linux_dsm_epyc7002/drivers/dma/fsl_raid.c
Vinod Koul 23a396611f dmaengine: fsl_raid: remove owner assignment
platform driver operations owner is set by core, so remove

Signed-off-by: Vinod Koul <vinod.koul@intel.com>
Cc: Xuelin Shi <xuelin.shi@freescale.com>
2016-07-23 16:07:26 +05:30

906 lines
25 KiB
C

/*
* drivers/dma/fsl_raid.c
*
* Freescale RAID Engine device driver
*
* Author:
* Harninder Rai <harninder.rai@freescale.com>
* Naveen Burmi <naveenburmi@freescale.com>
*
* Rewrite:
* Xuelin Shi <xuelin.shi@freescale.com>
*
* Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Freescale Semiconductor nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Theory of operation:
*
* General capabilities:
* RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
* calculations required in RAID5 and RAID6 operations. RE driver
* registers with Linux's ASYNC layer as dma driver. RE hardware
* maintains strict ordering of the requests through chained
* command queueing.
*
* Data flow:
* Software RAID layer of Linux (MD layer) maintains RAID partitions,
* strips, stripes etc. It sends requests to the underlying ASYNC layer
* which further passes it to RE driver. ASYNC layer decides which request
* goes to which job ring of RE hardware. For every request processed by
* RAID Engine, driver gets an interrupt unless coalescing is set. The
* per job ring interrupt handler checks the status register for errors,
* clears the interrupt and leave the post interrupt processing to the irq
* thread.
*/
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include "dmaengine.h"
#include "fsl_raid.h"
#define FSL_RE_MAX_XOR_SRCS 16
#define FSL_RE_MAX_PQ_SRCS 16
#define FSL_RE_MIN_DESCS 256
#define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
#define FSL_RE_FRAME_FORMAT 0x1
#define FSL_RE_MAX_DATA_LEN (1024*1024)
#define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
/* Add descriptors into per chan software queue - submit_q */
static dma_cookie_t fsl_re_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct fsl_re_desc *desc;
struct fsl_re_chan *re_chan;
dma_cookie_t cookie;
unsigned long flags;
desc = to_fsl_re_dma_desc(tx);
re_chan = container_of(tx->chan, struct fsl_re_chan, chan);
spin_lock_irqsave(&re_chan->desc_lock, flags);
cookie = dma_cookie_assign(tx);
list_add_tail(&desc->node, &re_chan->submit_q);
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
return cookie;
}
/* Copy descriptor from per chan software queue into hardware job ring */
static void fsl_re_issue_pending(struct dma_chan *chan)
{
struct fsl_re_chan *re_chan;
int avail;
struct fsl_re_desc *desc, *_desc;
unsigned long flags;
re_chan = container_of(chan, struct fsl_re_chan, chan);
spin_lock_irqsave(&re_chan->desc_lock, flags);
avail = FSL_RE_SLOT_AVAIL(
in_be32(&re_chan->jrregs->inbring_slot_avail));
list_for_each_entry_safe(desc, _desc, &re_chan->submit_q, node) {
if (!avail)
break;
list_move_tail(&desc->node, &re_chan->active_q);
memcpy(&re_chan->inb_ring_virt_addr[re_chan->inb_count],
&desc->hwdesc, sizeof(struct fsl_re_hw_desc));
re_chan->inb_count = (re_chan->inb_count + 1) &
FSL_RE_RING_SIZE_MASK;
out_be32(&re_chan->jrregs->inbring_add_job, FSL_RE_ADD_JOB(1));
avail--;
}
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
}
static void fsl_re_desc_done(struct fsl_re_desc *desc)
{
dma_async_tx_callback callback;
void *callback_param;
dma_cookie_complete(&desc->async_tx);
callback = desc->async_tx.callback;
callback_param = desc->async_tx.callback_param;
if (callback)
callback(callback_param);
dma_descriptor_unmap(&desc->async_tx);
}
static void fsl_re_cleanup_descs(struct fsl_re_chan *re_chan)
{
struct fsl_re_desc *desc, *_desc;
unsigned long flags;
spin_lock_irqsave(&re_chan->desc_lock, flags);
list_for_each_entry_safe(desc, _desc, &re_chan->ack_q, node) {
if (async_tx_test_ack(&desc->async_tx))
list_move_tail(&desc->node, &re_chan->free_q);
}
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
fsl_re_issue_pending(&re_chan->chan);
}
static void fsl_re_dequeue(unsigned long data)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc, *_desc;
struct fsl_re_hw_desc *hwdesc;
unsigned long flags;
unsigned int count, oub_count;
int found;
re_chan = dev_get_drvdata((struct device *)data);
fsl_re_cleanup_descs(re_chan);
spin_lock_irqsave(&re_chan->desc_lock, flags);
count = FSL_RE_SLOT_FULL(in_be32(&re_chan->jrregs->oubring_slot_full));
while (count--) {
found = 0;
hwdesc = &re_chan->oub_ring_virt_addr[re_chan->oub_count];
list_for_each_entry_safe(desc, _desc, &re_chan->active_q,
node) {
/* compare the hw dma addr to find the completed */
if (desc->hwdesc.lbea32 == hwdesc->lbea32 &&
desc->hwdesc.addr_low == hwdesc->addr_low) {
found = 1;
break;
}
}
if (found) {
fsl_re_desc_done(desc);
list_move_tail(&desc->node, &re_chan->ack_q);
} else {
dev_err(re_chan->dev,
"found hwdesc not in sw queue, discard it\n");
}
oub_count = (re_chan->oub_count + 1) & FSL_RE_RING_SIZE_MASK;
re_chan->oub_count = oub_count;
out_be32(&re_chan->jrregs->oubring_job_rmvd,
FSL_RE_RMVD_JOB(1));
}
spin_unlock_irqrestore(&re_chan->desc_lock, flags);
}
/* Per Job Ring interrupt handler */
static irqreturn_t fsl_re_isr(int irq, void *data)
{
struct fsl_re_chan *re_chan;
u32 irqstate, status;
re_chan = dev_get_drvdata((struct device *)data);
irqstate = in_be32(&re_chan->jrregs->jr_interrupt_status);
if (!irqstate)
return IRQ_NONE;
/*
* There's no way in upper layer (read MD layer) to recover from
* error conditions except restart everything. In long term we
* need to do something more than just crashing
*/
if (irqstate & FSL_RE_ERROR) {
status = in_be32(&re_chan->jrregs->jr_status);
dev_err(re_chan->dev, "chan error irqstate: %x, status: %x\n",
irqstate, status);
}
/* Clear interrupt */
out_be32(&re_chan->jrregs->jr_interrupt_status, FSL_RE_CLR_INTR);
tasklet_schedule(&re_chan->irqtask);
return IRQ_HANDLED;
}
static enum dma_status fsl_re_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
return dma_cookie_status(chan, cookie, txstate);
}
static void fill_cfd_frame(struct fsl_re_cmpnd_frame *cf, u8 index,
size_t length, dma_addr_t addr, bool final)
{
u32 efrl = length & FSL_RE_CF_LENGTH_MASK;
efrl |= final << FSL_RE_CF_FINAL_SHIFT;
cf[index].efrl32 = efrl;
cf[index].addr_high = upper_32_bits(addr);
cf[index].addr_low = lower_32_bits(addr);
}
static struct fsl_re_desc *fsl_re_init_desc(struct fsl_re_chan *re_chan,
struct fsl_re_desc *desc,
void *cf, dma_addr_t paddr)
{
desc->re_chan = re_chan;
desc->async_tx.tx_submit = fsl_re_tx_submit;
dma_async_tx_descriptor_init(&desc->async_tx, &re_chan->chan);
INIT_LIST_HEAD(&desc->node);
desc->hwdesc.fmt32 = FSL_RE_FRAME_FORMAT << FSL_RE_HWDESC_FMT_SHIFT;
desc->hwdesc.lbea32 = upper_32_bits(paddr);
desc->hwdesc.addr_low = lower_32_bits(paddr);
desc->cf_addr = cf;
desc->cf_paddr = paddr;
desc->cdb_addr = (void *)(cf + FSL_RE_CF_DESC_SIZE);
desc->cdb_paddr = paddr + FSL_RE_CF_DESC_SIZE;
return desc;
}
static struct fsl_re_desc *fsl_re_chan_alloc_desc(struct fsl_re_chan *re_chan,
unsigned long flags)
{
struct fsl_re_desc *desc = NULL;
void *cf;
dma_addr_t paddr;
unsigned long lock_flag;
fsl_re_cleanup_descs(re_chan);
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
if (!list_empty(&re_chan->free_q)) {
/* take one desc from free_q */
desc = list_first_entry(&re_chan->free_q,
struct fsl_re_desc, node);
list_del(&desc->node);
desc->async_tx.flags = flags;
}
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
if (!desc) {
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (!desc)
return NULL;
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_NOWAIT,
&paddr);
if (!cf) {
kfree(desc);
return NULL;
}
desc = fsl_re_init_desc(re_chan, desc, cf, paddr);
desc->async_tx.flags = flags;
spin_lock_irqsave(&re_chan->desc_lock, lock_flag);
re_chan->alloc_count++;
spin_unlock_irqrestore(&re_chan->desc_lock, lock_flag);
}
return desc;
}
static struct dma_async_tx_descriptor *fsl_re_prep_dma_genq(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
unsigned long flags)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
struct fsl_re_xor_cdb *xor;
struct fsl_re_cmpnd_frame *cf;
u32 cdb;
unsigned int i, j;
unsigned int save_src_cnt = src_cnt;
int cont_q = 0;
re_chan = container_of(chan, struct fsl_re_chan, chan);
if (len > FSL_RE_MAX_DATA_LEN) {
dev_err(re_chan->dev, "genq tx length %zu, max length %d\n",
len, FSL_RE_MAX_DATA_LEN);
return NULL;
}
desc = fsl_re_chan_alloc_desc(re_chan, flags);
if (desc <= 0)
return NULL;
if (scf && (flags & DMA_PREP_CONTINUE)) {
cont_q = 1;
src_cnt += 1;
}
/* Filling xor CDB */
cdb = FSL_RE_XOR_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
xor = desc->cdb_addr;
xor->cdb32 = cdb;
if (scf) {
/* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
for (i = 0; i < save_src_cnt; i++)
xor->gfm[i] = scf[i];
if (cont_q)
xor->gfm[i++] = 1;
} else {
/* compute P, that is XOR all srcs */
for (i = 0; i < src_cnt; i++)
xor->gfm[i] = 1;
}
/* Filling frame 0 of compound frame descriptor with CDB */
cf = desc->cf_addr;
fill_cfd_frame(cf, 0, sizeof(*xor), desc->cdb_paddr, 0);
/* Fill CFD's 1st frame with dest buffer */
fill_cfd_frame(cf, 1, len, dest, 0);
/* Fill CFD's rest of the frames with source buffers */
for (i = 2, j = 0; j < save_src_cnt; i++, j++)
fill_cfd_frame(cf, i, len, src[j], 0);
if (cont_q)
fill_cfd_frame(cf, i++, len, dest, 0);
/* Setting the final bit in the last source buffer frame in CFD */
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
return &desc->async_tx;
}
/*
* Prep function for P parity calculation.In RAID Engine terminology,
* XOR calculation is called GenQ calculation done through GenQ command
*/
static struct dma_async_tx_descriptor *fsl_re_prep_dma_xor(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
unsigned int src_cnt, size_t len, unsigned long flags)
{
/* NULL let genq take all coef as 1 */
return fsl_re_prep_dma_genq(chan, dest, src, src_cnt, NULL, len, flags);
}
/*
* Prep function for P/Q parity calculation.In RAID Engine terminology,
* P/Q calculation is called GenQQ done through GenQQ command
*/
static struct dma_async_tx_descriptor *fsl_re_prep_dma_pq(
struct dma_chan *chan, dma_addr_t *dest, dma_addr_t *src,
unsigned int src_cnt, const unsigned char *scf, size_t len,
unsigned long flags)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
struct fsl_re_pq_cdb *pq;
struct fsl_re_cmpnd_frame *cf;
u32 cdb;
u8 *p;
int gfmq_len, i, j;
unsigned int save_src_cnt = src_cnt;
re_chan = container_of(chan, struct fsl_re_chan, chan);
if (len > FSL_RE_MAX_DATA_LEN) {
dev_err(re_chan->dev, "pq tx length is %zu, max length is %d\n",
len, FSL_RE_MAX_DATA_LEN);
return NULL;
}
/*
* RE requires at least 2 sources, if given only one source, we pass the
* second source same as the first one.
* With only one source, generating P is meaningless, only generate Q.
*/
if (src_cnt == 1) {
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_src[2];
unsigned char coef[2];
dma_src[0] = *src;
coef[0] = *scf;
dma_src[1] = *src;
coef[1] = 0;
tx = fsl_re_prep_dma_genq(chan, dest[1], dma_src, 2, coef, len,
flags);
if (tx)
desc = to_fsl_re_dma_desc(tx);
return tx;
}
/*
* During RAID6 array creation, Linux's MD layer gets P and Q
* calculated separately in two steps. But our RAID Engine has
* the capability to calculate both P and Q with a single command
* Hence to merge well with MD layer, we need to provide a hook
* here and call re_jq_prep_dma_genq() function
*/
if (flags & DMA_PREP_PQ_DISABLE_P)
return fsl_re_prep_dma_genq(chan, dest[1], src, src_cnt,
scf, len, flags);
if (flags & DMA_PREP_CONTINUE)
src_cnt += 3;
desc = fsl_re_chan_alloc_desc(re_chan, flags);
if (desc <= 0)
return NULL;
/* Filling GenQQ CDB */
cdb = FSL_RE_PQ_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
cdb |= (src_cnt - 1) << FSL_RE_CDB_NRCS_SHIFT;
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
cdb |= FSL_RE_BUFFER_OUTPUT << FSL_RE_CDB_BUFFER_SHIFT;
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
pq = desc->cdb_addr;
pq->cdb32 = cdb;
p = pq->gfm_q1;
/* Init gfm_q1[] */
for (i = 0; i < src_cnt; i++)
p[i] = 1;
/* Align gfm[] to 32bit */
gfmq_len = ALIGN(src_cnt, 4);
/* Init gfm_q2[] */
p += gfmq_len;
for (i = 0; i < src_cnt; i++)
p[i] = scf[i];
/* Filling frame 0 of compound frame descriptor with CDB */
cf = desc->cf_addr;
fill_cfd_frame(cf, 0, sizeof(struct fsl_re_pq_cdb), desc->cdb_paddr, 0);
/* Fill CFD's 1st & 2nd frame with dest buffers */
for (i = 1, j = 0; i < 3; i++, j++)
fill_cfd_frame(cf, i, len, dest[j], 0);
/* Fill CFD's rest of the frames with source buffers */
for (i = 3, j = 0; j < save_src_cnt; i++, j++)
fill_cfd_frame(cf, i, len, src[j], 0);
/* PQ computation continuation */
if (flags & DMA_PREP_CONTINUE) {
if (src_cnt - save_src_cnt == 3) {
p[save_src_cnt] = 0;
p[save_src_cnt + 1] = 0;
p[save_src_cnt + 2] = 1;
fill_cfd_frame(cf, i++, len, dest[0], 0);
fill_cfd_frame(cf, i++, len, dest[1], 0);
fill_cfd_frame(cf, i++, len, dest[1], 0);
} else {
dev_err(re_chan->dev, "PQ tx continuation error!\n");
return NULL;
}
}
/* Setting the final bit in the last source buffer frame in CFD */
cf[i - 1].efrl32 |= 1 << FSL_RE_CF_FINAL_SHIFT;
return &desc->async_tx;
}
/*
* Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
* command. Logic of this function will need to be modified once multipage
* support is added in Linux's MD/ASYNC Layer
*/
static struct dma_async_tx_descriptor *fsl_re_prep_dma_memcpy(
struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
size_t length;
struct fsl_re_cmpnd_frame *cf;
struct fsl_re_move_cdb *move;
u32 cdb;
re_chan = container_of(chan, struct fsl_re_chan, chan);
if (len > FSL_RE_MAX_DATA_LEN) {
dev_err(re_chan->dev, "cp tx length is %zu, max length is %d\n",
len, FSL_RE_MAX_DATA_LEN);
return NULL;
}
desc = fsl_re_chan_alloc_desc(re_chan, flags);
if (desc <= 0)
return NULL;
/* Filling move CDB */
cdb = FSL_RE_MOVE_OPCODE << FSL_RE_CDB_OPCODE_SHIFT;
cdb |= FSL_RE_BLOCK_SIZE << FSL_RE_CDB_BLKSIZE_SHIFT;
cdb |= FSL_RE_INTR_ON_ERROR << FSL_RE_CDB_ERROR_SHIFT;
cdb |= FSL_RE_DATA_DEP << FSL_RE_CDB_DEPEND_SHIFT;
move = desc->cdb_addr;
move->cdb32 = cdb;
/* Filling frame 0 of CFD with move CDB */
cf = desc->cf_addr;
fill_cfd_frame(cf, 0, sizeof(*move), desc->cdb_paddr, 0);
length = min_t(size_t, len, FSL_RE_MAX_DATA_LEN);
/* Fill CFD's 1st frame with dest buffer */
fill_cfd_frame(cf, 1, length, dest, 0);
/* Fill CFD's 2nd frame with src buffer */
fill_cfd_frame(cf, 2, length, src, 1);
return &desc->async_tx;
}
static int fsl_re_alloc_chan_resources(struct dma_chan *chan)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
void *cf;
dma_addr_t paddr;
int i;
re_chan = container_of(chan, struct fsl_re_chan, chan);
for (i = 0; i < FSL_RE_MIN_DESCS; i++) {
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
break;
cf = dma_pool_alloc(re_chan->re_dev->cf_desc_pool, GFP_KERNEL,
&paddr);
if (!cf) {
kfree(desc);
break;
}
INIT_LIST_HEAD(&desc->node);
fsl_re_init_desc(re_chan, desc, cf, paddr);
list_add_tail(&desc->node, &re_chan->free_q);
re_chan->alloc_count++;
}
return re_chan->alloc_count;
}
static void fsl_re_free_chan_resources(struct dma_chan *chan)
{
struct fsl_re_chan *re_chan;
struct fsl_re_desc *desc;
re_chan = container_of(chan, struct fsl_re_chan, chan);
while (re_chan->alloc_count--) {
desc = list_first_entry(&re_chan->free_q,
struct fsl_re_desc,
node);
list_del(&desc->node);
dma_pool_free(re_chan->re_dev->cf_desc_pool, desc->cf_addr,
desc->cf_paddr);
kfree(desc);
}
if (!list_empty(&re_chan->free_q))
dev_err(re_chan->dev, "chan resource cannot be cleaned!\n");
}
static int fsl_re_chan_probe(struct platform_device *ofdev,
struct device_node *np, u8 q, u32 off)
{
struct device *dev, *chandev;
struct fsl_re_drv_private *re_priv;
struct fsl_re_chan *chan;
struct dma_device *dma_dev;
u32 ptr;
u32 status;
int ret = 0, rc;
struct platform_device *chan_ofdev;
dev = &ofdev->dev;
re_priv = dev_get_drvdata(dev);
dma_dev = &re_priv->dma_dev;
chan = devm_kzalloc(dev, sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
/* create platform device for chan node */
chan_ofdev = of_platform_device_create(np, NULL, dev);
if (!chan_ofdev) {
dev_err(dev, "Not able to create ofdev for jr %d\n", q);
ret = -EINVAL;
goto err_free;
}
/* read reg property from dts */
rc = of_property_read_u32(np, "reg", &ptr);
if (rc) {
dev_err(dev, "Reg property not found in jr %d\n", q);
ret = -ENODEV;
goto err_free;
}
chan->jrregs = (struct fsl_re_chan_cfg *)((u8 *)re_priv->re_regs +
off + ptr);
/* read irq property from dts */
chan->irq = irq_of_parse_and_map(np, 0);
if (chan->irq == NO_IRQ) {
dev_err(dev, "No IRQ defined for JR %d\n", q);
ret = -ENODEV;
goto err_free;
}
snprintf(chan->name, sizeof(chan->name), "re_jr%02d", q);
chandev = &chan_ofdev->dev;
tasklet_init(&chan->irqtask, fsl_re_dequeue, (unsigned long)chandev);
ret = request_irq(chan->irq, fsl_re_isr, 0, chan->name, chandev);
if (ret) {
dev_err(dev, "Unable to register interrupt for JR %d\n", q);
ret = -EINVAL;
goto err_free;
}
re_priv->re_jrs[q] = chan;
chan->chan.device = dma_dev;
chan->chan.private = chan;
chan->dev = chandev;
chan->re_dev = re_priv;
spin_lock_init(&chan->desc_lock);
INIT_LIST_HEAD(&chan->ack_q);
INIT_LIST_HEAD(&chan->active_q);
INIT_LIST_HEAD(&chan->submit_q);
INIT_LIST_HEAD(&chan->free_q);
chan->inb_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
GFP_KERNEL, &chan->inb_phys_addr);
if (!chan->inb_ring_virt_addr) {
dev_err(dev, "No dma memory for inb_ring_virt_addr\n");
ret = -ENOMEM;
goto err_free;
}
chan->oub_ring_virt_addr = dma_pool_alloc(chan->re_dev->hw_desc_pool,
GFP_KERNEL, &chan->oub_phys_addr);
if (!chan->oub_ring_virt_addr) {
dev_err(dev, "No dma memory for oub_ring_virt_addr\n");
ret = -ENOMEM;
goto err_free_1;
}
/* Program the Inbound/Outbound ring base addresses and size */
out_be32(&chan->jrregs->inbring_base_h,
chan->inb_phys_addr & FSL_RE_ADDR_BIT_MASK);
out_be32(&chan->jrregs->oubring_base_h,
chan->oub_phys_addr & FSL_RE_ADDR_BIT_MASK);
out_be32(&chan->jrregs->inbring_base_l,
chan->inb_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
out_be32(&chan->jrregs->oubring_base_l,
chan->oub_phys_addr >> FSL_RE_ADDR_BIT_SHIFT);
out_be32(&chan->jrregs->inbring_size,
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
out_be32(&chan->jrregs->oubring_size,
FSL_RE_RING_SIZE << FSL_RE_RING_SIZE_SHIFT);
/* Read LIODN value from u-boot */
status = in_be32(&chan->jrregs->jr_config_1) & FSL_RE_REG_LIODN_MASK;
/* Program the CFG reg */
out_be32(&chan->jrregs->jr_config_1,
FSL_RE_CFG1_CBSI | FSL_RE_CFG1_CBS0 | status);
dev_set_drvdata(chandev, chan);
/* Enable RE/CHAN */
out_be32(&chan->jrregs->jr_command, FSL_RE_ENABLE);
return 0;
err_free_1:
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
chan->inb_phys_addr);
err_free:
return ret;
}
/* Probe function for RAID Engine */
static int fsl_re_probe(struct platform_device *ofdev)
{
struct fsl_re_drv_private *re_priv;
struct device_node *np;
struct device_node *child;
u32 off;
u8 ridx = 0;
struct dma_device *dma_dev;
struct resource *res;
int rc;
struct device *dev = &ofdev->dev;
re_priv = devm_kzalloc(dev, sizeof(*re_priv), GFP_KERNEL);
if (!re_priv)
return -ENOMEM;
res = platform_get_resource(ofdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
/* IOMAP the entire RAID Engine region */
re_priv->re_regs = devm_ioremap(dev, res->start, resource_size(res));
if (!re_priv->re_regs)
return -EBUSY;
/* Program the RE mode */
out_be32(&re_priv->re_regs->global_config, FSL_RE_NON_DPAA_MODE);
/* Program Galois Field polynomial */
out_be32(&re_priv->re_regs->galois_field_config, FSL_RE_GFM_POLY);
dev_info(dev, "version %x, mode %x, gfp %x\n",
in_be32(&re_priv->re_regs->re_version_id),
in_be32(&re_priv->re_regs->global_config),
in_be32(&re_priv->re_regs->galois_field_config));
dma_dev = &re_priv->dma_dev;
dma_dev->dev = dev;
INIT_LIST_HEAD(&dma_dev->channels);
dma_set_mask(dev, DMA_BIT_MASK(40));
dma_dev->device_alloc_chan_resources = fsl_re_alloc_chan_resources;
dma_dev->device_tx_status = fsl_re_tx_status;
dma_dev->device_issue_pending = fsl_re_issue_pending;
dma_dev->max_xor = FSL_RE_MAX_XOR_SRCS;
dma_dev->device_prep_dma_xor = fsl_re_prep_dma_xor;
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
dma_dev->max_pq = FSL_RE_MAX_PQ_SRCS;
dma_dev->device_prep_dma_pq = fsl_re_prep_dma_pq;
dma_cap_set(DMA_PQ, dma_dev->cap_mask);
dma_dev->device_prep_dma_memcpy = fsl_re_prep_dma_memcpy;
dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
dma_dev->device_free_chan_resources = fsl_re_free_chan_resources;
re_priv->total_chans = 0;
re_priv->cf_desc_pool = dmam_pool_create("fsl_re_cf_desc_pool", dev,
FSL_RE_CF_CDB_SIZE,
FSL_RE_CF_CDB_ALIGN, 0);
if (!re_priv->cf_desc_pool) {
dev_err(dev, "No memory for fsl re_cf desc pool\n");
return -ENOMEM;
}
re_priv->hw_desc_pool = dmam_pool_create("fsl_re_hw_desc_pool", dev,
sizeof(struct fsl_re_hw_desc) * FSL_RE_RING_SIZE,
FSL_RE_FRAME_ALIGN, 0);
if (!re_priv->hw_desc_pool) {
dev_err(dev, "No memory for fsl re_hw desc pool\n");
return -ENOMEM;
}
dev_set_drvdata(dev, re_priv);
/* Parse Device tree to find out the total number of JQs present */
for_each_compatible_node(np, NULL, "fsl,raideng-v1.0-job-queue") {
rc = of_property_read_u32(np, "reg", &off);
if (rc) {
dev_err(dev, "Reg property not found in JQ node\n");
return -ENODEV;
}
/* Find out the Job Rings present under each JQ */
for_each_child_of_node(np, child) {
rc = of_device_is_compatible(child,
"fsl,raideng-v1.0-job-ring");
if (rc) {
fsl_re_chan_probe(ofdev, child, ridx++, off);
re_priv->total_chans++;
}
}
}
dma_async_device_register(dma_dev);
return 0;
}
static void fsl_re_remove_chan(struct fsl_re_chan *chan)
{
tasklet_kill(&chan->irqtask);
dma_pool_free(chan->re_dev->hw_desc_pool, chan->inb_ring_virt_addr,
chan->inb_phys_addr);
dma_pool_free(chan->re_dev->hw_desc_pool, chan->oub_ring_virt_addr,
chan->oub_phys_addr);
}
static int fsl_re_remove(struct platform_device *ofdev)
{
struct fsl_re_drv_private *re_priv;
struct device *dev;
int i;
dev = &ofdev->dev;
re_priv = dev_get_drvdata(dev);
/* Cleanup chan related memory areas */
for (i = 0; i < re_priv->total_chans; i++)
fsl_re_remove_chan(re_priv->re_jrs[i]);
/* Unregister the driver */
dma_async_device_unregister(&re_priv->dma_dev);
return 0;
}
static struct of_device_id fsl_re_ids[] = {
{ .compatible = "fsl,raideng-v1.0", },
{}
};
static struct platform_driver fsl_re_driver = {
.driver = {
.name = "fsl-raideng",
.of_match_table = fsl_re_ids,
},
.probe = fsl_re_probe,
.remove = fsl_re_remove,
};
module_platform_driver(fsl_re_driver);
MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");