phy_id,
|
|
int addr, int value)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK;
|
|
efx_oword_t reg;
|
|
|
|
/* The 'generic' prt/dev packing in mdio_10g.h is conveniently
|
|
* chosen so that the only current user, Falcon, can take the
|
|
* packed value and use them directly.
|
|
* Fail to build if this assumption is broken.
|
|
*/
|
|
BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G);
|
|
BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH);
|
|
BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN);
|
|
BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN);
|
|
|
|
if (phy_id2 == PHY_ADDR_INVALID)
|
|
return;
|
|
|
|
/* See falcon_mdio_read for an explanation. */
|
|
if (!(phy_id & FALCON_PHY_ID_10G)) {
|
|
int mmd = ffs(efx->phy_op->mmds) - 1;
|
|
EFX_TRACE(efx, "Fixing erroneous clause22 write\n");
|
|
phy_id2 = mdio_clause45_pack(phy_id2, mmd)
|
|
& FALCON_PHY_ID_ID_MASK;
|
|
}
|
|
|
|
EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id,
|
|
addr, value);
|
|
|
|
spin_lock_bh(&efx->phy_lock);
|
|
|
|
/* Check MII not currently being accessed */
|
|
if (falcon_gmii_wait(efx) != 0)
|
|
goto out;
|
|
|
|
/* Write the address/ID register */
|
|
EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
|
|
falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
|
|
|
|
EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2);
|
|
falcon_write(efx, ®, MD_ID_REG_KER);
|
|
|
|
/* Write data */
|
|
EFX_POPULATE_OWORD_1(reg, MD_TXD, value);
|
|
falcon_write(efx, ®, MD_TXD_REG_KER);
|
|
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MD_WRC, 1,
|
|
MD_GC, 0);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
|
|
/* Wait for data to be written */
|
|
if (falcon_gmii_wait(efx) != 0) {
|
|
/* Abort the write operation */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MD_WRC, 0,
|
|
MD_GC, 1);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
udelay(10);
|
|
}
|
|
|
|
out:
|
|
spin_unlock_bh(&efx->phy_lock);
|
|
}
|
|
|
|
/* Reads a GMII register from a PHY connected to Falcon. If no value
|
|
* could be read, -1 will be returned. */
|
|
static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK;
|
|
efx_oword_t reg;
|
|
int value = -1;
|
|
|
|
if (phy_addr == PHY_ADDR_INVALID)
|
|
return -1;
|
|
|
|
/* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G)
|
|
* but the generic Linux code does not make any distinction or have
|
|
* any state for this.
|
|
* We spot the case where someone tried to talk 22 to a 45 PHY and
|
|
* redirect the request to the lowest numbered MMD as a clause45
|
|
* request. This is enough to allow simple queries like id and link
|
|
* state to succeed. TODO: We may need to do more in future.
|
|
*/
|
|
if (!(phy_id & FALCON_PHY_ID_10G)) {
|
|
int mmd = ffs(efx->phy_op->mmds) - 1;
|
|
EFX_TRACE(efx, "Fixing erroneous clause22 read\n");
|
|
phy_addr = mdio_clause45_pack(phy_addr, mmd)
|
|
& FALCON_PHY_ID_ID_MASK;
|
|
}
|
|
|
|
spin_lock_bh(&efx->phy_lock);
|
|
|
|
/* Check MII not currently being accessed */
|
|
if (falcon_gmii_wait(efx) != 0)
|
|
goto out;
|
|
|
|
EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr);
|
|
falcon_write(efx, ®, MD_PHY_ADR_REG_KER);
|
|
|
|
EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr);
|
|
falcon_write(efx, ®, MD_ID_REG_KER);
|
|
|
|
/* Request data to be read */
|
|
EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
|
|
/* Wait for data to become available */
|
|
value = falcon_gmii_wait(efx);
|
|
if (value == 0) {
|
|
falcon_read(efx, ®, MD_RXD_REG_KER);
|
|
value = EFX_OWORD_FIELD(reg, MD_RXD);
|
|
EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n",
|
|
phy_id, addr, value);
|
|
} else {
|
|
/* Abort the read operation */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
MD_RIC, 0,
|
|
MD_GC, 1);
|
|
falcon_write(efx, ®, MD_CS_REG_KER);
|
|
|
|
EFX_LOG(efx, "read from GMII 0x%x register %02x, got "
|
|
"error %d\n", phy_id, addr, value);
|
|
}
|
|
|
|
out:
|
|
spin_unlock_bh(&efx->phy_lock);
|
|
|
|
return value;
|
|
}
|
|
|
|
static void falcon_init_mdio(struct mii_if_info *gmii)
|
|
{
|
|
gmii->mdio_read = falcon_mdio_read;
|
|
gmii->mdio_write = falcon_mdio_write;
|
|
gmii->phy_id_mask = FALCON_PHY_ID_MASK;
|
|
gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1);
|
|
}
|
|
|
|
static int falcon_probe_phy(struct efx_nic *efx)
|
|
{
|
|
switch (efx->phy_type) {
|
|
case PHY_TYPE_SFX7101:
|
|
efx->phy_op = &falcon_sfx7101_phy_ops;
|
|
break;
|
|
case PHY_TYPE_SFT9001A:
|
|
case PHY_TYPE_SFT9001B:
|
|
efx->phy_op = &falcon_sft9001_phy_ops;
|
|
break;
|
|
case PHY_TYPE_QT2022C2:
|
|
case PHY_TYPE_QT2025C:
|
|
efx->phy_op = &falcon_xfp_phy_ops;
|
|
break;
|
|
default:
|
|
EFX_ERR(efx, "Unknown PHY type %d\n",
|
|
efx->phy_type);
|
|
return -1;
|
|
}
|
|
|
|
if (efx->phy_op->macs & EFX_XMAC)
|
|
efx->loopback_modes |= ((1 << LOOPBACK_XGMII) |
|
|
(1 << LOOPBACK_XGXS) |
|
|
(1 << LOOPBACK_XAUI));
|
|
if (efx->phy_op->macs & EFX_GMAC)
|
|
efx->loopback_modes |= (1 << LOOPBACK_GMAC);
|
|
efx->loopback_modes |= efx->phy_op->loopbacks;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int falcon_switch_mac(struct efx_nic *efx)
|
|
{
|
|
struct efx_mac_operations *old_mac_op = efx->mac_op;
|
|
efx_oword_t nic_stat;
|
|
unsigned strap_val;
|
|
int rc = 0;
|
|
|
|
/* Don't try to fetch MAC stats while we're switching MACs */
|
|
efx_stats_disable(efx);
|
|
|
|
/* Internal loopbacks override the phy speed setting */
|
|
if (efx->loopback_mode == LOOPBACK_GMAC) {
|
|
efx->link_speed = 1000;
|
|
efx->link_fd = true;
|
|
} else if (LOOPBACK_INTERNAL(efx)) {
|
|
efx->link_speed = 10000;
|
|
efx->link_fd = true;
|
|
}
|
|
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
efx->mac_op = (EFX_IS10G(efx) ?
|
|
&falcon_xmac_operations : &falcon_gmac_operations);
|
|
|
|
/* Always push the NIC_STAT_REG setting even if the mac hasn't
|
|
* changed, because this function is run post online reset */
|
|
falcon_read(efx, &nic_stat, NIC_STAT_REG);
|
|
strap_val = EFX_IS10G(efx) ? 5 : 3;
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_EN, 1);
|
|
EFX_SET_OWORD_FIELD(nic_stat, EE_STRAP_OVR, strap_val);
|
|
falcon_write(efx, &nic_stat, NIC_STAT_REG);
|
|
} else {
|
|
/* Falcon A1 does not support 1G/10G speed switching
|
|
* and must not be used with a PHY that does. */
|
|
BUG_ON(EFX_OWORD_FIELD(nic_stat, STRAP_PINS) != strap_val);
|
|
}
|
|
|
|
if (old_mac_op == efx->mac_op)
|
|
goto out;
|
|
|
|
EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
|
|
/* Not all macs support a mac-level link state */
|
|
efx->mac_up = true;
|
|
|
|
rc = falcon_reset_macs(efx);
|
|
out:
|
|
efx_stats_enable(efx);
|
|
return rc;
|
|
}
|
|
|
|
/* This call is responsible for hooking in the MAC and PHY operations */
|
|
int falcon_probe_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
/* Hook in PHY operations table */
|
|
rc = falcon_probe_phy(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Set up GMII structure for PHY */
|
|
efx->mii.supports_gmii = true;
|
|
falcon_init_mdio(&efx->mii);
|
|
|
|
/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
|
|
else
|
|
efx->wanted_fc = EFX_FC_RX;
|
|
|
|
/* Allocate buffer for stats */
|
|
rc = falcon_alloc_buffer(efx, &efx->stats_buffer,
|
|
FALCON_MAC_STATS_SIZE);
|
|
if (rc)
|
|
return rc;
|
|
EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n",
|
|
(unsigned long long)efx->stats_buffer.dma_addr,
|
|
efx->stats_buffer.addr,
|
|
virt_to_phys(efx->stats_buffer.addr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void falcon_remove_port(struct efx_nic *efx)
|
|
{
|
|
falcon_free_buffer(efx, &efx->stats_buffer);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Multicast filtering
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
void falcon_set_multicast_hash(struct efx_nic *efx)
|
|
{
|
|
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
|
|
|
|
/* Broadcast packets go through the multicast hash filter.
|
|
* ether_crc_le() of the broadcast address is 0xbe2612ff
|
|
* so we always add bit 0xff to the mask.
|
|
*/
|
|
set_bit_le(0xff, mc_hash->byte);
|
|
|
|
falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER);
|
|
falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER);
|
|
}
|
|
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon test code
|
|
*
|
|
**************************************************************************/
|
|
|
|
int falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
|
|
{
|
|
struct falcon_nvconfig *nvconfig;
|
|
struct efx_spi_device *spi;
|
|
void *region;
|
|
int rc, magic_num, struct_ver;
|
|
__le16 *word, *limit;
|
|
u32 csum;
|
|
|
|
spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
|
|
if (!spi)
|
|
return -EINVAL;
|
|
|
|
region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
nvconfig = region + NVCONFIG_OFFSET;
|
|
|
|
mutex_lock(&efx->spi_lock);
|
|
rc = falcon_spi_read(spi, 0, FALCON_NVCONFIG_END, NULL, region);
|
|
mutex_unlock(&efx->spi_lock);
|
|
if (rc) {
|
|
EFX_ERR(efx, "Failed to read %s\n",
|
|
efx->spi_flash ? "flash" : "EEPROM");
|
|
rc = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
magic_num = le16_to_cpu(nvconfig->board_magic_num);
|
|
struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
|
|
|
|
rc = -EINVAL;
|
|
if (magic_num != NVCONFIG_BOARD_MAGIC_NUM) {
|
|
EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
|
|
goto out;
|
|
}
|
|
if (struct_ver < 2) {
|
|
EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
|
|
goto out;
|
|
} else if (struct_ver < 4) {
|
|
word = &nvconfig->board_magic_num;
|
|
limit = (__le16 *) (nvconfig + 1);
|
|
} else {
|
|
word = region;
|
|
limit = region + FALCON_NVCONFIG_END;
|
|
}
|
|
for (csum = 0; word < limit; ++word)
|
|
csum += le16_to_cpu(*word);
|
|
|
|
if (~csum & 0xffff) {
|
|
EFX_ERR(efx, "NVRAM has incorrect checksum\n");
|
|
goto out;
|
|
}
|
|
|
|
rc = 0;
|
|
if (nvconfig_out)
|
|
memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
|
|
|
|
out:
|
|
kfree(region);
|
|
return rc;
|
|
}
|
|
|
|
/* Registers tested in the falcon register test */
|
|
static struct {
|
|
unsigned address;
|
|
efx_oword_t mask;
|
|
} efx_test_registers[] = {
|
|
{ ADR_REGION_REG_KER,
|
|
EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
|
|
{ RX_CFG_REG_KER,
|
|
EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
|
|
{ TX_CFG_REG_KER,
|
|
EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ TX_CFG2_REG_KER,
|
|
EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
|
|
{ MAC0_CTRL_REG_KER,
|
|
EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ SRM_TX_DC_CFG_REG_KER,
|
|
EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ RX_DC_CFG_REG_KER,
|
|
EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ RX_DC_PF_WM_REG_KER,
|
|
EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ DP_CTRL_REG,
|
|
EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ GM_CFG2_REG,
|
|
EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ GMF_CFG0_REG,
|
|
EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ XM_GLB_CFG_REG,
|
|
EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ XM_TX_CFG_REG,
|
|
EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ XM_RX_CFG_REG,
|
|
EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ XM_RX_PARAM_REG,
|
|
EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ XM_FC_REG,
|
|
EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ XM_ADR_LO_REG,
|
|
EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ XX_SD_CTL_REG,
|
|
EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
|
|
};
|
|
|
|
static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
|
|
const efx_oword_t *mask)
|
|
{
|
|
return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
|
|
((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
|
|
}
|
|
|
|
int falcon_test_registers(struct efx_nic *efx)
|
|
{
|
|
unsigned address = 0, i, j;
|
|
efx_oword_t mask, imask, original, reg, buf;
|
|
|
|
/* Falcon should be in loopback to isolate the XMAC from the PHY */
|
|
WARN_ON(!LOOPBACK_INTERNAL(efx));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(efx_test_registers); ++i) {
|
|
address = efx_test_registers[i].address;
|
|
mask = imask = efx_test_registers[i].mask;
|
|
EFX_INVERT_OWORD(imask);
|
|
|
|
falcon_read(efx, &original, address);
|
|
|
|
/* bit sweep on and off */
|
|
for (j = 0; j < 128; j++) {
|
|
if (!EFX_EXTRACT_OWORD32(mask, j, j))
|
|
continue;
|
|
|
|
/* Test this testable bit can be set in isolation */
|
|
EFX_AND_OWORD(reg, original, mask);
|
|
EFX_SET_OWORD32(reg, j, j, 1);
|
|
|
|
falcon_write(efx, ®, address);
|
|
falcon_read(efx, &buf, address);
|
|
|
|
if (efx_masked_compare_oword(®, &buf, &mask))
|
|
goto fail;
|
|
|
|
/* Test this testable bit can be cleared in isolation */
|
|
EFX_OR_OWORD(reg, original, mask);
|
|
EFX_SET_OWORD32(reg, j, j, 0);
|
|
|
|
falcon_write(efx, ®, address);
|
|
falcon_read(efx, &buf, address);
|
|
|
|
if (efx_masked_compare_oword(®, &buf, &mask))
|
|
goto fail;
|
|
}
|
|
|
|
falcon_write(efx, &original, address);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
|
|
" at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
|
|
EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
|
|
return -EIO;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Device reset
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* Resets NIC to known state. This routine must be called in process
|
|
* context and is allowed to sleep. */
|
|
int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t glb_ctl_reg_ker;
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "performing hardware reset (%d)\n", method);
|
|
|
|
/* Initiate device reset */
|
|
if (method == RESET_TYPE_WORLD) {
|
|
rc = pci_save_state(efx->pci_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to backup PCI state of primary "
|
|
"function prior to hardware reset\n");
|
|
goto fail1;
|
|
}
|
|
if (FALCON_IS_DUAL_FUNC(efx)) {
|
|
rc = pci_save_state(nic_data->pci_dev2);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to backup PCI state of "
|
|
"secondary function prior to "
|
|
"hardware reset\n");
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
|
|
EXT_PHY_RST_DUR, 0x7,
|
|
SWRST, 1);
|
|
} else {
|
|
int reset_phy = (method == RESET_TYPE_INVISIBLE ?
|
|
EXCLUDE_FROM_RESET : 0);
|
|
|
|
EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
|
|
EXT_PHY_RST_CTL, reset_phy,
|
|
PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET,
|
|
PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET,
|
|
PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET,
|
|
EE_RST_CTL, EXCLUDE_FROM_RESET,
|
|
EXT_PHY_RST_DUR, 0x7 /* 10ms */,
|
|
SWRST, 1);
|
|
}
|
|
falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
|
|
|
|
EFX_LOG(efx, "waiting for hardware reset\n");
|
|
schedule_timeout_uninterruptible(HZ / 20);
|
|
|
|
/* Restore PCI configuration if needed */
|
|
if (method == RESET_TYPE_WORLD) {
|
|
if (FALCON_IS_DUAL_FUNC(efx)) {
|
|
rc = pci_restore_state(nic_data->pci_dev2);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to restore PCI config for "
|
|
"the secondary function\n");
|
|
goto fail3;
|
|
}
|
|
}
|
|
rc = pci_restore_state(efx->pci_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to restore PCI config for the "
|
|
"primary function\n");
|
|
goto fail4;
|
|
}
|
|
EFX_LOG(efx, "successfully restored PCI config\n");
|
|
}
|
|
|
|
/* Assert that reset complete */
|
|
falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER);
|
|
if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) {
|
|
rc = -ETIMEDOUT;
|
|
EFX_ERR(efx, "timed out waiting for hardware reset\n");
|
|
goto fail5;
|
|
}
|
|
EFX_LOG(efx, "hardware reset complete\n");
|
|
|
|
return 0;
|
|
|
|
/* pci_save_state() and pci_restore_state() MUST be called in pairs */
|
|
fail2:
|
|
fail3:
|
|
pci_restore_state(efx->pci_dev);
|
|
fail1:
|
|
fail4:
|
|
fail5:
|
|
return rc;
|
|
}
|
|
|
|
/* Zeroes out the SRAM contents. This routine must be called in
|
|
* process context and is allowed to sleep.
|
|
*/
|
|
static int falcon_reset_sram(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
|
|
int count;
|
|
|
|
/* Set the SRAM wake/sleep GPIO appropriately. */
|
|
falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1);
|
|
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1);
|
|
falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER);
|
|
|
|
/* Initiate SRAM reset */
|
|
EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
|
|
SRAM_OOB_BT_INIT_EN, 1,
|
|
SRM_NUM_BANKS_AND_BANK_SIZE, 0);
|
|
falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
|
|
|
|
/* Wait for SRAM reset to complete */
|
|
count = 0;
|
|
do {
|
|
EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
|
|
|
|
/* SRAM reset is slow; expect around 16ms */
|
|
schedule_timeout_uninterruptible(HZ / 50);
|
|
|
|
/* Check for reset complete */
|
|
falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER);
|
|
if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) {
|
|
EFX_LOG(efx, "SRAM reset complete\n");
|
|
|
|
return 0;
|
|
}
|
|
} while (++count < 20); /* wait upto 0.4 sec */
|
|
|
|
EFX_ERR(efx, "timed out waiting for SRAM reset\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int falcon_spi_device_init(struct efx_nic *efx,
|
|
struct efx_spi_device **spi_device_ret,
|
|
unsigned int device_id, u32 device_type)
|
|
{
|
|
struct efx_spi_device *spi_device;
|
|
|
|
if (device_type != 0) {
|
|
spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
|
|
if (!spi_device)
|
|
return -ENOMEM;
|
|
spi_device->device_id = device_id;
|
|
spi_device->size =
|
|
1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
|
|
spi_device->addr_len =
|
|
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
|
|
spi_device->munge_address = (spi_device->size == 1 << 9 &&
|
|
spi_device->addr_len == 1);
|
|
spi_device->erase_command =
|
|
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
|
|
spi_device->erase_size =
|
|
1 << SPI_DEV_TYPE_FIELD(device_type,
|
|
SPI_DEV_TYPE_ERASE_SIZE);
|
|
spi_device->block_size =
|
|
1 << SPI_DEV_TYPE_FIELD(device_type,
|
|
SPI_DEV_TYPE_BLOCK_SIZE);
|
|
|
|
spi_device->efx = efx;
|
|
} else {
|
|
spi_device = NULL;
|
|
}
|
|
|
|
kfree(*spi_device_ret);
|
|
*spi_device_ret = spi_device;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void falcon_remove_spi_devices(struct efx_nic *efx)
|
|
{
|
|
kfree(efx->spi_eeprom);
|
|
efx->spi_eeprom = NULL;
|
|
kfree(efx->spi_flash);
|
|
efx->spi_flash = NULL;
|
|
}
|
|
|
|
/* Extract non-volatile configuration */
|
|
static int falcon_probe_nvconfig(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nvconfig *nvconfig;
|
|
int board_rev;
|
|
int rc;
|
|
|
|
nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
|
|
if (!nvconfig)
|
|
return -ENOMEM;
|
|
|
|
rc = falcon_read_nvram(efx, nvconfig);
|
|
if (rc == -EINVAL) {
|
|
EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
|
|
efx->phy_type = PHY_TYPE_NONE;
|
|
efx->mii.phy_id = PHY_ADDR_INVALID;
|
|
board_rev = 0;
|
|
rc = 0;
|
|
} else if (rc) {
|
|
goto fail1;
|
|
} else {
|
|
struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
|
|
struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
|
|
|
|
efx->phy_type = v2->port0_phy_type;
|
|
efx->mii.phy_id = v2->port0_phy_addr;
|
|
board_rev = le16_to_cpu(v2->board_revision);
|
|
|
|
if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
|
|
__le32 fl = v3->spi_device_type[EE_SPI_FLASH];
|
|
__le32 ee = v3->spi_device_type[EE_SPI_EEPROM];
|
|
rc = falcon_spi_device_init(efx, &efx->spi_flash,
|
|
EE_SPI_FLASH,
|
|
le32_to_cpu(fl));
|
|
if (rc)
|
|
goto fail2;
|
|
rc = falcon_spi_device_init(efx, &efx->spi_eeprom,
|
|
EE_SPI_EEPROM,
|
|
le32_to_cpu(ee));
|
|
if (rc)
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
/* Read the MAC addresses */
|
|
memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
|
|
|
|
EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id);
|
|
|
|
efx_set_board_info(efx, board_rev);
|
|
|
|
kfree(nvconfig);
|
|
return 0;
|
|
|
|
fail2:
|
|
falcon_remove_spi_devices(efx);
|
|
fail1:
|
|
kfree(nvconfig);
|
|
return rc;
|
|
}
|
|
|
|
/* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
|
|
* count, port speed). Set workaround and feature flags accordingly.
|
|
*/
|
|
static int falcon_probe_nic_variant(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t altera_build;
|
|
efx_oword_t nic_stat;
|
|
|
|
falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER);
|
|
if (EFX_OWORD_FIELD(altera_build, VER_ALL)) {
|
|
EFX_ERR(efx, "Falcon FPGA not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
falcon_read(efx, &nic_stat, NIC_STAT_REG);
|
|
|
|
switch (falcon_rev(efx)) {
|
|
case FALCON_REV_A0:
|
|
case 0xff:
|
|
EFX_ERR(efx, "Falcon rev A0 not supported\n");
|
|
return -ENODEV;
|
|
|
|
case FALCON_REV_A1:
|
|
if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) {
|
|
EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
|
|
return -ENODEV;
|
|
}
|
|
break;
|
|
|
|
case FALCON_REV_B0:
|
|
break;
|
|
|
|
default:
|
|
EFX_ERR(efx, "Unknown Falcon rev %d\n", falcon_rev(efx));
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Initial assumed speed */
|
|
efx->link_speed = EFX_OWORD_FIELD(nic_stat, STRAP_10G) ? 10000 : 1000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Probe all SPI devices on the NIC */
|
|
static void falcon_probe_spi_devices(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
|
|
int boot_dev;
|
|
|
|
falcon_read(efx, &gpio_ctl, GPIO_CTL_REG_KER);
|
|
falcon_read(efx, &nic_stat, NIC_STAT_REG);
|
|
falcon_read(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
|
|
|
|
if (EFX_OWORD_FIELD(gpio_ctl, BOOTED_USING_NVDEVICE)) {
|
|
boot_dev = (EFX_OWORD_FIELD(nic_stat, SF_PRST) ?
|
|
EE_SPI_FLASH : EE_SPI_EEPROM);
|
|
EFX_LOG(efx, "Booted from %s\n",
|
|
boot_dev == EE_SPI_FLASH ? "flash" : "EEPROM");
|
|
} else {
|
|
/* Disable VPD and set clock dividers to safe
|
|
* values for initial programming. */
|
|
boot_dev = -1;
|
|
EFX_LOG(efx, "Booted from internal ASIC settings;"
|
|
" setting SPI config\n");
|
|
EFX_POPULATE_OWORD_3(ee_vpd_cfg, EE_VPD_EN, 0,
|
|
/* 125 MHz / 7 ~= 20 MHz */
|
|
EE_SF_CLOCK_DIV, 7,
|
|
/* 125 MHz / 63 ~= 2 MHz */
|
|
EE_EE_CLOCK_DIV, 63);
|
|
falcon_write(efx, &ee_vpd_cfg, EE_VPD_CFG_REG_KER);
|
|
}
|
|
|
|
if (boot_dev == EE_SPI_FLASH)
|
|
falcon_spi_device_init(efx, &efx->spi_flash, EE_SPI_FLASH,
|
|
default_flash_type);
|
|
if (boot_dev == EE_SPI_EEPROM)
|
|
falcon_spi_device_init(efx, &efx->spi_eeprom, EE_SPI_EEPROM,
|
|
large_eeprom_type);
|
|
}
|
|
|
|
int falcon_probe_nic(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data;
|
|
int rc;
|
|
|
|
/* Allocate storage for hardware specific data */
|
|
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
|
|
if (!nic_data)
|
|
return -ENOMEM;
|
|
efx->nic_data = nic_data;
|
|
|
|
/* Determine number of ports etc. */
|
|
rc = falcon_probe_nic_variant(efx);
|
|
if (rc)
|
|
goto fail1;
|
|
|
|
/* Probe secondary function if expected */
|
|
if (FALCON_IS_DUAL_FUNC(efx)) {
|
|
struct pci_dev *dev = pci_dev_get(efx->pci_dev);
|
|
|
|
while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
|
|
dev))) {
|
|
if (dev->bus == efx->pci_dev->bus &&
|
|
dev->devfn == efx->pci_dev->devfn + 1) {
|
|
nic_data->pci_dev2 = dev;
|
|
break;
|
|
}
|
|
}
|
|
if (!nic_data->pci_dev2) {
|
|
EFX_ERR(efx, "failed to find secondary function\n");
|
|
rc = -ENODEV;
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
/* Now we can reset the NIC */
|
|
rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to reset NIC\n");
|
|
goto fail3;
|
|
}
|
|
|
|
/* Allocate memory for INT_KER */
|
|
rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
|
|
if (rc)
|
|
goto fail4;
|
|
BUG_ON(efx->irq_status.dma_addr & 0x0f);
|
|
|
|
EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n",
|
|
(unsigned long long)efx->irq_status.dma_addr,
|
|
efx->irq_status.addr, virt_to_phys(efx->irq_status.addr));
|
|
|
|
falcon_probe_spi_devices(efx);
|
|
|
|
/* Read in the non-volatile configuration */
|
|
rc = falcon_probe_nvconfig(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
/* Initialise I2C adapter */
|
|
efx->i2c_adap.owner = THIS_MODULE;
|
|
nic_data->i2c_data = falcon_i2c_bit_operations;
|
|
nic_data->i2c_data.data = efx;
|
|
efx->i2c_adap.algo_data = &nic_data->i2c_data;
|
|
efx->i2c_adap.dev.parent = &efx->pci_dev->dev;
|
|
strlcpy(efx->i2c_adap.name, "SFC4000 GPIO", sizeof(efx->i2c_adap.name));
|
|
rc = i2c_bit_add_bus(&efx->i2c_adap);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
return 0;
|
|
|
|
fail5:
|
|
falcon_remove_spi_devices(efx);
|
|
falcon_free_buffer(efx, &efx->irq_status);
|
|
fail4:
|
|
fail3:
|
|
if (nic_data->pci_dev2) {
|
|
pci_dev_put(nic_data->pci_dev2);
|
|
nic_data->pci_dev2 = NULL;
|
|
}
|
|
fail2:
|
|
fail1:
|
|
kfree(efx->nic_data);
|
|
return rc;
|
|
}
|
|
|
|
/* This call performs hardware-specific global initialisation, such as
|
|
* defining the descriptor cache sizes and number of RSS channels.
|
|
* It does not set up any buffers, descriptor rings or event queues.
|
|
*/
|
|
int falcon_init_nic(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t temp;
|
|
unsigned thresh;
|
|
int rc;
|
|
|
|
/* Use on-chip SRAM */
|
|
falcon_read(efx, &temp, NIC_STAT_REG);
|
|
EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1);
|
|
falcon_write(efx, &temp, NIC_STAT_REG);
|
|
|
|
/* Set the source of the GMAC clock */
|
|
if (falcon_rev(efx) == FALCON_REV_B0) {
|
|
falcon_read(efx, &temp, GPIO_CTL_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, GPIO_USE_NIC_CLK, true);
|
|
falcon_write(efx, &temp, GPIO_CTL_REG_KER);
|
|
}
|
|
|
|
/* Set buffer table mode */
|
|
EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL);
|
|
falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER);
|
|
|
|
rc = falcon_reset_sram(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Set positions of descriptor caches in SRAM. */
|
|
EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8);
|
|
falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER);
|
|
EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8);
|
|
falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER);
|
|
|
|
/* Set TX descriptor cache size. */
|
|
BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER));
|
|
EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
|
|
falcon_write(efx, &temp, TX_DC_CFG_REG_KER);
|
|
|
|
/* Set RX descriptor cache size. Set low watermark to size-8, as
|
|
* this allows most efficient prefetching.
|
|
*/
|
|
BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER));
|
|
EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
|
|
falcon_write(efx, &temp, RX_DC_CFG_REG_KER);
|
|
EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
|
|
falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER);
|
|
|
|
/* Clear the parity enables on the TX data fifos as
|
|
* they produce false parity errors because of timing issues
|
|
*/
|
|
if (EFX_WORKAROUND_5129(efx)) {
|
|
falcon_read(efx, &temp, SPARE_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0);
|
|
falcon_write(efx, &temp, SPARE_REG_KER);
|
|
}
|
|
|
|
/* Enable all the genuinely fatal interrupts. (They are still
|
|
* masked by the overall interrupt mask, controlled by
|
|
* falcon_interrupts()).
|
|
*
|
|
* Note: All other fatal interrupts are enabled
|
|
*/
|
|
EFX_POPULATE_OWORD_3(temp,
|
|
ILL_ADR_INT_KER_EN, 1,
|
|
RBUF_OWN_INT_KER_EN, 1,
|
|
TBUF_OWN_INT_KER_EN, 1);
|
|
EFX_INVERT_OWORD(temp);
|
|
falcon_write(efx, &temp, FATAL_INTR_REG_KER);
|
|
|
|
if (EFX_WORKAROUND_7244(efx)) {
|
|
falcon_read(efx, &temp, RX_FILTER_CTL_REG);
|
|
EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8);
|
|
falcon_write(efx, &temp, RX_FILTER_CTL_REG);
|
|
}
|
|
|
|
falcon_setup_rss_indir_table(efx);
|
|
|
|
/* Setup RX. Wait for descriptor is broken and must
|
|
* be disabled. RXDP recovery shouldn't be needed, but is.
|
|
*/
|
|
falcon_read(efx, &temp, RX_SELF_RST_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1);
|
|
EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1);
|
|
if (EFX_WORKAROUND_5583(efx))
|
|
EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1);
|
|
falcon_write(efx, &temp, RX_SELF_RST_REG_KER);
|
|
|
|
/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
|
|
* controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
|
|
*/
|
|
falcon_read(efx, &temp, TX_CFG2_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe);
|
|
EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1);
|
|
EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1);
|
|
EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0);
|
|
EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1);
|
|
/* Enable SW_EV to inherit in char driver - assume harmless here */
|
|
EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1);
|
|
/* Prefetch threshold 2 => fetch when descriptor cache half empty */
|
|
EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2);
|
|
/* Squash TX of packets of 16 bytes or less */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx))
|
|
EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1);
|
|
falcon_write(efx, &temp, TX_CFG2_REG_KER);
|
|
|
|
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
|
|
* descriptors (which is bad).
|
|
*/
|
|
falcon_read(efx, &temp, TX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0);
|
|
falcon_write(efx, &temp, TX_CFG_REG_KER);
|
|
|
|
/* RX config */
|
|
falcon_read(efx, &temp, RX_CFG_REG_KER);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0);
|
|
if (EFX_WORKAROUND_7575(efx))
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE,
|
|
(3 * 4096) / 32);
|
|
if (falcon_rev(efx) >= FALCON_REV_B0)
|
|
EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1);
|
|
|
|
/* RX FIFO flow control thresholds */
|
|
thresh = ((rx_xon_thresh_bytes >= 0) ?
|
|
rx_xon_thresh_bytes : efx->type->rx_xon_thresh);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256);
|
|
thresh = ((rx_xoff_thresh_bytes >= 0) ?
|
|
rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256);
|
|
/* RX control FIFO thresholds [32 entries] */
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 20);
|
|
EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 25);
|
|
falcon_write(efx, &temp, RX_CFG_REG_KER);
|
|
|
|
/* Set destination of both TX and RX Flush events */
|
|
if (falcon_rev(efx) >= FALCON_REV_B0) {
|
|
EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0);
|
|
falcon_write(efx, &temp, DP_CTRL_REG);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void falcon_remove_nic(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
/* Remove I2C adapter and clear it in preparation for a retry */
|
|
rc = i2c_del_adapter(&efx->i2c_adap);
|
|
BUG_ON(rc);
|
|
memset(&efx->i2c_adap, 0, sizeof(efx->i2c_adap));
|
|
|
|
falcon_remove_spi_devices(efx);
|
|
falcon_free_buffer(efx, &efx->irq_status);
|
|
|
|
falcon_reset_hw(efx, RESET_TYPE_ALL);
|
|
|
|
/* Release the second function after the reset */
|
|
if (nic_data->pci_dev2) {
|
|
pci_dev_put(nic_data->pci_dev2);
|
|
nic_data->pci_dev2 = NULL;
|
|
}
|
|
|
|
/* Tear down the private nic state */
|
|
kfree(efx->nic_data);
|
|
efx->nic_data = NULL;
|
|
}
|
|
|
|
void falcon_update_nic_stats(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t cnt;
|
|
|
|
falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER);
|
|
efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Revision-dependent attributes used by efx.c
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
struct efx_nic_type falcon_a_nic_type = {
|
|
.mem_bar = 2,
|
|
.mem_map_size = 0x20000,
|
|
.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1,
|
|
.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1,
|
|
.buf_tbl_base = BUF_TBL_KER_A1,
|
|
.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1,
|
|
.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1,
|
|
.txd_ring_mask = FALCON_TXD_RING_MASK,
|
|
.rxd_ring_mask = FALCON_RXD_RING_MASK,
|
|
.evq_size = FALCON_EVQ_SIZE,
|
|
.max_dma_mask = FALCON_DMA_MASK,
|
|
.tx_dma_mask = FALCON_TX_DMA_MASK,
|
|
.bug5391_mask = 0xf,
|
|
.rx_xoff_thresh = 2048,
|
|
.rx_xon_thresh = 512,
|
|
.rx_buffer_padding = 0x24,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSI,
|
|
.phys_addr_channels = 4,
|
|
};
|
|
|
|
struct efx_nic_type falcon_b_nic_type = {
|
|
.mem_bar = 2,
|
|
/* Map everything up to and including the RSS indirection
|
|
* table. Don't map MSI-X table, MSI-X PBA since Linux
|
|
* requires that they not be mapped. */
|
|
.mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800,
|
|
.txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0,
|
|
.rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0,
|
|
.buf_tbl_base = BUF_TBL_KER_B0,
|
|
.evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0,
|
|
.evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0,
|
|
.txd_ring_mask = FALCON_TXD_RING_MASK,
|
|
.rxd_ring_mask = FALCON_RXD_RING_MASK,
|
|
.evq_size = FALCON_EVQ_SIZE,
|
|
.max_dma_mask = FALCON_DMA_MASK,
|
|
.tx_dma_mask = FALCON_TX_DMA_MASK,
|
|
.bug5391_mask = 0,
|
|
.rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */
|
|
.rx_xon_thresh = 27648, /* ~3*max MTU */
|
|
.rx_buffer_padding = 0,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
|
|
* interrupt handler only supports 32
|
|
* channels */
|
|
};
|
|
|