linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_fbc.c
Chris Wilson 908b6e6e8a drm/i915: Quietly cancel FBC activation if CRTC is turned off before worker
Since we use a worker to enable FBC on the CRTC, it is possible for the
CRTC to be switched off before we run. In this case, the CRTC will not
allow us to wait upon a vblank, so remove the DRM_ERROR as this is very
much expected.

Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=102410
Fixes: ca18d51d77 ("drm/i915/fbc: wait for a vblank instead of 50ms when enabling")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Paulo Zanoni <paulo.r.zanoni@intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20170825150215.19236-1-chris@chris-wilson.co.uk
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2017-08-26 12:39:41 +01:00

1384 lines
38 KiB
C

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* DOC: Frame Buffer Compression (FBC)
*
* FBC tries to save memory bandwidth (and so power consumption) by
* compressing the amount of memory used by the display. It is total
* transparent to user space and completely handled in the kernel.
*
* The benefits of FBC are mostly visible with solid backgrounds and
* variation-less patterns. It comes from keeping the memory footprint small
* and having fewer memory pages opened and accessed for refreshing the display.
*
* i915 is responsible to reserve stolen memory for FBC and configure its
* offset on proper registers. The hardware takes care of all
* compress/decompress. However there are many known cases where we have to
* forcibly disable it to allow proper screen updates.
*/
#include "intel_drv.h"
#include "i915_drv.h"
static inline bool fbc_supported(struct drm_i915_private *dev_priv)
{
return HAS_FBC(dev_priv);
}
static inline bool fbc_on_pipe_a_only(struct drm_i915_private *dev_priv)
{
return IS_HASWELL(dev_priv) || INTEL_GEN(dev_priv) >= 8;
}
static inline bool fbc_on_plane_a_only(struct drm_i915_private *dev_priv)
{
return INTEL_GEN(dev_priv) < 4;
}
static inline bool no_fbc_on_multiple_pipes(struct drm_i915_private *dev_priv)
{
return INTEL_GEN(dev_priv) <= 3;
}
/*
* In some platforms where the CRTC's x:0/y:0 coordinates doesn't match the
* frontbuffer's x:0/y:0 coordinates we lie to the hardware about the plane's
* origin so the x and y offsets can actually fit the registers. As a
* consequence, the fence doesn't really start exactly at the display plane
* address we program because it starts at the real start of the buffer, so we
* have to take this into consideration here.
*/
static unsigned int get_crtc_fence_y_offset(struct intel_crtc *crtc)
{
return crtc->base.y - crtc->adjusted_y;
}
/*
* For SKL+, the plane source size used by the hardware is based on the value we
* write to the PLANE_SIZE register. For BDW-, the hardware looks at the value
* we wrote to PIPESRC.
*/
static void intel_fbc_get_plane_source_size(struct intel_fbc_state_cache *cache,
int *width, int *height)
{
if (width)
*width = cache->plane.src_w;
if (height)
*height = cache->plane.src_h;
}
static int intel_fbc_calculate_cfb_size(struct drm_i915_private *dev_priv,
struct intel_fbc_state_cache *cache)
{
int lines;
intel_fbc_get_plane_source_size(cache, NULL, &lines);
if (INTEL_GEN(dev_priv) == 7)
lines = min(lines, 2048);
else if (INTEL_GEN(dev_priv) >= 8)
lines = min(lines, 2560);
/* Hardware needs the full buffer stride, not just the active area. */
return lines * cache->fb.stride;
}
static void i8xx_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 fbc_ctl;
/* Disable compression */
fbc_ctl = I915_READ(FBC_CONTROL);
if ((fbc_ctl & FBC_CTL_EN) == 0)
return;
fbc_ctl &= ~FBC_CTL_EN;
I915_WRITE(FBC_CONTROL, fbc_ctl);
/* Wait for compressing bit to clear */
if (intel_wait_for_register(dev_priv,
FBC_STATUS, FBC_STAT_COMPRESSING, 0,
10)) {
DRM_DEBUG_KMS("FBC idle timed out\n");
return;
}
}
static void i8xx_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
int cfb_pitch;
int i;
u32 fbc_ctl;
/* Note: fbc.threshold == 1 for i8xx */
cfb_pitch = params->cfb_size / FBC_LL_SIZE;
if (params->fb.stride < cfb_pitch)
cfb_pitch = params->fb.stride;
/* FBC_CTL wants 32B or 64B units */
if (IS_GEN2(dev_priv))
cfb_pitch = (cfb_pitch / 32) - 1;
else
cfb_pitch = (cfb_pitch / 64) - 1;
/* Clear old tags */
for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
I915_WRITE(FBC_TAG(i), 0);
if (IS_GEN4(dev_priv)) {
u32 fbc_ctl2;
/* Set it up... */
fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
fbc_ctl2 |= FBC_CTL_PLANE(params->crtc.plane);
I915_WRITE(FBC_CONTROL2, fbc_ctl2);
I915_WRITE(FBC_FENCE_OFF, params->crtc.fence_y_offset);
}
/* enable it... */
fbc_ctl = I915_READ(FBC_CONTROL);
fbc_ctl &= 0x3fff << FBC_CTL_INTERVAL_SHIFT;
fbc_ctl |= FBC_CTL_EN | FBC_CTL_PERIODIC;
if (IS_I945GM(dev_priv))
fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
fbc_ctl |= params->vma->fence->id;
I915_WRITE(FBC_CONTROL, fbc_ctl);
}
static bool i8xx_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
}
static void g4x_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
u32 dpfc_ctl;
dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane) | DPFC_SR_EN;
if (params->fb.format->cpp[0] == 2)
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
else
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
if (params->vma->fence) {
dpfc_ctl |= DPFC_CTL_FENCE_EN | params->vma->fence->id;
I915_WRITE(DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
} else {
I915_WRITE(DPFC_FENCE_YOFF, 0);
}
/* enable it... */
I915_WRITE(DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
}
static void g4x_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(DPFC_CONTROL, dpfc_ctl);
}
}
static bool g4x_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
}
/* This function forces a CFB recompression through the nuke operation. */
static void intel_fbc_recompress(struct drm_i915_private *dev_priv)
{
I915_WRITE(MSG_FBC_REND_STATE, FBC_REND_NUKE);
POSTING_READ(MSG_FBC_REND_STATE);
}
static void ilk_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
u32 dpfc_ctl;
int threshold = dev_priv->fbc.threshold;
dpfc_ctl = DPFC_CTL_PLANE(params->crtc.plane);
if (params->fb.format->cpp[0] == 2)
threshold++;
switch (threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
if (params->vma->fence) {
dpfc_ctl |= DPFC_CTL_FENCE_EN;
if (IS_GEN5(dev_priv))
dpfc_ctl |= params->vma->fence->id;
if (IS_GEN6(dev_priv)) {
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE |
params->vma->fence->id);
I915_WRITE(DPFC_CPU_FENCE_OFFSET,
params->crtc.fence_y_offset);
}
} else {
if (IS_GEN6(dev_priv)) {
I915_WRITE(SNB_DPFC_CTL_SA, 0);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0);
}
}
I915_WRITE(ILK_DPFC_FENCE_YOFF, params->crtc.fence_y_offset);
I915_WRITE(ILK_FBC_RT_BASE,
i915_ggtt_offset(params->vma) | ILK_FBC_RT_VALID);
/* enable it... */
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
intel_fbc_recompress(dev_priv);
}
static void ilk_fbc_deactivate(struct drm_i915_private *dev_priv)
{
u32 dpfc_ctl;
/* Disable compression */
dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
if (dpfc_ctl & DPFC_CTL_EN) {
dpfc_ctl &= ~DPFC_CTL_EN;
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
}
}
static bool ilk_fbc_is_active(struct drm_i915_private *dev_priv)
{
return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
}
static void gen7_fbc_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc_reg_params *params = &dev_priv->fbc.params;
u32 dpfc_ctl;
int threshold = dev_priv->fbc.threshold;
/* Display WA #0529: skl, kbl, bxt. */
if (IS_GEN9(dev_priv) && !IS_GEMINILAKE(dev_priv)) {
u32 val = I915_READ(CHICKEN_MISC_4);
val &= ~(FBC_STRIDE_OVERRIDE | FBC_STRIDE_MASK);
if (i915_gem_object_get_tiling(params->vma->obj) !=
I915_TILING_X)
val |= FBC_STRIDE_OVERRIDE | params->gen9_wa_cfb_stride;
I915_WRITE(CHICKEN_MISC_4, val);
}
dpfc_ctl = 0;
if (IS_IVYBRIDGE(dev_priv))
dpfc_ctl |= IVB_DPFC_CTL_PLANE(params->crtc.plane);
if (params->fb.format->cpp[0] == 2)
threshold++;
switch (threshold) {
case 4:
case 3:
dpfc_ctl |= DPFC_CTL_LIMIT_4X;
break;
case 2:
dpfc_ctl |= DPFC_CTL_LIMIT_2X;
break;
case 1:
dpfc_ctl |= DPFC_CTL_LIMIT_1X;
break;
}
if (params->vma->fence) {
dpfc_ctl |= IVB_DPFC_CTL_FENCE_EN;
I915_WRITE(SNB_DPFC_CTL_SA,
SNB_CPU_FENCE_ENABLE |
params->vma->fence->id);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, params->crtc.fence_y_offset);
} else {
I915_WRITE(SNB_DPFC_CTL_SA,0);
I915_WRITE(DPFC_CPU_FENCE_OFFSET, 0);
}
if (dev_priv->fbc.false_color)
dpfc_ctl |= FBC_CTL_FALSE_COLOR;
if (IS_IVYBRIDGE(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:ivb */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:hsw,bdw */
I915_WRITE(CHICKEN_PIPESL_1(params->crtc.pipe),
I915_READ(CHICKEN_PIPESL_1(params->crtc.pipe)) |
HSW_FBCQ_DIS);
}
I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
intel_fbc_recompress(dev_priv);
}
static bool intel_fbc_hw_is_active(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) >= 5)
return ilk_fbc_is_active(dev_priv);
else if (IS_GM45(dev_priv))
return g4x_fbc_is_active(dev_priv);
else
return i8xx_fbc_is_active(dev_priv);
}
static void intel_fbc_hw_activate(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
fbc->active = true;
if (INTEL_GEN(dev_priv) >= 7)
gen7_fbc_activate(dev_priv);
else if (INTEL_GEN(dev_priv) >= 5)
ilk_fbc_activate(dev_priv);
else if (IS_GM45(dev_priv))
g4x_fbc_activate(dev_priv);
else
i8xx_fbc_activate(dev_priv);
}
static void intel_fbc_hw_deactivate(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
fbc->active = false;
if (INTEL_GEN(dev_priv) >= 5)
ilk_fbc_deactivate(dev_priv);
else if (IS_GM45(dev_priv))
g4x_fbc_deactivate(dev_priv);
else
i8xx_fbc_deactivate(dev_priv);
}
/**
* intel_fbc_is_active - Is FBC active?
* @dev_priv: i915 device instance
*
* This function is used to verify the current state of FBC.
*
* FIXME: This should be tracked in the plane config eventually
* instead of queried at runtime for most callers.
*/
bool intel_fbc_is_active(struct drm_i915_private *dev_priv)
{
return dev_priv->fbc.active;
}
static void intel_fbc_work_fn(struct work_struct *__work)
{
struct drm_i915_private *dev_priv =
container_of(__work, struct drm_i915_private, fbc.work.work);
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_work *work = &fbc->work;
struct intel_crtc *crtc = fbc->crtc;
struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[crtc->pipe];
if (drm_crtc_vblank_get(&crtc->base)) {
/* CRTC is now off, leave FBC deactivated */
mutex_lock(&fbc->lock);
work->scheduled = false;
mutex_unlock(&fbc->lock);
return;
}
retry:
/* Delay the actual enabling to let pageflipping cease and the
* display to settle before starting the compression. Note that
* this delay also serves a second purpose: it allows for a
* vblank to pass after disabling the FBC before we attempt
* to modify the control registers.
*
* WaFbcWaitForVBlankBeforeEnable:ilk,snb
*
* It is also worth mentioning that since work->scheduled_vblank can be
* updated multiple times by the other threads, hitting the timeout is
* not an error condition. We'll just end up hitting the "goto retry"
* case below.
*/
wait_event_timeout(vblank->queue,
drm_crtc_vblank_count(&crtc->base) != work->scheduled_vblank,
msecs_to_jiffies(50));
mutex_lock(&fbc->lock);
/* Were we cancelled? */
if (!work->scheduled)
goto out;
/* Were we delayed again while this function was sleeping? */
if (drm_crtc_vblank_count(&crtc->base) == work->scheduled_vblank) {
mutex_unlock(&fbc->lock);
goto retry;
}
intel_fbc_hw_activate(dev_priv);
work->scheduled = false;
out:
mutex_unlock(&fbc->lock);
drm_crtc_vblank_put(&crtc->base);
}
static void intel_fbc_schedule_activation(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_work *work = &fbc->work;
WARN_ON(!mutex_is_locked(&fbc->lock));
if (WARN_ON(!fbc->enabled))
return;
if (drm_crtc_vblank_get(&crtc->base)) {
DRM_ERROR("vblank not available for FBC on pipe %c\n",
pipe_name(crtc->pipe));
return;
}
/* It is useless to call intel_fbc_cancel_work() or cancel_work() in
* this function since we're not releasing fbc.lock, so it won't have an
* opportunity to grab it to discover that it was cancelled. So we just
* update the expected jiffy count. */
work->scheduled = true;
work->scheduled_vblank = drm_crtc_vblank_count(&crtc->base);
drm_crtc_vblank_put(&crtc->base);
schedule_work(&work->work);
}
static void intel_fbc_deactivate(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
WARN_ON(!mutex_is_locked(&fbc->lock));
/* Calling cancel_work() here won't help due to the fact that the work
* function grabs fbc->lock. Just set scheduled to false so the work
* function can know it was cancelled. */
fbc->work.scheduled = false;
if (fbc->active)
intel_fbc_hw_deactivate(dev_priv);
}
static bool multiple_pipes_ok(struct intel_crtc *crtc,
struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
enum pipe pipe = crtc->pipe;
/* Don't even bother tracking anything we don't need. */
if (!no_fbc_on_multiple_pipes(dev_priv))
return true;
if (plane_state->base.visible)
fbc->visible_pipes_mask |= (1 << pipe);
else
fbc->visible_pipes_mask &= ~(1 << pipe);
return (fbc->visible_pipes_mask & ~(1 << pipe)) != 0;
}
static int find_compression_threshold(struct drm_i915_private *dev_priv,
struct drm_mm_node *node,
int size,
int fb_cpp)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int compression_threshold = 1;
int ret;
u64 end;
/* The FBC hardware for BDW/SKL doesn't have access to the stolen
* reserved range size, so it always assumes the maximum (8mb) is used.
* If we enable FBC using a CFB on that memory range we'll get FIFO
* underruns, even if that range is not reserved by the BIOS. */
if (IS_BROADWELL(dev_priv) || IS_GEN9_BC(dev_priv))
end = ggtt->stolen_size - 8 * 1024 * 1024;
else
end = U64_MAX;
/* HACK: This code depends on what we will do in *_enable_fbc. If that
* code changes, this code needs to change as well.
*
* The enable_fbc code will attempt to use one of our 2 compression
* thresholds, therefore, in that case, we only have 1 resort.
*/
/* Try to over-allocate to reduce reallocations and fragmentation. */
ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size <<= 1,
4096, 0, end);
if (ret == 0)
return compression_threshold;
again:
/* HW's ability to limit the CFB is 1:4 */
if (compression_threshold > 4 ||
(fb_cpp == 2 && compression_threshold == 2))
return 0;
ret = i915_gem_stolen_insert_node_in_range(dev_priv, node, size >>= 1,
4096, 0, end);
if (ret && INTEL_GEN(dev_priv) <= 4) {
return 0;
} else if (ret) {
compression_threshold <<= 1;
goto again;
} else {
return compression_threshold;
}
}
static int intel_fbc_alloc_cfb(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
struct drm_mm_node *uninitialized_var(compressed_llb);
int size, fb_cpp, ret;
WARN_ON(drm_mm_node_allocated(&fbc->compressed_fb));
size = intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache);
fb_cpp = fbc->state_cache.fb.format->cpp[0];
ret = find_compression_threshold(dev_priv, &fbc->compressed_fb,
size, fb_cpp);
if (!ret)
goto err_llb;
else if (ret > 1) {
DRM_INFO("Reducing the compressed framebuffer size. This may lead to less power savings than a non-reduced-size. Try to increase stolen memory size if available in BIOS.\n");
}
fbc->threshold = ret;
if (INTEL_GEN(dev_priv) >= 5)
I915_WRITE(ILK_DPFC_CB_BASE, fbc->compressed_fb.start);
else if (IS_GM45(dev_priv)) {
I915_WRITE(DPFC_CB_BASE, fbc->compressed_fb.start);
} else {
compressed_llb = kzalloc(sizeof(*compressed_llb), GFP_KERNEL);
if (!compressed_llb)
goto err_fb;
ret = i915_gem_stolen_insert_node(dev_priv, compressed_llb,
4096, 4096);
if (ret)
goto err_fb;
fbc->compressed_llb = compressed_llb;
I915_WRITE(FBC_CFB_BASE,
dev_priv->mm.stolen_base + fbc->compressed_fb.start);
I915_WRITE(FBC_LL_BASE,
dev_priv->mm.stolen_base + compressed_llb->start);
}
DRM_DEBUG_KMS("reserved %llu bytes of contiguous stolen space for FBC, threshold: %d\n",
fbc->compressed_fb.size, fbc->threshold);
return 0;
err_fb:
kfree(compressed_llb);
i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
err_llb:
if (drm_mm_initialized(&dev_priv->mm.stolen))
pr_info_once("drm: not enough stolen space for compressed buffer (need %d more bytes), disabling. Hint: you may be able to increase stolen memory size in the BIOS to avoid this.\n", size);
return -ENOSPC;
}
static void __intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (drm_mm_node_allocated(&fbc->compressed_fb))
i915_gem_stolen_remove_node(dev_priv, &fbc->compressed_fb);
if (fbc->compressed_llb) {
i915_gem_stolen_remove_node(dev_priv, fbc->compressed_llb);
kfree(fbc->compressed_llb);
}
}
void intel_fbc_cleanup_cfb(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
__intel_fbc_cleanup_cfb(dev_priv);
mutex_unlock(&fbc->lock);
}
static bool stride_is_valid(struct drm_i915_private *dev_priv,
unsigned int stride)
{
/* These should have been caught earlier. */
WARN_ON(stride < 512);
WARN_ON((stride & (64 - 1)) != 0);
/* Below are the additional FBC restrictions. */
if (IS_GEN2(dev_priv) || IS_GEN3(dev_priv))
return stride == 4096 || stride == 8192;
if (IS_GEN4(dev_priv) && !IS_G4X(dev_priv) && stride < 2048)
return false;
if (stride > 16384)
return false;
return true;
}
static bool pixel_format_is_valid(struct drm_i915_private *dev_priv,
uint32_t pixel_format)
{
switch (pixel_format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
return true;
case DRM_FORMAT_XRGB1555:
case DRM_FORMAT_RGB565:
/* 16bpp not supported on gen2 */
if (IS_GEN2(dev_priv))
return false;
/* WaFbcOnly1to1Ratio:ctg */
if (IS_G4X(dev_priv))
return false;
return true;
default:
return false;
}
}
/*
* For some reason, the hardware tracking starts looking at whatever we
* programmed as the display plane base address register. It does not look at
* the X and Y offset registers. That's why we look at the crtc->adjusted{x,y}
* variables instead of just looking at the pipe/plane size.
*/
static bool intel_fbc_hw_tracking_covers_screen(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
unsigned int effective_w, effective_h, max_w, max_h;
if (INTEL_GEN(dev_priv) >= 8 || IS_HASWELL(dev_priv)) {
max_w = 4096;
max_h = 4096;
} else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
max_w = 4096;
max_h = 2048;
} else {
max_w = 2048;
max_h = 1536;
}
intel_fbc_get_plane_source_size(&fbc->state_cache, &effective_w,
&effective_h);
effective_w += crtc->adjusted_x;
effective_h += crtc->adjusted_y;
return effective_w <= max_w && effective_h <= max_h;
}
static void intel_fbc_update_state_cache(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_state_cache *cache = &fbc->state_cache;
struct drm_framebuffer *fb = plane_state->base.fb;
cache->vma = NULL;
cache->crtc.mode_flags = crtc_state->base.adjusted_mode.flags;
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
cache->crtc.hsw_bdw_pixel_rate = crtc_state->pixel_rate;
cache->plane.rotation = plane_state->base.rotation;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
cache->plane.src_w = drm_rect_width(&plane_state->base.src) >> 16;
cache->plane.src_h = drm_rect_height(&plane_state->base.src) >> 16;
cache->plane.visible = plane_state->base.visible;
if (!cache->plane.visible)
return;
cache->fb.format = fb->format;
cache->fb.stride = fb->pitches[0];
cache->vma = plane_state->vma;
}
static bool intel_fbc_can_activate(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_state_cache *cache = &fbc->state_cache;
/* We don't need to use a state cache here since this information is
* global for all CRTC.
*/
if (fbc->underrun_detected) {
fbc->no_fbc_reason = "underrun detected";
return false;
}
if (!cache->vma) {
fbc->no_fbc_reason = "primary plane not visible";
return false;
}
if ((cache->crtc.mode_flags & DRM_MODE_FLAG_INTERLACE) ||
(cache->crtc.mode_flags & DRM_MODE_FLAG_DBLSCAN)) {
fbc->no_fbc_reason = "incompatible mode";
return false;
}
if (!intel_fbc_hw_tracking_covers_screen(crtc)) {
fbc->no_fbc_reason = "mode too large for compression";
return false;
}
/* The use of a CPU fence is mandatory in order to detect writes
* by the CPU to the scanout and trigger updates to the FBC.
*
* Note that is possible for a tiled surface to be unmappable (and
* so have no fence associated with it) due to aperture constaints
* at the time of pinning.
*/
if (!cache->vma->fence) {
fbc->no_fbc_reason = "framebuffer not tiled or fenced";
return false;
}
if (INTEL_GEN(dev_priv) <= 4 && !IS_G4X(dev_priv) &&
cache->plane.rotation != DRM_MODE_ROTATE_0) {
fbc->no_fbc_reason = "rotation unsupported";
return false;
}
if (!stride_is_valid(dev_priv, cache->fb.stride)) {
fbc->no_fbc_reason = "framebuffer stride not supported";
return false;
}
if (!pixel_format_is_valid(dev_priv, cache->fb.format->format)) {
fbc->no_fbc_reason = "pixel format is invalid";
return false;
}
/* WaFbcExceedCdClockThreshold:hsw,bdw */
if ((IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) &&
cache->crtc.hsw_bdw_pixel_rate >= dev_priv->cdclk.hw.cdclk * 95 / 100) {
fbc->no_fbc_reason = "pixel rate is too big";
return false;
}
/* It is possible for the required CFB size change without a
* crtc->disable + crtc->enable since it is possible to change the
* stride without triggering a full modeset. Since we try to
* over-allocate the CFB, there's a chance we may keep FBC enabled even
* if this happens, but if we exceed the current CFB size we'll have to
* disable FBC. Notice that it would be possible to disable FBC, wait
* for a frame, free the stolen node, then try to reenable FBC in case
* we didn't get any invalidate/deactivate calls, but this would require
* a lot of tracking just for a specific case. If we conclude it's an
* important case, we can implement it later. */
if (intel_fbc_calculate_cfb_size(dev_priv, &fbc->state_cache) >
fbc->compressed_fb.size * fbc->threshold) {
fbc->no_fbc_reason = "CFB requirements changed";
return false;
}
return true;
}
static bool intel_fbc_can_enable(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (intel_vgpu_active(dev_priv)) {
fbc->no_fbc_reason = "VGPU is active";
return false;
}
if (!i915.enable_fbc) {
fbc->no_fbc_reason = "disabled per module param or by default";
return false;
}
if (fbc->underrun_detected) {
fbc->no_fbc_reason = "underrun detected";
return false;
}
return true;
}
static void intel_fbc_get_reg_params(struct intel_crtc *crtc,
struct intel_fbc_reg_params *params)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_state_cache *cache = &fbc->state_cache;
/* Since all our fields are integer types, use memset here so the
* comparison function can rely on memcmp because the padding will be
* zero. */
memset(params, 0, sizeof(*params));
params->vma = cache->vma;
params->crtc.pipe = crtc->pipe;
params->crtc.plane = crtc->plane;
params->crtc.fence_y_offset = get_crtc_fence_y_offset(crtc);
params->fb.format = cache->fb.format;
params->fb.stride = cache->fb.stride;
params->cfb_size = intel_fbc_calculate_cfb_size(dev_priv, cache);
if (IS_GEN9(dev_priv) && !IS_GEMINILAKE(dev_priv))
params->gen9_wa_cfb_stride = DIV_ROUND_UP(cache->plane.src_w,
32 * fbc->threshold) * 8;
}
static bool intel_fbc_reg_params_equal(struct intel_fbc_reg_params *params1,
struct intel_fbc_reg_params *params2)
{
/* We can use this since intel_fbc_get_reg_params() does a memset. */
return memcmp(params1, params2, sizeof(*params1)) == 0;
}
void intel_fbc_pre_update(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (!multiple_pipes_ok(crtc, plane_state)) {
fbc->no_fbc_reason = "more than one pipe active";
goto deactivate;
}
if (!fbc->enabled || fbc->crtc != crtc)
goto unlock;
intel_fbc_update_state_cache(crtc, crtc_state, plane_state);
deactivate:
intel_fbc_deactivate(dev_priv);
unlock:
mutex_unlock(&fbc->lock);
}
static void __intel_fbc_post_update(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_fbc_reg_params old_params;
WARN_ON(!mutex_is_locked(&fbc->lock));
if (!fbc->enabled || fbc->crtc != crtc)
return;
if (!intel_fbc_can_activate(crtc)) {
WARN_ON(fbc->active);
return;
}
old_params = fbc->params;
intel_fbc_get_reg_params(crtc, &fbc->params);
/* If the scanout has not changed, don't modify the FBC settings.
* Note that we make the fundamental assumption that the fb->obj
* cannot be unpinned (and have its GTT offset and fence revoked)
* without first being decoupled from the scanout and FBC disabled.
*/
if (fbc->active &&
intel_fbc_reg_params_equal(&old_params, &fbc->params))
return;
intel_fbc_deactivate(dev_priv);
intel_fbc_schedule_activation(crtc);
fbc->no_fbc_reason = "FBC enabled (active or scheduled)";
}
void intel_fbc_post_update(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
__intel_fbc_post_update(crtc);
mutex_unlock(&fbc->lock);
}
static unsigned int intel_fbc_get_frontbuffer_bit(struct intel_fbc *fbc)
{
if (fbc->enabled)
return to_intel_plane(fbc->crtc->base.primary)->frontbuffer_bit;
else
return fbc->possible_framebuffer_bits;
}
void intel_fbc_invalidate(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits,
enum fb_op_origin origin)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
return;
mutex_lock(&fbc->lock);
fbc->busy_bits |= intel_fbc_get_frontbuffer_bit(fbc) & frontbuffer_bits;
if (fbc->enabled && fbc->busy_bits)
intel_fbc_deactivate(dev_priv);
mutex_unlock(&fbc->lock);
}
void intel_fbc_flush(struct drm_i915_private *dev_priv,
unsigned int frontbuffer_bits, enum fb_op_origin origin)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
fbc->busy_bits &= ~frontbuffer_bits;
if (origin == ORIGIN_GTT || origin == ORIGIN_FLIP)
goto out;
if (!fbc->busy_bits && fbc->enabled &&
(frontbuffer_bits & intel_fbc_get_frontbuffer_bit(fbc))) {
if (fbc->active)
intel_fbc_recompress(dev_priv);
else
__intel_fbc_post_update(fbc->crtc);
}
out:
mutex_unlock(&fbc->lock);
}
/**
* intel_fbc_choose_crtc - select a CRTC to enable FBC on
* @dev_priv: i915 device instance
* @state: the atomic state structure
*
* This function looks at the proposed state for CRTCs and planes, then chooses
* which pipe is going to have FBC by setting intel_crtc_state->enable_fbc to
* true.
*
* Later, intel_fbc_enable is going to look for state->enable_fbc and then maybe
* enable FBC for the chosen CRTC. If it does, it will set dev_priv->fbc.crtc.
*/
void intel_fbc_choose_crtc(struct drm_i915_private *dev_priv,
struct drm_atomic_state *state)
{
struct intel_fbc *fbc = &dev_priv->fbc;
struct drm_plane *plane;
struct drm_plane_state *plane_state;
bool crtc_chosen = false;
int i;
mutex_lock(&fbc->lock);
/* Does this atomic commit involve the CRTC currently tied to FBC? */
if (fbc->crtc &&
!drm_atomic_get_existing_crtc_state(state, &fbc->crtc->base))
goto out;
if (!intel_fbc_can_enable(dev_priv))
goto out;
/* Simply choose the first CRTC that is compatible and has a visible
* plane. We could go for fancier schemes such as checking the plane
* size, but this would just affect the few platforms that don't tie FBC
* to pipe or plane A. */
for_each_new_plane_in_state(state, plane, plane_state, i) {
struct intel_plane_state *intel_plane_state =
to_intel_plane_state(plane_state);
struct intel_crtc_state *intel_crtc_state;
struct intel_crtc *crtc = to_intel_crtc(plane_state->crtc);
if (!intel_plane_state->base.visible)
continue;
if (fbc_on_pipe_a_only(dev_priv) && crtc->pipe != PIPE_A)
continue;
if (fbc_on_plane_a_only(dev_priv) && crtc->plane != PLANE_A)
continue;
intel_crtc_state = to_intel_crtc_state(
drm_atomic_get_existing_crtc_state(state, &crtc->base));
intel_crtc_state->enable_fbc = true;
crtc_chosen = true;
break;
}
if (!crtc_chosen)
fbc->no_fbc_reason = "no suitable CRTC for FBC";
out:
mutex_unlock(&fbc->lock);
}
/**
* intel_fbc_enable: tries to enable FBC on the CRTC
* @crtc: the CRTC
* @crtc_state: corresponding &drm_crtc_state for @crtc
* @plane_state: corresponding &drm_plane_state for the primary plane of @crtc
*
* This function checks if the given CRTC was chosen for FBC, then enables it if
* possible. Notice that it doesn't activate FBC. It is valid to call
* intel_fbc_enable multiple times for the same pipe without an
* intel_fbc_disable in the middle, as long as it is deactivated.
*/
void intel_fbc_enable(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state,
struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (fbc->enabled) {
WARN_ON(fbc->crtc == NULL);
if (fbc->crtc == crtc) {
WARN_ON(!crtc_state->enable_fbc);
WARN_ON(fbc->active);
}
goto out;
}
if (!crtc_state->enable_fbc)
goto out;
WARN_ON(fbc->active);
WARN_ON(fbc->crtc != NULL);
intel_fbc_update_state_cache(crtc, crtc_state, plane_state);
if (intel_fbc_alloc_cfb(crtc)) {
fbc->no_fbc_reason = "not enough stolen memory";
goto out;
}
DRM_DEBUG_KMS("Enabling FBC on pipe %c\n", pipe_name(crtc->pipe));
fbc->no_fbc_reason = "FBC enabled but not active yet\n";
fbc->enabled = true;
fbc->crtc = crtc;
out:
mutex_unlock(&fbc->lock);
}
/**
* __intel_fbc_disable - disable FBC
* @dev_priv: i915 device instance
*
* This is the low level function that actually disables FBC. Callers should
* grab the FBC lock.
*/
static void __intel_fbc_disable(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
struct intel_crtc *crtc = fbc->crtc;
WARN_ON(!mutex_is_locked(&fbc->lock));
WARN_ON(!fbc->enabled);
WARN_ON(fbc->active);
WARN_ON(crtc->active);
DRM_DEBUG_KMS("Disabling FBC on pipe %c\n", pipe_name(crtc->pipe));
__intel_fbc_cleanup_cfb(dev_priv);
fbc->enabled = false;
fbc->crtc = NULL;
}
/**
* intel_fbc_disable - disable FBC if it's associated with crtc
* @crtc: the CRTC
*
* This function disables FBC if it's associated with the provided CRTC.
*/
void intel_fbc_disable(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (fbc->crtc == crtc)
__intel_fbc_disable(dev_priv);
mutex_unlock(&fbc->lock);
cancel_work_sync(&fbc->work.work);
}
/**
* intel_fbc_global_disable - globally disable FBC
* @dev_priv: i915 device instance
*
* This function disables FBC regardless of which CRTC is associated with it.
*/
void intel_fbc_global_disable(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
mutex_lock(&fbc->lock);
if (fbc->enabled)
__intel_fbc_disable(dev_priv);
mutex_unlock(&fbc->lock);
cancel_work_sync(&fbc->work.work);
}
static void intel_fbc_underrun_work_fn(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, struct drm_i915_private, fbc.underrun_work);
struct intel_fbc *fbc = &dev_priv->fbc;
mutex_lock(&fbc->lock);
/* Maybe we were scheduled twice. */
if (fbc->underrun_detected || !fbc->enabled)
goto out;
DRM_DEBUG_KMS("Disabling FBC due to FIFO underrun.\n");
fbc->underrun_detected = true;
intel_fbc_deactivate(dev_priv);
out:
mutex_unlock(&fbc->lock);
}
/**
* intel_fbc_handle_fifo_underrun_irq - disable FBC when we get a FIFO underrun
* @dev_priv: i915 device instance
*
* Without FBC, most underruns are harmless and don't really cause too many
* problems, except for an annoying message on dmesg. With FBC, underruns can
* become black screens or even worse, especially when paired with bad
* watermarks. So in order for us to be on the safe side, completely disable FBC
* in case we ever detect a FIFO underrun on any pipe. An underrun on any pipe
* already suggests that watermarks may be bad, so try to be as safe as
* possible.
*
* This function is called from the IRQ handler.
*/
void intel_fbc_handle_fifo_underrun_irq(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
if (!fbc_supported(dev_priv))
return;
/* There's no guarantee that underrun_detected won't be set to true
* right after this check and before the work is scheduled, but that's
* not a problem since we'll check it again under the work function
* while FBC is locked. This check here is just to prevent us from
* unnecessarily scheduling the work, and it relies on the fact that we
* never switch underrun_detect back to false after it's true. */
if (READ_ONCE(fbc->underrun_detected))
return;
schedule_work(&fbc->underrun_work);
}
/**
* intel_fbc_init_pipe_state - initialize FBC's CRTC visibility tracking
* @dev_priv: i915 device instance
*
* The FBC code needs to track CRTC visibility since the older platforms can't
* have FBC enabled while multiple pipes are used. This function does the
* initial setup at driver load to make sure FBC is matching the real hardware.
*/
void intel_fbc_init_pipe_state(struct drm_i915_private *dev_priv)
{
struct intel_crtc *crtc;
/* Don't even bother tracking anything if we don't need. */
if (!no_fbc_on_multiple_pipes(dev_priv))
return;
for_each_intel_crtc(&dev_priv->drm, crtc)
if (intel_crtc_active(crtc) &&
crtc->base.primary->state->visible)
dev_priv->fbc.visible_pipes_mask |= (1 << crtc->pipe);
}
/*
* The DDX driver changes its behavior depending on the value it reads from
* i915.enable_fbc, so sanitize it by translating the default value into either
* 0 or 1 in order to allow it to know what's going on.
*
* Notice that this is done at driver initialization and we still allow user
* space to change the value during runtime without sanitizing it again. IGT
* relies on being able to change i915.enable_fbc at runtime.
*/
static int intel_sanitize_fbc_option(struct drm_i915_private *dev_priv)
{
if (i915.enable_fbc >= 0)
return !!i915.enable_fbc;
if (!HAS_FBC(dev_priv))
return 0;
if (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) >= 9)
return 1;
return 0;
}
static bool need_fbc_vtd_wa(struct drm_i915_private *dev_priv)
{
/* WaFbcTurnOffFbcWhenHyperVisorIsUsed:skl,bxt */
if (intel_vtd_active() &&
(IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv))) {
DRM_INFO("Disabling framebuffer compression (FBC) to prevent screen flicker with VT-d enabled\n");
return true;
}
return false;
}
/**
* intel_fbc_init - Initialize FBC
* @dev_priv: the i915 device
*
* This function might be called during PM init process.
*/
void intel_fbc_init(struct drm_i915_private *dev_priv)
{
struct intel_fbc *fbc = &dev_priv->fbc;
enum pipe pipe;
INIT_WORK(&fbc->work.work, intel_fbc_work_fn);
INIT_WORK(&fbc->underrun_work, intel_fbc_underrun_work_fn);
mutex_init(&fbc->lock);
fbc->enabled = false;
fbc->active = false;
fbc->work.scheduled = false;
if (need_fbc_vtd_wa(dev_priv))
mkwrite_device_info(dev_priv)->has_fbc = false;
i915.enable_fbc = intel_sanitize_fbc_option(dev_priv);
DRM_DEBUG_KMS("Sanitized enable_fbc value: %d\n", i915.enable_fbc);
if (!HAS_FBC(dev_priv)) {
fbc->no_fbc_reason = "unsupported by this chipset";
return;
}
for_each_pipe(dev_priv, pipe) {
fbc->possible_framebuffer_bits |=
INTEL_FRONTBUFFER_PRIMARY(pipe);
if (fbc_on_pipe_a_only(dev_priv))
break;
}
/* This value was pulled out of someone's hat */
if (INTEL_GEN(dev_priv) <= 4 && !IS_GM45(dev_priv))
I915_WRITE(FBC_CONTROL, 500 << FBC_CTL_INTERVAL_SHIFT);
/* We still don't have any sort of hardware state readout for FBC, so
* deactivate it in case the BIOS activated it to make sure software
* matches the hardware state. */
if (intel_fbc_hw_is_active(dev_priv))
intel_fbc_hw_deactivate(dev_priv);
}