linux_dsm_epyc7002/net/xfrm/xfrm_state.c
Linus Torvalds aecdc33e11 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next
Pull networking changes from David Miller:

 1) GRE now works over ipv6, from Dmitry Kozlov.

 2) Make SCTP more network namespace aware, from Eric Biederman.

 3) TEAM driver now works with non-ethernet devices, from Jiri Pirko.

 4) Make openvswitch network namespace aware, from Pravin B Shelar.

 5) IPV6 NAT implementation, from Patrick McHardy.

 6) Server side support for TCP Fast Open, from Jerry Chu and others.

 7) Packet BPF filter supports MOD and XOR, from Eric Dumazet and Daniel
    Borkmann.

 8) Increate the loopback default MTU to 64K, from Eric Dumazet.

 9) Use a per-task rather than per-socket page fragment allocator for
    outgoing networking traffic.  This benefits processes that have very
    many mostly idle sockets, which is quite common.

    From Eric Dumazet.

10) Use up to 32K for page fragment allocations, with fallbacks to
    smaller sizes when higher order page allocations fail.  Benefits are
    a) less segments for driver to process b) less calls to page
    allocator c) less waste of space.

    From Eric Dumazet.

11) Allow GRO to be used on GRE tunnels, from Eric Dumazet.

12) VXLAN device driver, one way to handle VLAN issues such as the
    limitation of 4096 VLAN IDs yet still have some level of isolation.
    From Stephen Hemminger.

13) As usual there is a large boatload of driver changes, with the scale
    perhaps tilted towards the wireless side this time around.

Fix up various fairly trivial conflicts, mostly caused by the user
namespace changes.

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1012 commits)
  hyperv: Add buffer for extended info after the RNDIS response message.
  hyperv: Report actual status in receive completion packet
  hyperv: Remove extra allocated space for recv_pkt_list elements
  hyperv: Fix page buffer handling in rndis_filter_send_request()
  hyperv: Fix the missing return value in rndis_filter_set_packet_filter()
  hyperv: Fix the max_xfer_size in RNDIS initialization
  vxlan: put UDP socket in correct namespace
  vxlan: Depend on CONFIG_INET
  sfc: Fix the reported priorities of different filter types
  sfc: Remove EFX_FILTER_FLAG_RX_OVERRIDE_IP
  sfc: Fix loopback self-test with separate_tx_channels=1
  sfc: Fix MCDI structure field lookup
  sfc: Add parentheses around use of bitfield macro arguments
  sfc: Fix null function pointer in efx_sriov_channel_type
  vxlan: virtual extensible lan
  igmp: export symbol ip_mc_leave_group
  netlink: add attributes to fdb interface
  tg3: unconditionally select HWMON support when tg3 is enabled.
  Revert "net: ti cpsw ethernet: allow reading phy interface mode from DT"
  gre: fix sparse warning
  ...
2012-10-02 13:38:27 -07:00

2243 lines
54 KiB
C

/*
* xfrm_state.c
*
* Changes:
* Mitsuru KANDA @USAGI
* Kazunori MIYAZAWA @USAGI
* Kunihiro Ishiguro <kunihiro@ipinfusion.com>
* IPv6 support
* YOSHIFUJI Hideaki @USAGI
* Split up af-specific functions
* Derek Atkins <derek@ihtfp.com>
* Add UDP Encapsulation
*
*/
#include <linux/workqueue.h>
#include <net/xfrm.h>
#include <linux/pfkeyv2.h>
#include <linux/ipsec.h>
#include <linux/module.h>
#include <linux/cache.h>
#include <linux/audit.h>
#include <asm/uaccess.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include "xfrm_hash.h"
/* Each xfrm_state may be linked to two tables:
1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
2. Hash table by (daddr,family,reqid) to find what SAs exist for given
destination/tunnel endpoint. (output)
*/
static DEFINE_SPINLOCK(xfrm_state_lock);
static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family);
static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo);
static inline unsigned int xfrm_dst_hash(struct net *net,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
u32 reqid,
unsigned short family)
{
return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
}
static inline unsigned int xfrm_src_hash(struct net *net,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
unsigned short family)
{
return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
}
static inline unsigned int
xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
__be32 spi, u8 proto, unsigned short family)
{
return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
}
static void xfrm_hash_transfer(struct hlist_head *list,
struct hlist_head *ndsttable,
struct hlist_head *nsrctable,
struct hlist_head *nspitable,
unsigned int nhashmask)
{
struct hlist_node *entry, *tmp;
struct xfrm_state *x;
hlist_for_each_entry_safe(x, entry, tmp, list, bydst) {
unsigned int h;
h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
x->props.reqid, x->props.family,
nhashmask);
hlist_add_head(&x->bydst, ndsttable+h);
h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
x->props.family,
nhashmask);
hlist_add_head(&x->bysrc, nsrctable+h);
if (x->id.spi) {
h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
x->id.proto, x->props.family,
nhashmask);
hlist_add_head(&x->byspi, nspitable+h);
}
}
}
static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
{
return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
}
static DEFINE_MUTEX(hash_resize_mutex);
static void xfrm_hash_resize(struct work_struct *work)
{
struct net *net = container_of(work, struct net, xfrm.state_hash_work);
struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi;
unsigned long nsize, osize;
unsigned int nhashmask, ohashmask;
int i;
mutex_lock(&hash_resize_mutex);
nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
ndst = xfrm_hash_alloc(nsize);
if (!ndst)
goto out_unlock;
nsrc = xfrm_hash_alloc(nsize);
if (!nsrc) {
xfrm_hash_free(ndst, nsize);
goto out_unlock;
}
nspi = xfrm_hash_alloc(nsize);
if (!nspi) {
xfrm_hash_free(ndst, nsize);
xfrm_hash_free(nsrc, nsize);
goto out_unlock;
}
spin_lock_bh(&xfrm_state_lock);
nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
for (i = net->xfrm.state_hmask; i >= 0; i--)
xfrm_hash_transfer(net->xfrm.state_bydst+i, ndst, nsrc, nspi,
nhashmask);
odst = net->xfrm.state_bydst;
osrc = net->xfrm.state_bysrc;
ospi = net->xfrm.state_byspi;
ohashmask = net->xfrm.state_hmask;
net->xfrm.state_bydst = ndst;
net->xfrm.state_bysrc = nsrc;
net->xfrm.state_byspi = nspi;
net->xfrm.state_hmask = nhashmask;
spin_unlock_bh(&xfrm_state_lock);
osize = (ohashmask + 1) * sizeof(struct hlist_head);
xfrm_hash_free(odst, osize);
xfrm_hash_free(osrc, osize);
xfrm_hash_free(ospi, osize);
out_unlock:
mutex_unlock(&hash_resize_mutex);
}
static DEFINE_RWLOCK(xfrm_state_afinfo_lock);
static struct xfrm_state_afinfo *xfrm_state_afinfo[NPROTO];
static DEFINE_SPINLOCK(xfrm_state_gc_lock);
int __xfrm_state_delete(struct xfrm_state *x);
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
static struct xfrm_state_afinfo *xfrm_state_lock_afinfo(unsigned int family)
{
struct xfrm_state_afinfo *afinfo;
if (unlikely(family >= NPROTO))
return NULL;
write_lock_bh(&xfrm_state_afinfo_lock);
afinfo = xfrm_state_afinfo[family];
if (unlikely(!afinfo))
write_unlock_bh(&xfrm_state_afinfo_lock);
return afinfo;
}
static void xfrm_state_unlock_afinfo(struct xfrm_state_afinfo *afinfo)
__releases(xfrm_state_afinfo_lock)
{
write_unlock_bh(&xfrm_state_afinfo_lock);
}
int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family);
const struct xfrm_type **typemap;
int err = 0;
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
typemap = afinfo->type_map;
if (likely(typemap[type->proto] == NULL))
typemap[type->proto] = type;
else
err = -EEXIST;
xfrm_state_unlock_afinfo(afinfo);
return err;
}
EXPORT_SYMBOL(xfrm_register_type);
int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family);
const struct xfrm_type **typemap;
int err = 0;
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
typemap = afinfo->type_map;
if (unlikely(typemap[type->proto] != type))
err = -ENOENT;
else
typemap[type->proto] = NULL;
xfrm_state_unlock_afinfo(afinfo);
return err;
}
EXPORT_SYMBOL(xfrm_unregister_type);
static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
{
struct xfrm_state_afinfo *afinfo;
const struct xfrm_type **typemap;
const struct xfrm_type *type;
int modload_attempted = 0;
retry:
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return NULL;
typemap = afinfo->type_map;
type = typemap[proto];
if (unlikely(type && !try_module_get(type->owner)))
type = NULL;
if (!type && !modload_attempted) {
xfrm_state_put_afinfo(afinfo);
request_module("xfrm-type-%d-%d", family, proto);
modload_attempted = 1;
goto retry;
}
xfrm_state_put_afinfo(afinfo);
return type;
}
static void xfrm_put_type(const struct xfrm_type *type)
{
module_put(type->owner);
}
int xfrm_register_mode(struct xfrm_mode *mode, int family)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode **modemap;
int err;
if (unlikely(mode->encap >= XFRM_MODE_MAX))
return -EINVAL;
afinfo = xfrm_state_lock_afinfo(family);
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
err = -EEXIST;
modemap = afinfo->mode_map;
if (modemap[mode->encap])
goto out;
err = -ENOENT;
if (!try_module_get(afinfo->owner))
goto out;
mode->afinfo = afinfo;
modemap[mode->encap] = mode;
err = 0;
out:
xfrm_state_unlock_afinfo(afinfo);
return err;
}
EXPORT_SYMBOL(xfrm_register_mode);
int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode **modemap;
int err;
if (unlikely(mode->encap >= XFRM_MODE_MAX))
return -EINVAL;
afinfo = xfrm_state_lock_afinfo(family);
if (unlikely(afinfo == NULL))
return -EAFNOSUPPORT;
err = -ENOENT;
modemap = afinfo->mode_map;
if (likely(modemap[mode->encap] == mode)) {
modemap[mode->encap] = NULL;
module_put(mode->afinfo->owner);
err = 0;
}
xfrm_state_unlock_afinfo(afinfo);
return err;
}
EXPORT_SYMBOL(xfrm_unregister_mode);
static struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode *mode;
int modload_attempted = 0;
if (unlikely(encap >= XFRM_MODE_MAX))
return NULL;
retry:
afinfo = xfrm_state_get_afinfo(family);
if (unlikely(afinfo == NULL))
return NULL;
mode = afinfo->mode_map[encap];
if (unlikely(mode && !try_module_get(mode->owner)))
mode = NULL;
if (!mode && !modload_attempted) {
xfrm_state_put_afinfo(afinfo);
request_module("xfrm-mode-%d-%d", family, encap);
modload_attempted = 1;
goto retry;
}
xfrm_state_put_afinfo(afinfo);
return mode;
}
static void xfrm_put_mode(struct xfrm_mode *mode)
{
module_put(mode->owner);
}
static void xfrm_state_gc_destroy(struct xfrm_state *x)
{
tasklet_hrtimer_cancel(&x->mtimer);
del_timer_sync(&x->rtimer);
kfree(x->aalg);
kfree(x->ealg);
kfree(x->calg);
kfree(x->encap);
kfree(x->coaddr);
kfree(x->replay_esn);
kfree(x->preplay_esn);
if (x->inner_mode)
xfrm_put_mode(x->inner_mode);
if (x->inner_mode_iaf)
xfrm_put_mode(x->inner_mode_iaf);
if (x->outer_mode)
xfrm_put_mode(x->outer_mode);
if (x->type) {
x->type->destructor(x);
xfrm_put_type(x->type);
}
security_xfrm_state_free(x);
kfree(x);
}
static void xfrm_state_gc_task(struct work_struct *work)
{
struct net *net = container_of(work, struct net, xfrm.state_gc_work);
struct xfrm_state *x;
struct hlist_node *entry, *tmp;
struct hlist_head gc_list;
spin_lock_bh(&xfrm_state_gc_lock);
hlist_move_list(&net->xfrm.state_gc_list, &gc_list);
spin_unlock_bh(&xfrm_state_gc_lock);
hlist_for_each_entry_safe(x, entry, tmp, &gc_list, gclist)
xfrm_state_gc_destroy(x);
wake_up(&net->xfrm.km_waitq);
}
static inline unsigned long make_jiffies(long secs)
{
if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
return MAX_SCHEDULE_TIMEOUT-1;
else
return secs*HZ;
}
static enum hrtimer_restart xfrm_timer_handler(struct hrtimer * me)
{
struct tasklet_hrtimer *thr = container_of(me, struct tasklet_hrtimer, timer);
struct xfrm_state *x = container_of(thr, struct xfrm_state, mtimer);
struct net *net = xs_net(x);
unsigned long now = get_seconds();
long next = LONG_MAX;
int warn = 0;
int err = 0;
spin_lock(&x->lock);
if (x->km.state == XFRM_STATE_DEAD)
goto out;
if (x->km.state == XFRM_STATE_EXPIRED)
goto expired;
if (x->lft.hard_add_expires_seconds) {
long tmo = x->lft.hard_add_expires_seconds +
x->curlft.add_time - now;
if (tmo <= 0) {
if (x->xflags & XFRM_SOFT_EXPIRE) {
/* enter hard expire without soft expire first?!
* setting a new date could trigger this.
* workarbound: fix x->curflt.add_time by below:
*/
x->curlft.add_time = now - x->saved_tmo - 1;
tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
} else
goto expired;
}
if (tmo < next)
next = tmo;
}
if (x->lft.hard_use_expires_seconds) {
long tmo = x->lft.hard_use_expires_seconds +
(x->curlft.use_time ? : now) - now;
if (tmo <= 0)
goto expired;
if (tmo < next)
next = tmo;
}
if (x->km.dying)
goto resched;
if (x->lft.soft_add_expires_seconds) {
long tmo = x->lft.soft_add_expires_seconds +
x->curlft.add_time - now;
if (tmo <= 0) {
warn = 1;
x->xflags &= ~XFRM_SOFT_EXPIRE;
} else if (tmo < next) {
next = tmo;
x->xflags |= XFRM_SOFT_EXPIRE;
x->saved_tmo = tmo;
}
}
if (x->lft.soft_use_expires_seconds) {
long tmo = x->lft.soft_use_expires_seconds +
(x->curlft.use_time ? : now) - now;
if (tmo <= 0)
warn = 1;
else if (tmo < next)
next = tmo;
}
x->km.dying = warn;
if (warn)
km_state_expired(x, 0, 0);
resched:
if (next != LONG_MAX){
tasklet_hrtimer_start(&x->mtimer, ktime_set(next, 0), HRTIMER_MODE_REL);
}
goto out;
expired:
if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) {
x->km.state = XFRM_STATE_EXPIRED;
wake_up(&net->xfrm.km_waitq);
next = 2;
goto resched;
}
err = __xfrm_state_delete(x);
if (!err && x->id.spi)
km_state_expired(x, 1, 0);
xfrm_audit_state_delete(x, err ? 0 : 1,
audit_get_loginuid(current),
audit_get_sessionid(current), 0);
out:
spin_unlock(&x->lock);
return HRTIMER_NORESTART;
}
static void xfrm_replay_timer_handler(unsigned long data);
struct xfrm_state *xfrm_state_alloc(struct net *net)
{
struct xfrm_state *x;
x = kzalloc(sizeof(struct xfrm_state), GFP_ATOMIC);
if (x) {
write_pnet(&x->xs_net, net);
atomic_set(&x->refcnt, 1);
atomic_set(&x->tunnel_users, 0);
INIT_LIST_HEAD(&x->km.all);
INIT_HLIST_NODE(&x->bydst);
INIT_HLIST_NODE(&x->bysrc);
INIT_HLIST_NODE(&x->byspi);
tasklet_hrtimer_init(&x->mtimer, xfrm_timer_handler, CLOCK_REALTIME, HRTIMER_MODE_ABS);
setup_timer(&x->rtimer, xfrm_replay_timer_handler,
(unsigned long)x);
x->curlft.add_time = get_seconds();
x->lft.soft_byte_limit = XFRM_INF;
x->lft.soft_packet_limit = XFRM_INF;
x->lft.hard_byte_limit = XFRM_INF;
x->lft.hard_packet_limit = XFRM_INF;
x->replay_maxage = 0;
x->replay_maxdiff = 0;
x->inner_mode = NULL;
x->inner_mode_iaf = NULL;
spin_lock_init(&x->lock);
}
return x;
}
EXPORT_SYMBOL(xfrm_state_alloc);
void __xfrm_state_destroy(struct xfrm_state *x)
{
struct net *net = xs_net(x);
WARN_ON(x->km.state != XFRM_STATE_DEAD);
spin_lock_bh(&xfrm_state_gc_lock);
hlist_add_head(&x->gclist, &net->xfrm.state_gc_list);
spin_unlock_bh(&xfrm_state_gc_lock);
schedule_work(&net->xfrm.state_gc_work);
}
EXPORT_SYMBOL(__xfrm_state_destroy);
int __xfrm_state_delete(struct xfrm_state *x)
{
struct net *net = xs_net(x);
int err = -ESRCH;
if (x->km.state != XFRM_STATE_DEAD) {
x->km.state = XFRM_STATE_DEAD;
spin_lock(&xfrm_state_lock);
list_del(&x->km.all);
hlist_del(&x->bydst);
hlist_del(&x->bysrc);
if (x->id.spi)
hlist_del(&x->byspi);
net->xfrm.state_num--;
spin_unlock(&xfrm_state_lock);
/* All xfrm_state objects are created by xfrm_state_alloc.
* The xfrm_state_alloc call gives a reference, and that
* is what we are dropping here.
*/
xfrm_state_put(x);
err = 0;
}
return err;
}
EXPORT_SYMBOL(__xfrm_state_delete);
int xfrm_state_delete(struct xfrm_state *x)
{
int err;
spin_lock_bh(&x->lock);
err = __xfrm_state_delete(x);
spin_unlock_bh(&x->lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_delete);
#ifdef CONFIG_SECURITY_NETWORK_XFRM
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info)
{
int i, err = 0;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct hlist_node *entry;
struct xfrm_state *x;
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
if (xfrm_id_proto_match(x->id.proto, proto) &&
(err = security_xfrm_state_delete(x)) != 0) {
xfrm_audit_state_delete(x, 0,
audit_info->loginuid,
audit_info->sessionid,
audit_info->secid);
return err;
}
}
}
return err;
}
#else
static inline int
xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info)
{
return 0;
}
#endif
int xfrm_state_flush(struct net *net, u8 proto, struct xfrm_audit *audit_info)
{
int i, err = 0, cnt = 0;
spin_lock_bh(&xfrm_state_lock);
err = xfrm_state_flush_secctx_check(net, proto, audit_info);
if (err)
goto out;
err = -ESRCH;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct hlist_node *entry;
struct xfrm_state *x;
restart:
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
if (!xfrm_state_kern(x) &&
xfrm_id_proto_match(x->id.proto, proto)) {
xfrm_state_hold(x);
spin_unlock_bh(&xfrm_state_lock);
err = xfrm_state_delete(x);
xfrm_audit_state_delete(x, err ? 0 : 1,
audit_info->loginuid,
audit_info->sessionid,
audit_info->secid);
xfrm_state_put(x);
if (!err)
cnt++;
spin_lock_bh(&xfrm_state_lock);
goto restart;
}
}
}
if (cnt)
err = 0;
out:
spin_unlock_bh(&xfrm_state_lock);
wake_up(&net->xfrm.km_waitq);
return err;
}
EXPORT_SYMBOL(xfrm_state_flush);
void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
{
spin_lock_bh(&xfrm_state_lock);
si->sadcnt = net->xfrm.state_num;
si->sadhcnt = net->xfrm.state_hmask;
si->sadhmcnt = xfrm_state_hashmax;
spin_unlock_bh(&xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_sad_getinfo);
static int
xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
const struct xfrm_tmpl *tmpl,
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
unsigned short family)
{
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
if (!afinfo)
return -1;
afinfo->init_tempsel(&x->sel, fl);
if (family != tmpl->encap_family) {
xfrm_state_put_afinfo(afinfo);
afinfo = xfrm_state_get_afinfo(tmpl->encap_family);
if (!afinfo)
return -1;
}
afinfo->init_temprop(x, tmpl, daddr, saddr);
xfrm_state_put_afinfo(afinfo);
return 0;
}
static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
const xfrm_address_t *daddr,
__be32 spi, u8 proto,
unsigned short family)
{
unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
struct xfrm_state *x;
struct hlist_node *entry;
hlist_for_each_entry(x, entry, net->xfrm.state_byspi+h, byspi) {
if (x->props.family != family ||
x->id.spi != spi ||
x->id.proto != proto ||
xfrm_addr_cmp(&x->id.daddr, daddr, family))
continue;
if ((mark & x->mark.m) != x->mark.v)
continue;
xfrm_state_hold(x);
return x;
}
return NULL;
}
static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr,
u8 proto, unsigned short family)
{
unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
struct xfrm_state *x;
struct hlist_node *entry;
hlist_for_each_entry(x, entry, net->xfrm.state_bysrc+h, bysrc) {
if (x->props.family != family ||
x->id.proto != proto ||
xfrm_addr_cmp(&x->id.daddr, daddr, family) ||
xfrm_addr_cmp(&x->props.saddr, saddr, family))
continue;
if ((mark & x->mark.m) != x->mark.v)
continue;
xfrm_state_hold(x);
return x;
}
return NULL;
}
static inline struct xfrm_state *
__xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
{
struct net *net = xs_net(x);
u32 mark = x->mark.v & x->mark.m;
if (use_spi)
return __xfrm_state_lookup(net, mark, &x->id.daddr,
x->id.spi, x->id.proto, family);
else
return __xfrm_state_lookup_byaddr(net, mark,
&x->id.daddr,
&x->props.saddr,
x->id.proto, family);
}
static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
{
if (have_hash_collision &&
(net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
net->xfrm.state_num > net->xfrm.state_hmask)
schedule_work(&net->xfrm.state_hash_work);
}
static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
const struct flowi *fl, unsigned short family,
struct xfrm_state **best, int *acq_in_progress,
int *error)
{
/* Resolution logic:
* 1. There is a valid state with matching selector. Done.
* 2. Valid state with inappropriate selector. Skip.
*
* Entering area of "sysdeps".
*
* 3. If state is not valid, selector is temporary, it selects
* only session which triggered previous resolution. Key
* manager will do something to install a state with proper
* selector.
*/
if (x->km.state == XFRM_STATE_VALID) {
if ((x->sel.family &&
!xfrm_selector_match(&x->sel, fl, x->sel.family)) ||
!security_xfrm_state_pol_flow_match(x, pol, fl))
return;
if (!*best ||
(*best)->km.dying > x->km.dying ||
((*best)->km.dying == x->km.dying &&
(*best)->curlft.add_time < x->curlft.add_time))
*best = x;
} else if (x->km.state == XFRM_STATE_ACQ) {
*acq_in_progress = 1;
} else if (x->km.state == XFRM_STATE_ERROR ||
x->km.state == XFRM_STATE_EXPIRED) {
if (xfrm_selector_match(&x->sel, fl, x->sel.family) &&
security_xfrm_state_pol_flow_match(x, pol, fl))
*error = -ESRCH;
}
}
struct xfrm_state *
xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
const struct flowi *fl, struct xfrm_tmpl *tmpl,
struct xfrm_policy *pol, int *err,
unsigned short family)
{
static xfrm_address_t saddr_wildcard = { };
struct net *net = xp_net(pol);
unsigned int h, h_wildcard;
struct hlist_node *entry;
struct xfrm_state *x, *x0, *to_put;
int acquire_in_progress = 0;
int error = 0;
struct xfrm_state *best = NULL;
u32 mark = pol->mark.v & pol->mark.m;
unsigned short encap_family = tmpl->encap_family;
to_put = NULL;
spin_lock_bh(&xfrm_state_lock);
h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
if (x->props.family == encap_family &&
x->props.reqid == tmpl->reqid &&
(mark & x->mark.m) == x->mark.v &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
tmpl->mode == x->props.mode &&
tmpl->id.proto == x->id.proto &&
(tmpl->id.spi == x->id.spi || !tmpl->id.spi))
xfrm_state_look_at(pol, x, fl, encap_family,
&best, &acquire_in_progress, &error);
}
if (best)
goto found;
h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h_wildcard, bydst) {
if (x->props.family == encap_family &&
x->props.reqid == tmpl->reqid &&
(mark & x->mark.m) == x->mark.v &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
tmpl->mode == x->props.mode &&
tmpl->id.proto == x->id.proto &&
(tmpl->id.spi == x->id.spi || !tmpl->id.spi))
xfrm_state_look_at(pol, x, fl, encap_family,
&best, &acquire_in_progress, &error);
}
found:
x = best;
if (!x && !error && !acquire_in_progress) {
if (tmpl->id.spi &&
(x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
tmpl->id.proto, encap_family)) != NULL) {
to_put = x0;
error = -EEXIST;
goto out;
}
x = xfrm_state_alloc(net);
if (x == NULL) {
error = -ENOMEM;
goto out;
}
/* Initialize temporary state matching only
* to current session. */
xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
memcpy(&x->mark, &pol->mark, sizeof(x->mark));
error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
if (error) {
x->km.state = XFRM_STATE_DEAD;
to_put = x;
x = NULL;
goto out;
}
if (km_query(x, tmpl, pol) == 0) {
x->km.state = XFRM_STATE_ACQ;
list_add(&x->km.all, &net->xfrm.state_all);
hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
h = xfrm_src_hash(net, daddr, saddr, encap_family);
hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
if (x->id.spi) {
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
}
x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
} else {
x->km.state = XFRM_STATE_DEAD;
to_put = x;
x = NULL;
error = -ESRCH;
}
}
out:
if (x)
xfrm_state_hold(x);
else
*err = acquire_in_progress ? -EAGAIN : error;
spin_unlock_bh(&xfrm_state_lock);
if (to_put)
xfrm_state_put(to_put);
return x;
}
struct xfrm_state *
xfrm_stateonly_find(struct net *net, u32 mark,
xfrm_address_t *daddr, xfrm_address_t *saddr,
unsigned short family, u8 mode, u8 proto, u32 reqid)
{
unsigned int h;
struct xfrm_state *rx = NULL, *x = NULL;
struct hlist_node *entry;
spin_lock(&xfrm_state_lock);
h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
if (x->props.family == family &&
x->props.reqid == reqid &&
(mark & x->mark.m) == x->mark.v &&
!(x->props.flags & XFRM_STATE_WILDRECV) &&
xfrm_state_addr_check(x, daddr, saddr, family) &&
mode == x->props.mode &&
proto == x->id.proto &&
x->km.state == XFRM_STATE_VALID) {
rx = x;
break;
}
}
if (rx)
xfrm_state_hold(rx);
spin_unlock(&xfrm_state_lock);
return rx;
}
EXPORT_SYMBOL(xfrm_stateonly_find);
static void __xfrm_state_insert(struct xfrm_state *x)
{
struct net *net = xs_net(x);
unsigned int h;
list_add(&x->km.all, &net->xfrm.state_all);
h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
x->props.reqid, x->props.family);
hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
if (x->id.spi) {
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
x->props.family);
hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
}
tasklet_hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
if (x->replay_maxage)
mod_timer(&x->rtimer, jiffies + x->replay_maxage);
wake_up(&net->xfrm.km_waitq);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
}
/* xfrm_state_lock is held */
static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
{
struct net *net = xs_net(xnew);
unsigned short family = xnew->props.family;
u32 reqid = xnew->props.reqid;
struct xfrm_state *x;
struct hlist_node *entry;
unsigned int h;
u32 mark = xnew->mark.v & xnew->mark.m;
h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
if (x->props.family == family &&
x->props.reqid == reqid &&
(mark & x->mark.m) == x->mark.v &&
!xfrm_addr_cmp(&x->id.daddr, &xnew->id.daddr, family) &&
!xfrm_addr_cmp(&x->props.saddr, &xnew->props.saddr, family))
x->genid++;
}
}
void xfrm_state_insert(struct xfrm_state *x)
{
spin_lock_bh(&xfrm_state_lock);
__xfrm_state_bump_genids(x);
__xfrm_state_insert(x);
spin_unlock_bh(&xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_insert);
/* xfrm_state_lock is held */
static struct xfrm_state *__find_acq_core(struct net *net, struct xfrm_mark *m,
unsigned short family, u8 mode,
u32 reqid, u8 proto,
const xfrm_address_t *daddr,
const xfrm_address_t *saddr, int create)
{
unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
struct hlist_node *entry;
struct xfrm_state *x;
u32 mark = m->v & m->m;
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
if (x->props.reqid != reqid ||
x->props.mode != mode ||
x->props.family != family ||
x->km.state != XFRM_STATE_ACQ ||
x->id.spi != 0 ||
x->id.proto != proto ||
(mark & x->mark.m) != x->mark.v ||
xfrm_addr_cmp(&x->id.daddr, daddr, family) ||
xfrm_addr_cmp(&x->props.saddr, saddr, family))
continue;
xfrm_state_hold(x);
return x;
}
if (!create)
return NULL;
x = xfrm_state_alloc(net);
if (likely(x)) {
switch (family) {
case AF_INET:
x->sel.daddr.a4 = daddr->a4;
x->sel.saddr.a4 = saddr->a4;
x->sel.prefixlen_d = 32;
x->sel.prefixlen_s = 32;
x->props.saddr.a4 = saddr->a4;
x->id.daddr.a4 = daddr->a4;
break;
case AF_INET6:
*(struct in6_addr *)x->sel.daddr.a6 = *(struct in6_addr *)daddr;
*(struct in6_addr *)x->sel.saddr.a6 = *(struct in6_addr *)saddr;
x->sel.prefixlen_d = 128;
x->sel.prefixlen_s = 128;
*(struct in6_addr *)x->props.saddr.a6 = *(struct in6_addr *)saddr;
*(struct in6_addr *)x->id.daddr.a6 = *(struct in6_addr *)daddr;
break;
}
x->km.state = XFRM_STATE_ACQ;
x->id.proto = proto;
x->props.family = family;
x->props.mode = mode;
x->props.reqid = reqid;
x->mark.v = m->v;
x->mark.m = m->m;
x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
xfrm_state_hold(x);
tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
list_add(&x->km.all, &net->xfrm.state_all);
hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
h = xfrm_src_hash(net, daddr, saddr, family);
hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
net->xfrm.state_num++;
xfrm_hash_grow_check(net, x->bydst.next != NULL);
}
return x;
}
static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
int xfrm_state_add(struct xfrm_state *x)
{
struct net *net = xs_net(x);
struct xfrm_state *x1, *to_put;
int family;
int err;
u32 mark = x->mark.v & x->mark.m;
int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
family = x->props.family;
to_put = NULL;
spin_lock_bh(&xfrm_state_lock);
x1 = __xfrm_state_locate(x, use_spi, family);
if (x1) {
to_put = x1;
x1 = NULL;
err = -EEXIST;
goto out;
}
if (use_spi && x->km.seq) {
x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
if (x1 && ((x1->id.proto != x->id.proto) ||
xfrm_addr_cmp(&x1->id.daddr, &x->id.daddr, family))) {
to_put = x1;
x1 = NULL;
}
}
if (use_spi && !x1)
x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
x->props.reqid, x->id.proto,
&x->id.daddr, &x->props.saddr, 0);
__xfrm_state_bump_genids(x);
__xfrm_state_insert(x);
err = 0;
out:
spin_unlock_bh(&xfrm_state_lock);
if (x1) {
xfrm_state_delete(x1);
xfrm_state_put(x1);
}
if (to_put)
xfrm_state_put(to_put);
return err;
}
EXPORT_SYMBOL(xfrm_state_add);
#ifdef CONFIG_XFRM_MIGRATE
static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, int *errp)
{
struct net *net = xs_net(orig);
int err = -ENOMEM;
struct xfrm_state *x = xfrm_state_alloc(net);
if (!x)
goto out;
memcpy(&x->id, &orig->id, sizeof(x->id));
memcpy(&x->sel, &orig->sel, sizeof(x->sel));
memcpy(&x->lft, &orig->lft, sizeof(x->lft));
x->props.mode = orig->props.mode;
x->props.replay_window = orig->props.replay_window;
x->props.reqid = orig->props.reqid;
x->props.family = orig->props.family;
x->props.saddr = orig->props.saddr;
if (orig->aalg) {
x->aalg = xfrm_algo_auth_clone(orig->aalg);
if (!x->aalg)
goto error;
}
x->props.aalgo = orig->props.aalgo;
if (orig->ealg) {
x->ealg = xfrm_algo_clone(orig->ealg);
if (!x->ealg)
goto error;
}
x->props.ealgo = orig->props.ealgo;
if (orig->calg) {
x->calg = xfrm_algo_clone(orig->calg);
if (!x->calg)
goto error;
}
x->props.calgo = orig->props.calgo;
if (orig->encap) {
x->encap = kmemdup(orig->encap, sizeof(*x->encap), GFP_KERNEL);
if (!x->encap)
goto error;
}
if (orig->coaddr) {
x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
GFP_KERNEL);
if (!x->coaddr)
goto error;
}
if (orig->replay_esn) {
err = xfrm_replay_clone(x, orig);
if (err)
goto error;
}
memcpy(&x->mark, &orig->mark, sizeof(x->mark));
err = xfrm_init_state(x);
if (err)
goto error;
x->props.flags = orig->props.flags;
x->curlft.add_time = orig->curlft.add_time;
x->km.state = orig->km.state;
x->km.seq = orig->km.seq;
return x;
error:
xfrm_state_put(x);
out:
if (errp)
*errp = err;
return NULL;
}
/* xfrm_state_lock is held */
struct xfrm_state * xfrm_migrate_state_find(struct xfrm_migrate *m)
{
unsigned int h;
struct xfrm_state *x;
struct hlist_node *entry;
if (m->reqid) {
h = xfrm_dst_hash(&init_net, &m->old_daddr, &m->old_saddr,
m->reqid, m->old_family);
hlist_for_each_entry(x, entry, init_net.xfrm.state_bydst+h, bydst) {
if (x->props.mode != m->mode ||
x->id.proto != m->proto)
continue;
if (m->reqid && x->props.reqid != m->reqid)
continue;
if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr,
m->old_family) ||
xfrm_addr_cmp(&x->props.saddr, &m->old_saddr,
m->old_family))
continue;
xfrm_state_hold(x);
return x;
}
} else {
h = xfrm_src_hash(&init_net, &m->old_daddr, &m->old_saddr,
m->old_family);
hlist_for_each_entry(x, entry, init_net.xfrm.state_bysrc+h, bysrc) {
if (x->props.mode != m->mode ||
x->id.proto != m->proto)
continue;
if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr,
m->old_family) ||
xfrm_addr_cmp(&x->props.saddr, &m->old_saddr,
m->old_family))
continue;
xfrm_state_hold(x);
return x;
}
}
return NULL;
}
EXPORT_SYMBOL(xfrm_migrate_state_find);
struct xfrm_state * xfrm_state_migrate(struct xfrm_state *x,
struct xfrm_migrate *m)
{
struct xfrm_state *xc;
int err;
xc = xfrm_state_clone(x, &err);
if (!xc)
return NULL;
memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
/* add state */
if (!xfrm_addr_cmp(&x->id.daddr, &m->new_daddr, m->new_family)) {
/* a care is needed when the destination address of the
state is to be updated as it is a part of triplet */
xfrm_state_insert(xc);
} else {
if ((err = xfrm_state_add(xc)) < 0)
goto error;
}
return xc;
error:
xfrm_state_put(xc);
return NULL;
}
EXPORT_SYMBOL(xfrm_state_migrate);
#endif
int xfrm_state_update(struct xfrm_state *x)
{
struct xfrm_state *x1, *to_put;
int err;
int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
to_put = NULL;
spin_lock_bh(&xfrm_state_lock);
x1 = __xfrm_state_locate(x, use_spi, x->props.family);
err = -ESRCH;
if (!x1)
goto out;
if (xfrm_state_kern(x1)) {
to_put = x1;
err = -EEXIST;
goto out;
}
if (x1->km.state == XFRM_STATE_ACQ) {
__xfrm_state_insert(x);
x = NULL;
}
err = 0;
out:
spin_unlock_bh(&xfrm_state_lock);
if (to_put)
xfrm_state_put(to_put);
if (err)
return err;
if (!x) {
xfrm_state_delete(x1);
xfrm_state_put(x1);
return 0;
}
err = -EINVAL;
spin_lock_bh(&x1->lock);
if (likely(x1->km.state == XFRM_STATE_VALID)) {
if (x->encap && x1->encap)
memcpy(x1->encap, x->encap, sizeof(*x1->encap));
if (x->coaddr && x1->coaddr) {
memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
}
if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
x1->km.dying = 0;
tasklet_hrtimer_start(&x1->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
if (x1->curlft.use_time)
xfrm_state_check_expire(x1);
err = 0;
x->km.state = XFRM_STATE_DEAD;
__xfrm_state_put(x);
}
spin_unlock_bh(&x1->lock);
xfrm_state_put(x1);
return err;
}
EXPORT_SYMBOL(xfrm_state_update);
int xfrm_state_check_expire(struct xfrm_state *x)
{
if (!x->curlft.use_time)
x->curlft.use_time = get_seconds();
if (x->km.state != XFRM_STATE_VALID)
return -EINVAL;
if (x->curlft.bytes >= x->lft.hard_byte_limit ||
x->curlft.packets >= x->lft.hard_packet_limit) {
x->km.state = XFRM_STATE_EXPIRED;
tasklet_hrtimer_start(&x->mtimer, ktime_set(0,0), HRTIMER_MODE_REL);
return -EINVAL;
}
if (!x->km.dying &&
(x->curlft.bytes >= x->lft.soft_byte_limit ||
x->curlft.packets >= x->lft.soft_packet_limit)) {
x->km.dying = 1;
km_state_expired(x, 0, 0);
}
return 0;
}
EXPORT_SYMBOL(xfrm_state_check_expire);
struct xfrm_state *
xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
u8 proto, unsigned short family)
{
struct xfrm_state *x;
spin_lock_bh(&xfrm_state_lock);
x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
spin_unlock_bh(&xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_state_lookup);
struct xfrm_state *
xfrm_state_lookup_byaddr(struct net *net, u32 mark,
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
u8 proto, unsigned short family)
{
struct xfrm_state *x;
spin_lock_bh(&xfrm_state_lock);
x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
spin_unlock_bh(&xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
struct xfrm_state *
xfrm_find_acq(struct net *net, struct xfrm_mark *mark, u8 mode, u32 reqid, u8 proto,
const xfrm_address_t *daddr, const xfrm_address_t *saddr,
int create, unsigned short family)
{
struct xfrm_state *x;
spin_lock_bh(&xfrm_state_lock);
x = __find_acq_core(net, mark, family, mode, reqid, proto, daddr, saddr, create);
spin_unlock_bh(&xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_find_acq);
#ifdef CONFIG_XFRM_SUB_POLICY
int
xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
unsigned short family)
{
int err = 0;
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
if (!afinfo)
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_state_lock);
if (afinfo->tmpl_sort)
err = afinfo->tmpl_sort(dst, src, n);
spin_unlock_bh(&xfrm_state_lock);
xfrm_state_put_afinfo(afinfo);
return err;
}
EXPORT_SYMBOL(xfrm_tmpl_sort);
int
xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
unsigned short family)
{
int err = 0;
struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
if (!afinfo)
return -EAFNOSUPPORT;
spin_lock_bh(&xfrm_state_lock);
if (afinfo->state_sort)
err = afinfo->state_sort(dst, src, n);
spin_unlock_bh(&xfrm_state_lock);
xfrm_state_put_afinfo(afinfo);
return err;
}
EXPORT_SYMBOL(xfrm_state_sort);
#endif
/* Silly enough, but I'm lazy to build resolution list */
static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
int i;
for (i = 0; i <= net->xfrm.state_hmask; i++) {
struct hlist_node *entry;
struct xfrm_state *x;
hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
if (x->km.seq == seq &&
(mark & x->mark.m) == x->mark.v &&
x->km.state == XFRM_STATE_ACQ) {
xfrm_state_hold(x);
return x;
}
}
}
return NULL;
}
struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
{
struct xfrm_state *x;
spin_lock_bh(&xfrm_state_lock);
x = __xfrm_find_acq_byseq(net, mark, seq);
spin_unlock_bh(&xfrm_state_lock);
return x;
}
EXPORT_SYMBOL(xfrm_find_acq_byseq);
u32 xfrm_get_acqseq(void)
{
u32 res;
static atomic_t acqseq;
do {
res = atomic_inc_return(&acqseq);
} while (!res);
return res;
}
EXPORT_SYMBOL(xfrm_get_acqseq);
int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
{
struct net *net = xs_net(x);
unsigned int h;
struct xfrm_state *x0;
int err = -ENOENT;
__be32 minspi = htonl(low);
__be32 maxspi = htonl(high);
u32 mark = x->mark.v & x->mark.m;
spin_lock_bh(&x->lock);
if (x->km.state == XFRM_STATE_DEAD)
goto unlock;
err = 0;
if (x->id.spi)
goto unlock;
err = -ENOENT;
if (minspi == maxspi) {
x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
if (x0) {
xfrm_state_put(x0);
goto unlock;
}
x->id.spi = minspi;
} else {
u32 spi = 0;
for (h=0; h<high-low+1; h++) {
spi = low + net_random()%(high-low+1);
x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
if (x0 == NULL) {
x->id.spi = htonl(spi);
break;
}
xfrm_state_put(x0);
}
}
if (x->id.spi) {
spin_lock_bh(&xfrm_state_lock);
h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
spin_unlock_bh(&xfrm_state_lock);
err = 0;
}
unlock:
spin_unlock_bh(&x->lock);
return err;
}
EXPORT_SYMBOL(xfrm_alloc_spi);
int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
int (*func)(struct xfrm_state *, int, void*),
void *data)
{
struct xfrm_state *state;
struct xfrm_state_walk *x;
int err = 0;
if (walk->seq != 0 && list_empty(&walk->all))
return 0;
spin_lock_bh(&xfrm_state_lock);
if (list_empty(&walk->all))
x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
else
x = list_entry(&walk->all, struct xfrm_state_walk, all);
list_for_each_entry_from(x, &net->xfrm.state_all, all) {
if (x->state == XFRM_STATE_DEAD)
continue;
state = container_of(x, struct xfrm_state, km);
if (!xfrm_id_proto_match(state->id.proto, walk->proto))
continue;
err = func(state, walk->seq, data);
if (err) {
list_move_tail(&walk->all, &x->all);
goto out;
}
walk->seq++;
}
if (walk->seq == 0) {
err = -ENOENT;
goto out;
}
list_del_init(&walk->all);
out:
spin_unlock_bh(&xfrm_state_lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_walk);
void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto)
{
INIT_LIST_HEAD(&walk->all);
walk->proto = proto;
walk->state = XFRM_STATE_DEAD;
walk->seq = 0;
}
EXPORT_SYMBOL(xfrm_state_walk_init);
void xfrm_state_walk_done(struct xfrm_state_walk *walk)
{
if (list_empty(&walk->all))
return;
spin_lock_bh(&xfrm_state_lock);
list_del(&walk->all);
spin_unlock_bh(&xfrm_state_lock);
}
EXPORT_SYMBOL(xfrm_state_walk_done);
static void xfrm_replay_timer_handler(unsigned long data)
{
struct xfrm_state *x = (struct xfrm_state*)data;
spin_lock(&x->lock);
if (x->km.state == XFRM_STATE_VALID) {
if (xfrm_aevent_is_on(xs_net(x)))
x->repl->notify(x, XFRM_REPLAY_TIMEOUT);
else
x->xflags |= XFRM_TIME_DEFER;
}
spin_unlock(&x->lock);
}
static LIST_HEAD(xfrm_km_list);
static DEFINE_RWLOCK(xfrm_km_lock);
void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
{
struct xfrm_mgr *km;
read_lock(&xfrm_km_lock);
list_for_each_entry(km, &xfrm_km_list, list)
if (km->notify_policy)
km->notify_policy(xp, dir, c);
read_unlock(&xfrm_km_lock);
}
void km_state_notify(struct xfrm_state *x, const struct km_event *c)
{
struct xfrm_mgr *km;
read_lock(&xfrm_km_lock);
list_for_each_entry(km, &xfrm_km_list, list)
if (km->notify)
km->notify(x, c);
read_unlock(&xfrm_km_lock);
}
EXPORT_SYMBOL(km_policy_notify);
EXPORT_SYMBOL(km_state_notify);
void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
{
struct net *net = xs_net(x);
struct km_event c;
c.data.hard = hard;
c.portid = portid;
c.event = XFRM_MSG_EXPIRE;
km_state_notify(x, &c);
if (hard)
wake_up(&net->xfrm.km_waitq);
}
EXPORT_SYMBOL(km_state_expired);
/*
* We send to all registered managers regardless of failure
* We are happy with one success
*/
int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
{
int err = -EINVAL, acqret;
struct xfrm_mgr *km;
read_lock(&xfrm_km_lock);
list_for_each_entry(km, &xfrm_km_list, list) {
acqret = km->acquire(x, t, pol);
if (!acqret)
err = acqret;
}
read_unlock(&xfrm_km_lock);
return err;
}
EXPORT_SYMBOL(km_query);
int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
{
int err = -EINVAL;
struct xfrm_mgr *km;
read_lock(&xfrm_km_lock);
list_for_each_entry(km, &xfrm_km_list, list) {
if (km->new_mapping)
err = km->new_mapping(x, ipaddr, sport);
if (!err)
break;
}
read_unlock(&xfrm_km_lock);
return err;
}
EXPORT_SYMBOL(km_new_mapping);
void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
{
struct net *net = xp_net(pol);
struct km_event c;
c.data.hard = hard;
c.portid = portid;
c.event = XFRM_MSG_POLEXPIRE;
km_policy_notify(pol, dir, &c);
if (hard)
wake_up(&net->xfrm.km_waitq);
}
EXPORT_SYMBOL(km_policy_expired);
#ifdef CONFIG_XFRM_MIGRATE
int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
const struct xfrm_migrate *m, int num_migrate,
const struct xfrm_kmaddress *k)
{
int err = -EINVAL;
int ret;
struct xfrm_mgr *km;
read_lock(&xfrm_km_lock);
list_for_each_entry(km, &xfrm_km_list, list) {
if (km->migrate) {
ret = km->migrate(sel, dir, type, m, num_migrate, k);
if (!ret)
err = ret;
}
}
read_unlock(&xfrm_km_lock);
return err;
}
EXPORT_SYMBOL(km_migrate);
#endif
int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
{
int err = -EINVAL;
int ret;
struct xfrm_mgr *km;
read_lock(&xfrm_km_lock);
list_for_each_entry(km, &xfrm_km_list, list) {
if (km->report) {
ret = km->report(net, proto, sel, addr);
if (!ret)
err = ret;
}
}
read_unlock(&xfrm_km_lock);
return err;
}
EXPORT_SYMBOL(km_report);
int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen)
{
int err;
u8 *data;
struct xfrm_mgr *km;
struct xfrm_policy *pol = NULL;
if (optlen <= 0 || optlen > PAGE_SIZE)
return -EMSGSIZE;
data = kmalloc(optlen, GFP_KERNEL);
if (!data)
return -ENOMEM;
err = -EFAULT;
if (copy_from_user(data, optval, optlen))
goto out;
err = -EINVAL;
read_lock(&xfrm_km_lock);
list_for_each_entry(km, &xfrm_km_list, list) {
pol = km->compile_policy(sk, optname, data,
optlen, &err);
if (err >= 0)
break;
}
read_unlock(&xfrm_km_lock);
if (err >= 0) {
xfrm_sk_policy_insert(sk, err, pol);
xfrm_pol_put(pol);
err = 0;
}
out:
kfree(data);
return err;
}
EXPORT_SYMBOL(xfrm_user_policy);
int xfrm_register_km(struct xfrm_mgr *km)
{
write_lock_bh(&xfrm_km_lock);
list_add_tail(&km->list, &xfrm_km_list);
write_unlock_bh(&xfrm_km_lock);
return 0;
}
EXPORT_SYMBOL(xfrm_register_km);
int xfrm_unregister_km(struct xfrm_mgr *km)
{
write_lock_bh(&xfrm_km_lock);
list_del(&km->list);
write_unlock_bh(&xfrm_km_lock);
return 0;
}
EXPORT_SYMBOL(xfrm_unregister_km);
int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
{
int err = 0;
if (unlikely(afinfo == NULL))
return -EINVAL;
if (unlikely(afinfo->family >= NPROTO))
return -EAFNOSUPPORT;
write_lock_bh(&xfrm_state_afinfo_lock);
if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
err = -ENOBUFS;
else
xfrm_state_afinfo[afinfo->family] = afinfo;
write_unlock_bh(&xfrm_state_afinfo_lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_register_afinfo);
int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
{
int err = 0;
if (unlikely(afinfo == NULL))
return -EINVAL;
if (unlikely(afinfo->family >= NPROTO))
return -EAFNOSUPPORT;
write_lock_bh(&xfrm_state_afinfo_lock);
if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
if (unlikely(xfrm_state_afinfo[afinfo->family] != afinfo))
err = -EINVAL;
else
xfrm_state_afinfo[afinfo->family] = NULL;
}
write_unlock_bh(&xfrm_state_afinfo_lock);
return err;
}
EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
{
struct xfrm_state_afinfo *afinfo;
if (unlikely(family >= NPROTO))
return NULL;
read_lock(&xfrm_state_afinfo_lock);
afinfo = xfrm_state_afinfo[family];
if (unlikely(!afinfo))
read_unlock(&xfrm_state_afinfo_lock);
return afinfo;
}
static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo)
__releases(xfrm_state_afinfo_lock)
{
read_unlock(&xfrm_state_afinfo_lock);
}
/* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
void xfrm_state_delete_tunnel(struct xfrm_state *x)
{
if (x->tunnel) {
struct xfrm_state *t = x->tunnel;
if (atomic_read(&t->tunnel_users) == 2)
xfrm_state_delete(t);
atomic_dec(&t->tunnel_users);
xfrm_state_put(t);
x->tunnel = NULL;
}
}
EXPORT_SYMBOL(xfrm_state_delete_tunnel);
int xfrm_state_mtu(struct xfrm_state *x, int mtu)
{
int res;
spin_lock_bh(&x->lock);
if (x->km.state == XFRM_STATE_VALID &&
x->type && x->type->get_mtu)
res = x->type->get_mtu(x, mtu);
else
res = mtu - x->props.header_len;
spin_unlock_bh(&x->lock);
return res;
}
int __xfrm_init_state(struct xfrm_state *x, bool init_replay)
{
struct xfrm_state_afinfo *afinfo;
struct xfrm_mode *inner_mode;
int family = x->props.family;
int err;
err = -EAFNOSUPPORT;
afinfo = xfrm_state_get_afinfo(family);
if (!afinfo)
goto error;
err = 0;
if (afinfo->init_flags)
err = afinfo->init_flags(x);
xfrm_state_put_afinfo(afinfo);
if (err)
goto error;
err = -EPROTONOSUPPORT;
if (x->sel.family != AF_UNSPEC) {
inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
if (inner_mode == NULL)
goto error;
if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
family != x->sel.family) {
xfrm_put_mode(inner_mode);
goto error;
}
x->inner_mode = inner_mode;
} else {
struct xfrm_mode *inner_mode_iaf;
int iafamily = AF_INET;
inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
if (inner_mode == NULL)
goto error;
if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) {
xfrm_put_mode(inner_mode);
goto error;
}
x->inner_mode = inner_mode;
if (x->props.family == AF_INET)
iafamily = AF_INET6;
inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
if (inner_mode_iaf) {
if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
x->inner_mode_iaf = inner_mode_iaf;
else
xfrm_put_mode(inner_mode_iaf);
}
}
x->type = xfrm_get_type(x->id.proto, family);
if (x->type == NULL)
goto error;
err = x->type->init_state(x);
if (err)
goto error;
x->outer_mode = xfrm_get_mode(x->props.mode, family);
if (x->outer_mode == NULL) {
err = -EPROTONOSUPPORT;
goto error;
}
if (init_replay) {
err = xfrm_init_replay(x);
if (err)
goto error;
}
x->km.state = XFRM_STATE_VALID;
error:
return err;
}
EXPORT_SYMBOL(__xfrm_init_state);
int xfrm_init_state(struct xfrm_state *x)
{
return __xfrm_init_state(x, true);
}
EXPORT_SYMBOL(xfrm_init_state);
int __net_init xfrm_state_init(struct net *net)
{
unsigned int sz;
INIT_LIST_HEAD(&net->xfrm.state_all);
sz = sizeof(struct hlist_head) * 8;
net->xfrm.state_bydst = xfrm_hash_alloc(sz);
if (!net->xfrm.state_bydst)
goto out_bydst;
net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
if (!net->xfrm.state_bysrc)
goto out_bysrc;
net->xfrm.state_byspi = xfrm_hash_alloc(sz);
if (!net->xfrm.state_byspi)
goto out_byspi;
net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
net->xfrm.state_num = 0;
INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
INIT_HLIST_HEAD(&net->xfrm.state_gc_list);
INIT_WORK(&net->xfrm.state_gc_work, xfrm_state_gc_task);
init_waitqueue_head(&net->xfrm.km_waitq);
return 0;
out_byspi:
xfrm_hash_free(net->xfrm.state_bysrc, sz);
out_bysrc:
xfrm_hash_free(net->xfrm.state_bydst, sz);
out_bydst:
return -ENOMEM;
}
void xfrm_state_fini(struct net *net)
{
struct xfrm_audit audit_info;
unsigned int sz;
flush_work(&net->xfrm.state_hash_work);
audit_info.loginuid = INVALID_UID;
audit_info.sessionid = -1;
audit_info.secid = 0;
xfrm_state_flush(net, IPSEC_PROTO_ANY, &audit_info);
flush_work(&net->xfrm.state_gc_work);
WARN_ON(!list_empty(&net->xfrm.state_all));
sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
WARN_ON(!hlist_empty(net->xfrm.state_byspi));
xfrm_hash_free(net->xfrm.state_byspi, sz);
WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
xfrm_hash_free(net->xfrm.state_bysrc, sz);
WARN_ON(!hlist_empty(net->xfrm.state_bydst));
xfrm_hash_free(net->xfrm.state_bydst, sz);
}
#ifdef CONFIG_AUDITSYSCALL
static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
struct audit_buffer *audit_buf)
{
struct xfrm_sec_ctx *ctx = x->security;
u32 spi = ntohl(x->id.spi);
if (ctx)
audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
switch(x->props.family) {
case AF_INET:
audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
&x->props.saddr.a4, &x->id.daddr.a4);
break;
case AF_INET6:
audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
x->props.saddr.a6, x->id.daddr.a6);
break;
}
audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
}
static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
struct audit_buffer *audit_buf)
{
const struct iphdr *iph4;
const struct ipv6hdr *iph6;
switch (family) {
case AF_INET:
iph4 = ip_hdr(skb);
audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
&iph4->saddr, &iph4->daddr);
break;
case AF_INET6:
iph6 = ipv6_hdr(skb);
audit_log_format(audit_buf,
" src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
&iph6->saddr,&iph6->daddr,
iph6->flow_lbl[0] & 0x0f,
iph6->flow_lbl[1],
iph6->flow_lbl[2]);
break;
}
}
void xfrm_audit_state_add(struct xfrm_state *x, int result,
kuid_t auid, u32 sessionid, u32 secid)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SAD-add");
if (audit_buf == NULL)
return;
xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf);
xfrm_audit_helper_sainfo(x, audit_buf);
audit_log_format(audit_buf, " res=%u", result);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
void xfrm_audit_state_delete(struct xfrm_state *x, int result,
kuid_t auid, u32 sessionid, u32 secid)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SAD-delete");
if (audit_buf == NULL)
return;
xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf);
xfrm_audit_helper_sainfo(x, audit_buf);
audit_log_format(audit_buf, " res=%u", result);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
struct sk_buff *skb)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-replay-overflow");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
/* don't record the sequence number because it's inherent in this kind
* of audit message */
spi = ntohl(x->id.spi);
audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
void xfrm_audit_state_replay(struct xfrm_state *x,
struct sk_buff *skb, __be32 net_seq)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-replayed-pkt");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
spi = ntohl(x->id.spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
{
struct audit_buffer *audit_buf;
audit_buf = xfrm_audit_start("SA-notfound");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, family, audit_buf);
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
__be32 net_spi, __be32 net_seq)
{
struct audit_buffer *audit_buf;
u32 spi;
audit_buf = xfrm_audit_start("SA-notfound");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, family, audit_buf);
spi = ntohl(net_spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
void xfrm_audit_state_icvfail(struct xfrm_state *x,
struct sk_buff *skb, u8 proto)
{
struct audit_buffer *audit_buf;
__be32 net_spi;
__be32 net_seq;
audit_buf = xfrm_audit_start("SA-icv-failure");
if (audit_buf == NULL)
return;
xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
u32 spi = ntohl(net_spi);
audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
spi, spi, ntohl(net_seq));
}
audit_log_end(audit_buf);
}
EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
#endif /* CONFIG_AUDITSYSCALL */