mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 06:36:08 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
432 lines
9.8 KiB
C
432 lines
9.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include <linux/err.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/io.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/export.h>
|
|
|
|
void devm_ioremap_release(struct device *dev, void *res)
|
|
{
|
|
iounmap(*(void __iomem **)res);
|
|
}
|
|
|
|
static int devm_ioremap_match(struct device *dev, void *res, void *match_data)
|
|
{
|
|
return *(void **)res == match_data;
|
|
}
|
|
|
|
/**
|
|
* devm_ioremap - Managed ioremap()
|
|
* @dev: Generic device to remap IO address for
|
|
* @offset: Resource address to map
|
|
* @size: Size of map
|
|
*
|
|
* Managed ioremap(). Map is automatically unmapped on driver detach.
|
|
*/
|
|
void __iomem *devm_ioremap(struct device *dev, resource_size_t offset,
|
|
resource_size_t size)
|
|
{
|
|
void __iomem **ptr, *addr;
|
|
|
|
ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
addr = ioremap(offset, size);
|
|
if (addr) {
|
|
*ptr = addr;
|
|
devres_add(dev, ptr);
|
|
} else
|
|
devres_free(ptr);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(devm_ioremap);
|
|
|
|
/**
|
|
* devm_ioremap_nocache - Managed ioremap_nocache()
|
|
* @dev: Generic device to remap IO address for
|
|
* @offset: Resource address to map
|
|
* @size: Size of map
|
|
*
|
|
* Managed ioremap_nocache(). Map is automatically unmapped on driver
|
|
* detach.
|
|
*/
|
|
void __iomem *devm_ioremap_nocache(struct device *dev, resource_size_t offset,
|
|
resource_size_t size)
|
|
{
|
|
void __iomem **ptr, *addr;
|
|
|
|
ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
addr = ioremap_nocache(offset, size);
|
|
if (addr) {
|
|
*ptr = addr;
|
|
devres_add(dev, ptr);
|
|
} else
|
|
devres_free(ptr);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(devm_ioremap_nocache);
|
|
|
|
/**
|
|
* devm_ioremap_wc - Managed ioremap_wc()
|
|
* @dev: Generic device to remap IO address for
|
|
* @offset: Resource address to map
|
|
* @size: Size of map
|
|
*
|
|
* Managed ioremap_wc(). Map is automatically unmapped on driver detach.
|
|
*/
|
|
void __iomem *devm_ioremap_wc(struct device *dev, resource_size_t offset,
|
|
resource_size_t size)
|
|
{
|
|
void __iomem **ptr, *addr;
|
|
|
|
ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
addr = ioremap_wc(offset, size);
|
|
if (addr) {
|
|
*ptr = addr;
|
|
devres_add(dev, ptr);
|
|
} else
|
|
devres_free(ptr);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(devm_ioremap_wc);
|
|
|
|
/**
|
|
* devm_iounmap - Managed iounmap()
|
|
* @dev: Generic device to unmap for
|
|
* @addr: Address to unmap
|
|
*
|
|
* Managed iounmap(). @addr must have been mapped using devm_ioremap*().
|
|
*/
|
|
void devm_iounmap(struct device *dev, void __iomem *addr)
|
|
{
|
|
WARN_ON(devres_destroy(dev, devm_ioremap_release, devm_ioremap_match,
|
|
(__force void *)addr));
|
|
iounmap(addr);
|
|
}
|
|
EXPORT_SYMBOL(devm_iounmap);
|
|
|
|
/**
|
|
* devm_ioremap_resource() - check, request region, and ioremap resource
|
|
* @dev: generic device to handle the resource for
|
|
* @res: resource to be handled
|
|
*
|
|
* Checks that a resource is a valid memory region, requests the memory
|
|
* region and ioremaps it. All operations are managed and will be undone
|
|
* on driver detach.
|
|
*
|
|
* Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
|
|
* on failure. Usage example:
|
|
*
|
|
* res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
* base = devm_ioremap_resource(&pdev->dev, res);
|
|
* if (IS_ERR(base))
|
|
* return PTR_ERR(base);
|
|
*/
|
|
void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res)
|
|
{
|
|
resource_size_t size;
|
|
const char *name;
|
|
void __iomem *dest_ptr;
|
|
|
|
BUG_ON(!dev);
|
|
|
|
if (!res || resource_type(res) != IORESOURCE_MEM) {
|
|
dev_err(dev, "invalid resource\n");
|
|
return IOMEM_ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
size = resource_size(res);
|
|
name = res->name ?: dev_name(dev);
|
|
|
|
if (!devm_request_mem_region(dev, res->start, size, name)) {
|
|
dev_err(dev, "can't request region for resource %pR\n", res);
|
|
return IOMEM_ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
dest_ptr = devm_ioremap(dev, res->start, size);
|
|
if (!dest_ptr) {
|
|
dev_err(dev, "ioremap failed for resource %pR\n", res);
|
|
devm_release_mem_region(dev, res->start, size);
|
|
dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return dest_ptr;
|
|
}
|
|
EXPORT_SYMBOL(devm_ioremap_resource);
|
|
|
|
#ifdef CONFIG_HAS_IOPORT_MAP
|
|
/*
|
|
* Generic iomap devres
|
|
*/
|
|
static void devm_ioport_map_release(struct device *dev, void *res)
|
|
{
|
|
ioport_unmap(*(void __iomem **)res);
|
|
}
|
|
|
|
static int devm_ioport_map_match(struct device *dev, void *res,
|
|
void *match_data)
|
|
{
|
|
return *(void **)res == match_data;
|
|
}
|
|
|
|
/**
|
|
* devm_ioport_map - Managed ioport_map()
|
|
* @dev: Generic device to map ioport for
|
|
* @port: Port to map
|
|
* @nr: Number of ports to map
|
|
*
|
|
* Managed ioport_map(). Map is automatically unmapped on driver
|
|
* detach.
|
|
*/
|
|
void __iomem *devm_ioport_map(struct device *dev, unsigned long port,
|
|
unsigned int nr)
|
|
{
|
|
void __iomem **ptr, *addr;
|
|
|
|
ptr = devres_alloc(devm_ioport_map_release, sizeof(*ptr), GFP_KERNEL);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
addr = ioport_map(port, nr);
|
|
if (addr) {
|
|
*ptr = addr;
|
|
devres_add(dev, ptr);
|
|
} else
|
|
devres_free(ptr);
|
|
|
|
return addr;
|
|
}
|
|
EXPORT_SYMBOL(devm_ioport_map);
|
|
|
|
/**
|
|
* devm_ioport_unmap - Managed ioport_unmap()
|
|
* @dev: Generic device to unmap for
|
|
* @addr: Address to unmap
|
|
*
|
|
* Managed ioport_unmap(). @addr must have been mapped using
|
|
* devm_ioport_map().
|
|
*/
|
|
void devm_ioport_unmap(struct device *dev, void __iomem *addr)
|
|
{
|
|
ioport_unmap(addr);
|
|
WARN_ON(devres_destroy(dev, devm_ioport_map_release,
|
|
devm_ioport_map_match, (__force void *)addr));
|
|
}
|
|
EXPORT_SYMBOL(devm_ioport_unmap);
|
|
#endif /* CONFIG_HAS_IOPORT_MAP */
|
|
|
|
#ifdef CONFIG_PCI
|
|
/*
|
|
* PCI iomap devres
|
|
*/
|
|
#define PCIM_IOMAP_MAX PCI_ROM_RESOURCE
|
|
|
|
struct pcim_iomap_devres {
|
|
void __iomem *table[PCIM_IOMAP_MAX];
|
|
};
|
|
|
|
static void pcim_iomap_release(struct device *gendev, void *res)
|
|
{
|
|
struct pci_dev *dev = to_pci_dev(gendev);
|
|
struct pcim_iomap_devres *this = res;
|
|
int i;
|
|
|
|
for (i = 0; i < PCIM_IOMAP_MAX; i++)
|
|
if (this->table[i])
|
|
pci_iounmap(dev, this->table[i]);
|
|
}
|
|
|
|
/**
|
|
* pcim_iomap_table - access iomap allocation table
|
|
* @pdev: PCI device to access iomap table for
|
|
*
|
|
* Access iomap allocation table for @dev. If iomap table doesn't
|
|
* exist and @pdev is managed, it will be allocated. All iomaps
|
|
* recorded in the iomap table are automatically unmapped on driver
|
|
* detach.
|
|
*
|
|
* This function might sleep when the table is first allocated but can
|
|
* be safely called without context and guaranteed to succed once
|
|
* allocated.
|
|
*/
|
|
void __iomem * const *pcim_iomap_table(struct pci_dev *pdev)
|
|
{
|
|
struct pcim_iomap_devres *dr, *new_dr;
|
|
|
|
dr = devres_find(&pdev->dev, pcim_iomap_release, NULL, NULL);
|
|
if (dr)
|
|
return dr->table;
|
|
|
|
new_dr = devres_alloc(pcim_iomap_release, sizeof(*new_dr), GFP_KERNEL);
|
|
if (!new_dr)
|
|
return NULL;
|
|
dr = devres_get(&pdev->dev, new_dr, NULL, NULL);
|
|
return dr->table;
|
|
}
|
|
EXPORT_SYMBOL(pcim_iomap_table);
|
|
|
|
/**
|
|
* pcim_iomap - Managed pcim_iomap()
|
|
* @pdev: PCI device to iomap for
|
|
* @bar: BAR to iomap
|
|
* @maxlen: Maximum length of iomap
|
|
*
|
|
* Managed pci_iomap(). Map is automatically unmapped on driver
|
|
* detach.
|
|
*/
|
|
void __iomem *pcim_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen)
|
|
{
|
|
void __iomem **tbl;
|
|
|
|
BUG_ON(bar >= PCIM_IOMAP_MAX);
|
|
|
|
tbl = (void __iomem **)pcim_iomap_table(pdev);
|
|
if (!tbl || tbl[bar]) /* duplicate mappings not allowed */
|
|
return NULL;
|
|
|
|
tbl[bar] = pci_iomap(pdev, bar, maxlen);
|
|
return tbl[bar];
|
|
}
|
|
EXPORT_SYMBOL(pcim_iomap);
|
|
|
|
/**
|
|
* pcim_iounmap - Managed pci_iounmap()
|
|
* @pdev: PCI device to iounmap for
|
|
* @addr: Address to unmap
|
|
*
|
|
* Managed pci_iounmap(). @addr must have been mapped using pcim_iomap().
|
|
*/
|
|
void pcim_iounmap(struct pci_dev *pdev, void __iomem *addr)
|
|
{
|
|
void __iomem **tbl;
|
|
int i;
|
|
|
|
pci_iounmap(pdev, addr);
|
|
|
|
tbl = (void __iomem **)pcim_iomap_table(pdev);
|
|
BUG_ON(!tbl);
|
|
|
|
for (i = 0; i < PCIM_IOMAP_MAX; i++)
|
|
if (tbl[i] == addr) {
|
|
tbl[i] = NULL;
|
|
return;
|
|
}
|
|
WARN_ON(1);
|
|
}
|
|
EXPORT_SYMBOL(pcim_iounmap);
|
|
|
|
/**
|
|
* pcim_iomap_regions - Request and iomap PCI BARs
|
|
* @pdev: PCI device to map IO resources for
|
|
* @mask: Mask of BARs to request and iomap
|
|
* @name: Name used when requesting regions
|
|
*
|
|
* Request and iomap regions specified by @mask.
|
|
*/
|
|
int pcim_iomap_regions(struct pci_dev *pdev, int mask, const char *name)
|
|
{
|
|
void __iomem * const *iomap;
|
|
int i, rc;
|
|
|
|
iomap = pcim_iomap_table(pdev);
|
|
if (!iomap)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
|
|
unsigned long len;
|
|
|
|
if (!(mask & (1 << i)))
|
|
continue;
|
|
|
|
rc = -EINVAL;
|
|
len = pci_resource_len(pdev, i);
|
|
if (!len)
|
|
goto err_inval;
|
|
|
|
rc = pci_request_region(pdev, i, name);
|
|
if (rc)
|
|
goto err_inval;
|
|
|
|
rc = -ENOMEM;
|
|
if (!pcim_iomap(pdev, i, 0))
|
|
goto err_region;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_region:
|
|
pci_release_region(pdev, i);
|
|
err_inval:
|
|
while (--i >= 0) {
|
|
if (!(mask & (1 << i)))
|
|
continue;
|
|
pcim_iounmap(pdev, iomap[i]);
|
|
pci_release_region(pdev, i);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(pcim_iomap_regions);
|
|
|
|
/**
|
|
* pcim_iomap_regions_request_all - Request all BARs and iomap specified ones
|
|
* @pdev: PCI device to map IO resources for
|
|
* @mask: Mask of BARs to iomap
|
|
* @name: Name used when requesting regions
|
|
*
|
|
* Request all PCI BARs and iomap regions specified by @mask.
|
|
*/
|
|
int pcim_iomap_regions_request_all(struct pci_dev *pdev, int mask,
|
|
const char *name)
|
|
{
|
|
int request_mask = ((1 << 6) - 1) & ~mask;
|
|
int rc;
|
|
|
|
rc = pci_request_selected_regions(pdev, request_mask, name);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = pcim_iomap_regions(pdev, mask, name);
|
|
if (rc)
|
|
pci_release_selected_regions(pdev, request_mask);
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(pcim_iomap_regions_request_all);
|
|
|
|
/**
|
|
* pcim_iounmap_regions - Unmap and release PCI BARs
|
|
* @pdev: PCI device to map IO resources for
|
|
* @mask: Mask of BARs to unmap and release
|
|
*
|
|
* Unmap and release regions specified by @mask.
|
|
*/
|
|
void pcim_iounmap_regions(struct pci_dev *pdev, int mask)
|
|
{
|
|
void __iomem * const *iomap;
|
|
int i;
|
|
|
|
iomap = pcim_iomap_table(pdev);
|
|
if (!iomap)
|
|
return;
|
|
|
|
for (i = 0; i < PCIM_IOMAP_MAX; i++) {
|
|
if (!(mask & (1 << i)))
|
|
continue;
|
|
|
|
pcim_iounmap(pdev, iomap[i]);
|
|
pci_release_region(pdev, i);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(pcim_iounmap_regions);
|
|
#endif /* CONFIG_PCI */
|