linux_dsm_epyc7002/drivers/gpu/drm/etnaviv/etnaviv_gpu.c
Lucas Stach bffe5db81a drm/etnaviv: share a single cmdbuf suballoc region across all GPUs
There is no need for each GPU to have it's own cmdbuf suballocation
region. Only allocate a single one for the the etnaviv virtual device
and share it across all GPUs.

As the suballoc space is now potentially shared by more hardware jobs
running in parallel, double its size to 512KB to avoid contention.

Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Reviewed-by: Philipp Zabel <p.zabel@pengutronix.de>
Reviewed-by: Guido Günther <agx@sigxcpu.org>
2019-08-15 10:55:30 +02:00

1853 lines
48 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015-2018 Etnaviv Project
*/
#include <linux/clk.h>
#include <linux/component.h>
#include <linux/delay.h>
#include <linux/dma-fence.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/thermal.h>
#include "etnaviv_cmdbuf.h"
#include "etnaviv_dump.h"
#include "etnaviv_gpu.h"
#include "etnaviv_gem.h"
#include "etnaviv_mmu.h"
#include "etnaviv_perfmon.h"
#include "etnaviv_sched.h"
#include "common.xml.h"
#include "state.xml.h"
#include "state_hi.xml.h"
#include "cmdstream.xml.h"
#ifndef PHYS_OFFSET
#define PHYS_OFFSET 0
#endif
static const struct platform_device_id gpu_ids[] = {
{ .name = "etnaviv-gpu,2d" },
{ },
};
/*
* Driver functions:
*/
int etnaviv_gpu_get_param(struct etnaviv_gpu *gpu, u32 param, u64 *value)
{
switch (param) {
case ETNAVIV_PARAM_GPU_MODEL:
*value = gpu->identity.model;
break;
case ETNAVIV_PARAM_GPU_REVISION:
*value = gpu->identity.revision;
break;
case ETNAVIV_PARAM_GPU_FEATURES_0:
*value = gpu->identity.features;
break;
case ETNAVIV_PARAM_GPU_FEATURES_1:
*value = gpu->identity.minor_features0;
break;
case ETNAVIV_PARAM_GPU_FEATURES_2:
*value = gpu->identity.minor_features1;
break;
case ETNAVIV_PARAM_GPU_FEATURES_3:
*value = gpu->identity.minor_features2;
break;
case ETNAVIV_PARAM_GPU_FEATURES_4:
*value = gpu->identity.minor_features3;
break;
case ETNAVIV_PARAM_GPU_FEATURES_5:
*value = gpu->identity.minor_features4;
break;
case ETNAVIV_PARAM_GPU_FEATURES_6:
*value = gpu->identity.minor_features5;
break;
case ETNAVIV_PARAM_GPU_FEATURES_7:
*value = gpu->identity.minor_features6;
break;
case ETNAVIV_PARAM_GPU_FEATURES_8:
*value = gpu->identity.minor_features7;
break;
case ETNAVIV_PARAM_GPU_FEATURES_9:
*value = gpu->identity.minor_features8;
break;
case ETNAVIV_PARAM_GPU_FEATURES_10:
*value = gpu->identity.minor_features9;
break;
case ETNAVIV_PARAM_GPU_FEATURES_11:
*value = gpu->identity.minor_features10;
break;
case ETNAVIV_PARAM_GPU_FEATURES_12:
*value = gpu->identity.minor_features11;
break;
case ETNAVIV_PARAM_GPU_STREAM_COUNT:
*value = gpu->identity.stream_count;
break;
case ETNAVIV_PARAM_GPU_REGISTER_MAX:
*value = gpu->identity.register_max;
break;
case ETNAVIV_PARAM_GPU_THREAD_COUNT:
*value = gpu->identity.thread_count;
break;
case ETNAVIV_PARAM_GPU_VERTEX_CACHE_SIZE:
*value = gpu->identity.vertex_cache_size;
break;
case ETNAVIV_PARAM_GPU_SHADER_CORE_COUNT:
*value = gpu->identity.shader_core_count;
break;
case ETNAVIV_PARAM_GPU_PIXEL_PIPES:
*value = gpu->identity.pixel_pipes;
break;
case ETNAVIV_PARAM_GPU_VERTEX_OUTPUT_BUFFER_SIZE:
*value = gpu->identity.vertex_output_buffer_size;
break;
case ETNAVIV_PARAM_GPU_BUFFER_SIZE:
*value = gpu->identity.buffer_size;
break;
case ETNAVIV_PARAM_GPU_INSTRUCTION_COUNT:
*value = gpu->identity.instruction_count;
break;
case ETNAVIV_PARAM_GPU_NUM_CONSTANTS:
*value = gpu->identity.num_constants;
break;
case ETNAVIV_PARAM_GPU_NUM_VARYINGS:
*value = gpu->identity.varyings_count;
break;
default:
DBG("%s: invalid param: %u", dev_name(gpu->dev), param);
return -EINVAL;
}
return 0;
}
#define etnaviv_is_model_rev(gpu, mod, rev) \
((gpu)->identity.model == chipModel_##mod && \
(gpu)->identity.revision == rev)
#define etnaviv_field(val, field) \
(((val) & field##__MASK) >> field##__SHIFT)
static void etnaviv_hw_specs(struct etnaviv_gpu *gpu)
{
if (gpu->identity.minor_features0 &
chipMinorFeatures0_MORE_MINOR_FEATURES) {
u32 specs[4];
unsigned int streams;
specs[0] = gpu_read(gpu, VIVS_HI_CHIP_SPECS);
specs[1] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_2);
specs[2] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_3);
specs[3] = gpu_read(gpu, VIVS_HI_CHIP_SPECS_4);
gpu->identity.stream_count = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_STREAM_COUNT);
gpu->identity.register_max = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_REGISTER_MAX);
gpu->identity.thread_count = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_THREAD_COUNT);
gpu->identity.vertex_cache_size = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_VERTEX_CACHE_SIZE);
gpu->identity.shader_core_count = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_SHADER_CORE_COUNT);
gpu->identity.pixel_pipes = etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_PIXEL_PIPES);
gpu->identity.vertex_output_buffer_size =
etnaviv_field(specs[0],
VIVS_HI_CHIP_SPECS_VERTEX_OUTPUT_BUFFER_SIZE);
gpu->identity.buffer_size = etnaviv_field(specs[1],
VIVS_HI_CHIP_SPECS_2_BUFFER_SIZE);
gpu->identity.instruction_count = etnaviv_field(specs[1],
VIVS_HI_CHIP_SPECS_2_INSTRUCTION_COUNT);
gpu->identity.num_constants = etnaviv_field(specs[1],
VIVS_HI_CHIP_SPECS_2_NUM_CONSTANTS);
gpu->identity.varyings_count = etnaviv_field(specs[2],
VIVS_HI_CHIP_SPECS_3_VARYINGS_COUNT);
/* This overrides the value from older register if non-zero */
streams = etnaviv_field(specs[3],
VIVS_HI_CHIP_SPECS_4_STREAM_COUNT);
if (streams)
gpu->identity.stream_count = streams;
}
/* Fill in the stream count if not specified */
if (gpu->identity.stream_count == 0) {
if (gpu->identity.model >= 0x1000)
gpu->identity.stream_count = 4;
else
gpu->identity.stream_count = 1;
}
/* Convert the register max value */
if (gpu->identity.register_max)
gpu->identity.register_max = 1 << gpu->identity.register_max;
else if (gpu->identity.model == chipModel_GC400)
gpu->identity.register_max = 32;
else
gpu->identity.register_max = 64;
/* Convert thread count */
if (gpu->identity.thread_count)
gpu->identity.thread_count = 1 << gpu->identity.thread_count;
else if (gpu->identity.model == chipModel_GC400)
gpu->identity.thread_count = 64;
else if (gpu->identity.model == chipModel_GC500 ||
gpu->identity.model == chipModel_GC530)
gpu->identity.thread_count = 128;
else
gpu->identity.thread_count = 256;
if (gpu->identity.vertex_cache_size == 0)
gpu->identity.vertex_cache_size = 8;
if (gpu->identity.shader_core_count == 0) {
if (gpu->identity.model >= 0x1000)
gpu->identity.shader_core_count = 2;
else
gpu->identity.shader_core_count = 1;
}
if (gpu->identity.pixel_pipes == 0)
gpu->identity.pixel_pipes = 1;
/* Convert virtex buffer size */
if (gpu->identity.vertex_output_buffer_size) {
gpu->identity.vertex_output_buffer_size =
1 << gpu->identity.vertex_output_buffer_size;
} else if (gpu->identity.model == chipModel_GC400) {
if (gpu->identity.revision < 0x4000)
gpu->identity.vertex_output_buffer_size = 512;
else if (gpu->identity.revision < 0x4200)
gpu->identity.vertex_output_buffer_size = 256;
else
gpu->identity.vertex_output_buffer_size = 128;
} else {
gpu->identity.vertex_output_buffer_size = 512;
}
switch (gpu->identity.instruction_count) {
case 0:
if (etnaviv_is_model_rev(gpu, GC2000, 0x5108) ||
gpu->identity.model == chipModel_GC880)
gpu->identity.instruction_count = 512;
else
gpu->identity.instruction_count = 256;
break;
case 1:
gpu->identity.instruction_count = 1024;
break;
case 2:
gpu->identity.instruction_count = 2048;
break;
default:
gpu->identity.instruction_count = 256;
break;
}
if (gpu->identity.num_constants == 0)
gpu->identity.num_constants = 168;
if (gpu->identity.varyings_count == 0) {
if (gpu->identity.minor_features1 & chipMinorFeatures1_HALTI0)
gpu->identity.varyings_count = 12;
else
gpu->identity.varyings_count = 8;
}
/*
* For some cores, two varyings are consumed for position, so the
* maximum varying count needs to be reduced by one.
*/
if (etnaviv_is_model_rev(gpu, GC5000, 0x5434) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5222) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5245) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5208) ||
etnaviv_is_model_rev(gpu, GC3000, 0x5435) ||
etnaviv_is_model_rev(gpu, GC2200, 0x5244) ||
etnaviv_is_model_rev(gpu, GC2100, 0x5108) ||
etnaviv_is_model_rev(gpu, GC2000, 0x5108) ||
etnaviv_is_model_rev(gpu, GC1500, 0x5246) ||
etnaviv_is_model_rev(gpu, GC880, 0x5107) ||
etnaviv_is_model_rev(gpu, GC880, 0x5106))
gpu->identity.varyings_count -= 1;
}
static void etnaviv_hw_identify(struct etnaviv_gpu *gpu)
{
u32 chipIdentity;
chipIdentity = gpu_read(gpu, VIVS_HI_CHIP_IDENTITY);
/* Special case for older graphic cores. */
if (etnaviv_field(chipIdentity, VIVS_HI_CHIP_IDENTITY_FAMILY) == 0x01) {
gpu->identity.model = chipModel_GC500;
gpu->identity.revision = etnaviv_field(chipIdentity,
VIVS_HI_CHIP_IDENTITY_REVISION);
} else {
gpu->identity.model = gpu_read(gpu, VIVS_HI_CHIP_MODEL);
gpu->identity.revision = gpu_read(gpu, VIVS_HI_CHIP_REV);
/*
* !!!! HACK ALERT !!!!
* Because people change device IDs without letting software
* know about it - here is the hack to make it all look the
* same. Only for GC400 family.
*/
if ((gpu->identity.model & 0xff00) == 0x0400 &&
gpu->identity.model != chipModel_GC420) {
gpu->identity.model = gpu->identity.model & 0x0400;
}
/* Another special case */
if (etnaviv_is_model_rev(gpu, GC300, 0x2201)) {
u32 chipDate = gpu_read(gpu, VIVS_HI_CHIP_DATE);
u32 chipTime = gpu_read(gpu, VIVS_HI_CHIP_TIME);
if (chipDate == 0x20080814 && chipTime == 0x12051100) {
/*
* This IP has an ECO; put the correct
* revision in it.
*/
gpu->identity.revision = 0x1051;
}
}
/*
* NXP likes to call the GPU on the i.MX6QP GC2000+, but in
* reality it's just a re-branded GC3000. We can identify this
* core by the upper half of the revision register being all 1.
* Fix model/rev here, so all other places can refer to this
* core by its real identity.
*/
if (etnaviv_is_model_rev(gpu, GC2000, 0xffff5450)) {
gpu->identity.model = chipModel_GC3000;
gpu->identity.revision &= 0xffff;
}
}
dev_info(gpu->dev, "model: GC%x, revision: %x\n",
gpu->identity.model, gpu->identity.revision);
gpu->idle_mask = ~VIVS_HI_IDLE_STATE_AXI_LP;
/*
* If there is a match in the HWDB, we aren't interested in the
* remaining register values, as they might be wrong.
*/
if (etnaviv_fill_identity_from_hwdb(gpu))
return;
gpu->identity.features = gpu_read(gpu, VIVS_HI_CHIP_FEATURE);
/* Disable fast clear on GC700. */
if (gpu->identity.model == chipModel_GC700)
gpu->identity.features &= ~chipFeatures_FAST_CLEAR;
if ((gpu->identity.model == chipModel_GC500 &&
gpu->identity.revision < 2) ||
(gpu->identity.model == chipModel_GC300 &&
gpu->identity.revision < 0x2000)) {
/*
* GC500 rev 1.x and GC300 rev < 2.0 doesn't have these
* registers.
*/
gpu->identity.minor_features0 = 0;
gpu->identity.minor_features1 = 0;
gpu->identity.minor_features2 = 0;
gpu->identity.minor_features3 = 0;
gpu->identity.minor_features4 = 0;
gpu->identity.minor_features5 = 0;
} else
gpu->identity.minor_features0 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_0);
if (gpu->identity.minor_features0 &
chipMinorFeatures0_MORE_MINOR_FEATURES) {
gpu->identity.minor_features1 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_1);
gpu->identity.minor_features2 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_2);
gpu->identity.minor_features3 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_3);
gpu->identity.minor_features4 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_4);
gpu->identity.minor_features5 =
gpu_read(gpu, VIVS_HI_CHIP_MINOR_FEATURE_5);
}
/* GC600 idle register reports zero bits where modules aren't present */
if (gpu->identity.model == chipModel_GC600)
gpu->idle_mask = VIVS_HI_IDLE_STATE_TX |
VIVS_HI_IDLE_STATE_RA |
VIVS_HI_IDLE_STATE_SE |
VIVS_HI_IDLE_STATE_PA |
VIVS_HI_IDLE_STATE_SH |
VIVS_HI_IDLE_STATE_PE |
VIVS_HI_IDLE_STATE_DE |
VIVS_HI_IDLE_STATE_FE;
etnaviv_hw_specs(gpu);
}
static void etnaviv_gpu_load_clock(struct etnaviv_gpu *gpu, u32 clock)
{
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, clock |
VIVS_HI_CLOCK_CONTROL_FSCALE_CMD_LOAD);
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, clock);
}
static void etnaviv_gpu_update_clock(struct etnaviv_gpu *gpu)
{
if (gpu->identity.minor_features2 &
chipMinorFeatures2_DYNAMIC_FREQUENCY_SCALING) {
clk_set_rate(gpu->clk_core,
gpu->base_rate_core >> gpu->freq_scale);
clk_set_rate(gpu->clk_shader,
gpu->base_rate_shader >> gpu->freq_scale);
} else {
unsigned int fscale = 1 << (6 - gpu->freq_scale);
u32 clock = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
clock &= ~VIVS_HI_CLOCK_CONTROL_FSCALE_VAL__MASK;
clock |= VIVS_HI_CLOCK_CONTROL_FSCALE_VAL(fscale);
etnaviv_gpu_load_clock(gpu, clock);
}
}
static int etnaviv_hw_reset(struct etnaviv_gpu *gpu)
{
u32 control, idle;
unsigned long timeout;
bool failed = true;
/* We hope that the GPU resets in under one second */
timeout = jiffies + msecs_to_jiffies(1000);
while (time_is_after_jiffies(timeout)) {
/* enable clock */
unsigned int fscale = 1 << (6 - gpu->freq_scale);
control = VIVS_HI_CLOCK_CONTROL_FSCALE_VAL(fscale);
etnaviv_gpu_load_clock(gpu, control);
/* isolate the GPU. */
control |= VIVS_HI_CLOCK_CONTROL_ISOLATE_GPU;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
if (gpu->sec_mode == ETNA_SEC_KERNEL) {
gpu_write(gpu, VIVS_MMUv2_AHB_CONTROL,
VIVS_MMUv2_AHB_CONTROL_RESET);
} else {
/* set soft reset. */
control |= VIVS_HI_CLOCK_CONTROL_SOFT_RESET;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
}
/* wait for reset. */
usleep_range(10, 20);
/* reset soft reset bit. */
control &= ~VIVS_HI_CLOCK_CONTROL_SOFT_RESET;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
/* reset GPU isolation. */
control &= ~VIVS_HI_CLOCK_CONTROL_ISOLATE_GPU;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
/* read idle register. */
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
/* try reseting again if FE it not idle */
if ((idle & VIVS_HI_IDLE_STATE_FE) == 0) {
dev_dbg(gpu->dev, "FE is not idle\n");
continue;
}
/* read reset register. */
control = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
/* is the GPU idle? */
if (((control & VIVS_HI_CLOCK_CONTROL_IDLE_3D) == 0) ||
((control & VIVS_HI_CLOCK_CONTROL_IDLE_2D) == 0)) {
dev_dbg(gpu->dev, "GPU is not idle\n");
continue;
}
/* disable debug registers, as they are not normally needed */
control |= VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, control);
failed = false;
break;
}
if (failed) {
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
control = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
dev_err(gpu->dev, "GPU failed to reset: FE %sidle, 3D %sidle, 2D %sidle\n",
idle & VIVS_HI_IDLE_STATE_FE ? "" : "not ",
control & VIVS_HI_CLOCK_CONTROL_IDLE_3D ? "" : "not ",
control & VIVS_HI_CLOCK_CONTROL_IDLE_2D ? "" : "not ");
return -EBUSY;
}
/* We rely on the GPU running, so program the clock */
etnaviv_gpu_update_clock(gpu);
return 0;
}
static void etnaviv_gpu_enable_mlcg(struct etnaviv_gpu *gpu)
{
u32 pmc, ppc;
/* enable clock gating */
ppc = gpu_read(gpu, VIVS_PM_POWER_CONTROLS);
ppc |= VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING;
/* Disable stall module clock gating for 4.3.0.1 and 4.3.0.2 revs */
if (gpu->identity.revision == 0x4301 ||
gpu->identity.revision == 0x4302)
ppc |= VIVS_PM_POWER_CONTROLS_DISABLE_STALL_MODULE_CLOCK_GATING;
gpu_write(gpu, VIVS_PM_POWER_CONTROLS, ppc);
pmc = gpu_read(gpu, VIVS_PM_MODULE_CONTROLS);
/* Disable PA clock gating for GC400+ without bugfix except for GC420 */
if (gpu->identity.model >= chipModel_GC400 &&
gpu->identity.model != chipModel_GC420 &&
!(gpu->identity.minor_features3 & chipMinorFeatures3_BUG_FIXES12))
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_PA;
/*
* Disable PE clock gating on revs < 5.0.0.0 when HZ is
* present without a bug fix.
*/
if (gpu->identity.revision < 0x5000 &&
gpu->identity.minor_features0 & chipMinorFeatures0_HZ &&
!(gpu->identity.minor_features1 &
chipMinorFeatures1_DISABLE_PE_GATING))
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_PE;
if (gpu->identity.revision < 0x5422)
pmc |= BIT(15); /* Unknown bit */
/* Disable TX clock gating on affected core revisions. */
if (etnaviv_is_model_rev(gpu, GC4000, 0x5222) ||
etnaviv_is_model_rev(gpu, GC2000, 0x5108))
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_TX;
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_RA_HZ;
pmc |= VIVS_PM_MODULE_CONTROLS_DISABLE_MODULE_CLOCK_GATING_RA_EZ;
gpu_write(gpu, VIVS_PM_MODULE_CONTROLS, pmc);
}
void etnaviv_gpu_start_fe(struct etnaviv_gpu *gpu, u32 address, u16 prefetch)
{
gpu_write(gpu, VIVS_FE_COMMAND_ADDRESS, address);
gpu_write(gpu, VIVS_FE_COMMAND_CONTROL,
VIVS_FE_COMMAND_CONTROL_ENABLE |
VIVS_FE_COMMAND_CONTROL_PREFETCH(prefetch));
if (gpu->sec_mode == ETNA_SEC_KERNEL) {
gpu_write(gpu, VIVS_MMUv2_SEC_COMMAND_CONTROL,
VIVS_MMUv2_SEC_COMMAND_CONTROL_ENABLE |
VIVS_MMUv2_SEC_COMMAND_CONTROL_PREFETCH(prefetch));
}
}
static void etnaviv_gpu_setup_pulse_eater(struct etnaviv_gpu *gpu)
{
/*
* Base value for VIVS_PM_PULSE_EATER register on models where it
* cannot be read, extracted from vivante kernel driver.
*/
u32 pulse_eater = 0x01590880;
if (etnaviv_is_model_rev(gpu, GC4000, 0x5208) ||
etnaviv_is_model_rev(gpu, GC4000, 0x5222)) {
pulse_eater |= BIT(23);
}
if (etnaviv_is_model_rev(gpu, GC1000, 0x5039) ||
etnaviv_is_model_rev(gpu, GC1000, 0x5040)) {
pulse_eater &= ~BIT(16);
pulse_eater |= BIT(17);
}
if ((gpu->identity.revision > 0x5420) &&
(gpu->identity.features & chipFeatures_PIPE_3D))
{
/* Performance fix: disable internal DFS */
pulse_eater = gpu_read(gpu, VIVS_PM_PULSE_EATER);
pulse_eater |= BIT(18);
}
gpu_write(gpu, VIVS_PM_PULSE_EATER, pulse_eater);
}
static void etnaviv_gpu_hw_init(struct etnaviv_gpu *gpu)
{
u16 prefetch;
if ((etnaviv_is_model_rev(gpu, GC320, 0x5007) ||
etnaviv_is_model_rev(gpu, GC320, 0x5220)) &&
gpu_read(gpu, VIVS_HI_CHIP_TIME) != 0x2062400) {
u32 mc_memory_debug;
mc_memory_debug = gpu_read(gpu, VIVS_MC_DEBUG_MEMORY) & ~0xff;
if (gpu->identity.revision == 0x5007)
mc_memory_debug |= 0x0c;
else
mc_memory_debug |= 0x08;
gpu_write(gpu, VIVS_MC_DEBUG_MEMORY, mc_memory_debug);
}
/* enable module-level clock gating */
etnaviv_gpu_enable_mlcg(gpu);
/*
* Update GPU AXI cache atttribute to "cacheable, no allocate".
* This is necessary to prevent the iMX6 SoC locking up.
*/
gpu_write(gpu, VIVS_HI_AXI_CONFIG,
VIVS_HI_AXI_CONFIG_AWCACHE(2) |
VIVS_HI_AXI_CONFIG_ARCACHE(2));
/* GC2000 rev 5108 needs a special bus config */
if (etnaviv_is_model_rev(gpu, GC2000, 0x5108)) {
u32 bus_config = gpu_read(gpu, VIVS_MC_BUS_CONFIG);
bus_config &= ~(VIVS_MC_BUS_CONFIG_FE_BUS_CONFIG__MASK |
VIVS_MC_BUS_CONFIG_TX_BUS_CONFIG__MASK);
bus_config |= VIVS_MC_BUS_CONFIG_FE_BUS_CONFIG(1) |
VIVS_MC_BUS_CONFIG_TX_BUS_CONFIG(0);
gpu_write(gpu, VIVS_MC_BUS_CONFIG, bus_config);
}
if (gpu->sec_mode == ETNA_SEC_KERNEL) {
u32 val = gpu_read(gpu, VIVS_MMUv2_AHB_CONTROL);
val |= VIVS_MMUv2_AHB_CONTROL_NONSEC_ACCESS;
gpu_write(gpu, VIVS_MMUv2_AHB_CONTROL, val);
}
/* setup the pulse eater */
etnaviv_gpu_setup_pulse_eater(gpu);
/* setup the MMU */
etnaviv_iommu_restore(gpu);
/* Start command processor */
prefetch = etnaviv_buffer_init(gpu);
gpu_write(gpu, VIVS_HI_INTR_ENBL, ~0U);
etnaviv_gpu_start_fe(gpu, etnaviv_cmdbuf_get_va(&gpu->buffer,
&gpu->cmdbuf_mapping), prefetch);
}
int etnaviv_gpu_init(struct etnaviv_gpu *gpu)
{
struct etnaviv_drm_private *priv = gpu->drm->dev_private;
int ret, i;
ret = pm_runtime_get_sync(gpu->dev);
if (ret < 0) {
dev_err(gpu->dev, "Failed to enable GPU power domain\n");
return ret;
}
etnaviv_hw_identify(gpu);
if (gpu->identity.model == 0) {
dev_err(gpu->dev, "Unknown GPU model\n");
ret = -ENXIO;
goto fail;
}
/* Exclude VG cores with FE2.0 */
if (gpu->identity.features & chipFeatures_PIPE_VG &&
gpu->identity.features & chipFeatures_FE20) {
dev_info(gpu->dev, "Ignoring GPU with VG and FE2.0\n");
ret = -ENXIO;
goto fail;
}
/*
* Set the GPU linear window to be at the end of the DMA window, where
* the CMA area is likely to reside. This ensures that we are able to
* map the command buffers while having the linear window overlap as
* much RAM as possible, so we can optimize mappings for other buffers.
*
* For 3D cores only do this if MC2.0 is present, as with MC1.0 it leads
* to different views of the memory on the individual engines.
*/
if (!(gpu->identity.features & chipFeatures_PIPE_3D) ||
(gpu->identity.minor_features0 & chipMinorFeatures0_MC20)) {
u32 dma_mask = (u32)dma_get_required_mask(gpu->dev);
if (dma_mask < PHYS_OFFSET + SZ_2G)
gpu->memory_base = PHYS_OFFSET;
else
gpu->memory_base = dma_mask - SZ_2G + 1;
} else if (PHYS_OFFSET >= SZ_2G) {
dev_info(gpu->dev, "Need to move linear window on MC1.0, disabling TS\n");
gpu->memory_base = PHYS_OFFSET;
gpu->identity.features &= ~chipFeatures_FAST_CLEAR;
}
/*
* On cores with security features supported, we claim control over the
* security states.
*/
if ((gpu->identity.minor_features7 & chipMinorFeatures7_BIT_SECURITY) &&
(gpu->identity.minor_features10 & chipMinorFeatures10_SECURITY_AHB))
gpu->sec_mode = ETNA_SEC_KERNEL;
ret = etnaviv_hw_reset(gpu);
if (ret) {
dev_err(gpu->dev, "GPU reset failed\n");
goto fail;
}
gpu->mmu = etnaviv_iommu_new(gpu);
if (IS_ERR(gpu->mmu)) {
dev_err(gpu->dev, "Failed to instantiate GPU IOMMU\n");
ret = PTR_ERR(gpu->mmu);
goto fail;
}
ret = etnaviv_cmdbuf_suballoc_map(priv->cmdbuf_suballoc, gpu->mmu,
&gpu->cmdbuf_mapping,
gpu->memory_base);
if (ret) {
dev_err(gpu->dev, "failed to map cmdbuf suballoc\n");
goto destroy_iommu;
}
/* Create buffer: */
ret = etnaviv_cmdbuf_init(priv->cmdbuf_suballoc, &gpu->buffer,
PAGE_SIZE);
if (ret) {
dev_err(gpu->dev, "could not create command buffer\n");
goto unmap_suballoc;
}
if (gpu->mmu->version == ETNAVIV_IOMMU_V1 &&
etnaviv_cmdbuf_get_va(&gpu->buffer, &gpu->cmdbuf_mapping) > 0x80000000) {
ret = -EINVAL;
dev_err(gpu->dev,
"command buffer outside valid memory window\n");
goto free_buffer;
}
/* Setup event management */
spin_lock_init(&gpu->event_spinlock);
init_completion(&gpu->event_free);
bitmap_zero(gpu->event_bitmap, ETNA_NR_EVENTS);
for (i = 0; i < ARRAY_SIZE(gpu->event); i++)
complete(&gpu->event_free);
/* Now program the hardware */
mutex_lock(&gpu->lock);
etnaviv_gpu_hw_init(gpu);
gpu->exec_state = -1;
mutex_unlock(&gpu->lock);
pm_runtime_mark_last_busy(gpu->dev);
pm_runtime_put_autosuspend(gpu->dev);
gpu->initialized = true;
return 0;
free_buffer:
etnaviv_cmdbuf_free(&gpu->buffer);
unmap_suballoc:
etnaviv_cmdbuf_suballoc_unmap(gpu->mmu, &gpu->cmdbuf_mapping);
destroy_iommu:
etnaviv_iommu_destroy(gpu->mmu);
fail:
pm_runtime_mark_last_busy(gpu->dev);
pm_runtime_put_autosuspend(gpu->dev);
return ret;
}
#ifdef CONFIG_DEBUG_FS
struct dma_debug {
u32 address[2];
u32 state[2];
};
static void verify_dma(struct etnaviv_gpu *gpu, struct dma_debug *debug)
{
u32 i;
debug->address[0] = gpu_read(gpu, VIVS_FE_DMA_ADDRESS);
debug->state[0] = gpu_read(gpu, VIVS_FE_DMA_DEBUG_STATE);
for (i = 0; i < 500; i++) {
debug->address[1] = gpu_read(gpu, VIVS_FE_DMA_ADDRESS);
debug->state[1] = gpu_read(gpu, VIVS_FE_DMA_DEBUG_STATE);
if (debug->address[0] != debug->address[1])
break;
if (debug->state[0] != debug->state[1])
break;
}
}
int etnaviv_gpu_debugfs(struct etnaviv_gpu *gpu, struct seq_file *m)
{
struct dma_debug debug;
u32 dma_lo, dma_hi, axi, idle;
int ret;
seq_printf(m, "%s Status:\n", dev_name(gpu->dev));
ret = pm_runtime_get_sync(gpu->dev);
if (ret < 0)
return ret;
dma_lo = gpu_read(gpu, VIVS_FE_DMA_LOW);
dma_hi = gpu_read(gpu, VIVS_FE_DMA_HIGH);
axi = gpu_read(gpu, VIVS_HI_AXI_STATUS);
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
verify_dma(gpu, &debug);
seq_puts(m, "\tfeatures\n");
seq_printf(m, "\t major_features: 0x%08x\n",
gpu->identity.features);
seq_printf(m, "\t minor_features0: 0x%08x\n",
gpu->identity.minor_features0);
seq_printf(m, "\t minor_features1: 0x%08x\n",
gpu->identity.minor_features1);
seq_printf(m, "\t minor_features2: 0x%08x\n",
gpu->identity.minor_features2);
seq_printf(m, "\t minor_features3: 0x%08x\n",
gpu->identity.minor_features3);
seq_printf(m, "\t minor_features4: 0x%08x\n",
gpu->identity.minor_features4);
seq_printf(m, "\t minor_features5: 0x%08x\n",
gpu->identity.minor_features5);
seq_printf(m, "\t minor_features6: 0x%08x\n",
gpu->identity.minor_features6);
seq_printf(m, "\t minor_features7: 0x%08x\n",
gpu->identity.minor_features7);
seq_printf(m, "\t minor_features8: 0x%08x\n",
gpu->identity.minor_features8);
seq_printf(m, "\t minor_features9: 0x%08x\n",
gpu->identity.minor_features9);
seq_printf(m, "\t minor_features10: 0x%08x\n",
gpu->identity.minor_features10);
seq_printf(m, "\t minor_features11: 0x%08x\n",
gpu->identity.minor_features11);
seq_puts(m, "\tspecs\n");
seq_printf(m, "\t stream_count: %d\n",
gpu->identity.stream_count);
seq_printf(m, "\t register_max: %d\n",
gpu->identity.register_max);
seq_printf(m, "\t thread_count: %d\n",
gpu->identity.thread_count);
seq_printf(m, "\t vertex_cache_size: %d\n",
gpu->identity.vertex_cache_size);
seq_printf(m, "\t shader_core_count: %d\n",
gpu->identity.shader_core_count);
seq_printf(m, "\t pixel_pipes: %d\n",
gpu->identity.pixel_pipes);
seq_printf(m, "\t vertex_output_buffer_size: %d\n",
gpu->identity.vertex_output_buffer_size);
seq_printf(m, "\t buffer_size: %d\n",
gpu->identity.buffer_size);
seq_printf(m, "\t instruction_count: %d\n",
gpu->identity.instruction_count);
seq_printf(m, "\t num_constants: %d\n",
gpu->identity.num_constants);
seq_printf(m, "\t varyings_count: %d\n",
gpu->identity.varyings_count);
seq_printf(m, "\taxi: 0x%08x\n", axi);
seq_printf(m, "\tidle: 0x%08x\n", idle);
idle |= ~gpu->idle_mask & ~VIVS_HI_IDLE_STATE_AXI_LP;
if ((idle & VIVS_HI_IDLE_STATE_FE) == 0)
seq_puts(m, "\t FE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_DE) == 0)
seq_puts(m, "\t DE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_PE) == 0)
seq_puts(m, "\t PE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_SH) == 0)
seq_puts(m, "\t SH is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_PA) == 0)
seq_puts(m, "\t PA is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_SE) == 0)
seq_puts(m, "\t SE is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_RA) == 0)
seq_puts(m, "\t RA is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_TX) == 0)
seq_puts(m, "\t TX is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_VG) == 0)
seq_puts(m, "\t VG is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_IM) == 0)
seq_puts(m, "\t IM is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_FP) == 0)
seq_puts(m, "\t FP is not idle\n");
if ((idle & VIVS_HI_IDLE_STATE_TS) == 0)
seq_puts(m, "\t TS is not idle\n");
if (idle & VIVS_HI_IDLE_STATE_AXI_LP)
seq_puts(m, "\t AXI low power mode\n");
if (gpu->identity.features & chipFeatures_DEBUG_MODE) {
u32 read0 = gpu_read(gpu, VIVS_MC_DEBUG_READ0);
u32 read1 = gpu_read(gpu, VIVS_MC_DEBUG_READ1);
u32 write = gpu_read(gpu, VIVS_MC_DEBUG_WRITE);
seq_puts(m, "\tMC\n");
seq_printf(m, "\t read0: 0x%08x\n", read0);
seq_printf(m, "\t read1: 0x%08x\n", read1);
seq_printf(m, "\t write: 0x%08x\n", write);
}
seq_puts(m, "\tDMA ");
if (debug.address[0] == debug.address[1] &&
debug.state[0] == debug.state[1]) {
seq_puts(m, "seems to be stuck\n");
} else if (debug.address[0] == debug.address[1]) {
seq_puts(m, "address is constant\n");
} else {
seq_puts(m, "is running\n");
}
seq_printf(m, "\t address 0: 0x%08x\n", debug.address[0]);
seq_printf(m, "\t address 1: 0x%08x\n", debug.address[1]);
seq_printf(m, "\t state 0: 0x%08x\n", debug.state[0]);
seq_printf(m, "\t state 1: 0x%08x\n", debug.state[1]);
seq_printf(m, "\t last fetch 64 bit word: 0x%08x 0x%08x\n",
dma_lo, dma_hi);
ret = 0;
pm_runtime_mark_last_busy(gpu->dev);
pm_runtime_put_autosuspend(gpu->dev);
return ret;
}
#endif
void etnaviv_gpu_recover_hang(struct etnaviv_gpu *gpu)
{
unsigned int i = 0;
dev_err(gpu->dev, "recover hung GPU!\n");
if (pm_runtime_get_sync(gpu->dev) < 0)
return;
mutex_lock(&gpu->lock);
etnaviv_hw_reset(gpu);
/* complete all events, the GPU won't do it after the reset */
spin_lock(&gpu->event_spinlock);
for_each_set_bit_from(i, gpu->event_bitmap, ETNA_NR_EVENTS)
complete(&gpu->event_free);
bitmap_zero(gpu->event_bitmap, ETNA_NR_EVENTS);
spin_unlock(&gpu->event_spinlock);
etnaviv_gpu_hw_init(gpu);
gpu->exec_state = -1;
mutex_unlock(&gpu->lock);
pm_runtime_mark_last_busy(gpu->dev);
pm_runtime_put_autosuspend(gpu->dev);
}
/* fence object management */
struct etnaviv_fence {
struct etnaviv_gpu *gpu;
struct dma_fence base;
};
static inline struct etnaviv_fence *to_etnaviv_fence(struct dma_fence *fence)
{
return container_of(fence, struct etnaviv_fence, base);
}
static const char *etnaviv_fence_get_driver_name(struct dma_fence *fence)
{
return "etnaviv";
}
static const char *etnaviv_fence_get_timeline_name(struct dma_fence *fence)
{
struct etnaviv_fence *f = to_etnaviv_fence(fence);
return dev_name(f->gpu->dev);
}
static bool etnaviv_fence_signaled(struct dma_fence *fence)
{
struct etnaviv_fence *f = to_etnaviv_fence(fence);
return (s32)(f->gpu->completed_fence - f->base.seqno) >= 0;
}
static void etnaviv_fence_release(struct dma_fence *fence)
{
struct etnaviv_fence *f = to_etnaviv_fence(fence);
kfree_rcu(f, base.rcu);
}
static const struct dma_fence_ops etnaviv_fence_ops = {
.get_driver_name = etnaviv_fence_get_driver_name,
.get_timeline_name = etnaviv_fence_get_timeline_name,
.signaled = etnaviv_fence_signaled,
.release = etnaviv_fence_release,
};
static struct dma_fence *etnaviv_gpu_fence_alloc(struct etnaviv_gpu *gpu)
{
struct etnaviv_fence *f;
/*
* GPU lock must already be held, otherwise fence completion order might
* not match the seqno order assigned here.
*/
lockdep_assert_held(&gpu->lock);
f = kzalloc(sizeof(*f), GFP_KERNEL);
if (!f)
return NULL;
f->gpu = gpu;
dma_fence_init(&f->base, &etnaviv_fence_ops, &gpu->fence_spinlock,
gpu->fence_context, ++gpu->next_fence);
return &f->base;
}
/* returns true if fence a comes after fence b */
static inline bool fence_after(u32 a, u32 b)
{
return (s32)(a - b) > 0;
}
/*
* event management:
*/
static int event_alloc(struct etnaviv_gpu *gpu, unsigned nr_events,
unsigned int *events)
{
unsigned long timeout = msecs_to_jiffies(10 * 10000);
unsigned i, acquired = 0;
for (i = 0; i < nr_events; i++) {
unsigned long ret;
ret = wait_for_completion_timeout(&gpu->event_free, timeout);
if (!ret) {
dev_err(gpu->dev, "wait_for_completion_timeout failed");
goto out;
}
acquired++;
timeout = ret;
}
spin_lock(&gpu->event_spinlock);
for (i = 0; i < nr_events; i++) {
int event = find_first_zero_bit(gpu->event_bitmap, ETNA_NR_EVENTS);
events[i] = event;
memset(&gpu->event[event], 0, sizeof(struct etnaviv_event));
set_bit(event, gpu->event_bitmap);
}
spin_unlock(&gpu->event_spinlock);
return 0;
out:
for (i = 0; i < acquired; i++)
complete(&gpu->event_free);
return -EBUSY;
}
static void event_free(struct etnaviv_gpu *gpu, unsigned int event)
{
if (!test_bit(event, gpu->event_bitmap)) {
dev_warn(gpu->dev, "event %u is already marked as free",
event);
} else {
clear_bit(event, gpu->event_bitmap);
complete(&gpu->event_free);
}
}
/*
* Cmdstream submission/retirement:
*/
int etnaviv_gpu_wait_fence_interruptible(struct etnaviv_gpu *gpu,
u32 id, struct timespec *timeout)
{
struct dma_fence *fence;
int ret;
/*
* Look up the fence and take a reference. We might still find a fence
* whose refcount has already dropped to zero. dma_fence_get_rcu
* pretends we didn't find a fence in that case.
*/
rcu_read_lock();
fence = idr_find(&gpu->fence_idr, id);
if (fence)
fence = dma_fence_get_rcu(fence);
rcu_read_unlock();
if (!fence)
return 0;
if (!timeout) {
/* No timeout was requested: just test for completion */
ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
} else {
unsigned long remaining = etnaviv_timeout_to_jiffies(timeout);
ret = dma_fence_wait_timeout(fence, true, remaining);
if (ret == 0)
ret = -ETIMEDOUT;
else if (ret != -ERESTARTSYS)
ret = 0;
}
dma_fence_put(fence);
return ret;
}
/*
* Wait for an object to become inactive. This, on it's own, is not race
* free: the object is moved by the scheduler off the active list, and
* then the iova is put. Moreover, the object could be re-submitted just
* after we notice that it's become inactive.
*
* Although the retirement happens under the gpu lock, we don't want to hold
* that lock in this function while waiting.
*/
int etnaviv_gpu_wait_obj_inactive(struct etnaviv_gpu *gpu,
struct etnaviv_gem_object *etnaviv_obj, struct timespec *timeout)
{
unsigned long remaining;
long ret;
if (!timeout)
return !is_active(etnaviv_obj) ? 0 : -EBUSY;
remaining = etnaviv_timeout_to_jiffies(timeout);
ret = wait_event_interruptible_timeout(gpu->fence_event,
!is_active(etnaviv_obj),
remaining);
if (ret > 0)
return 0;
else if (ret == -ERESTARTSYS)
return -ERESTARTSYS;
else
return -ETIMEDOUT;
}
static void sync_point_perfmon_sample(struct etnaviv_gpu *gpu,
struct etnaviv_event *event, unsigned int flags)
{
const struct etnaviv_gem_submit *submit = event->submit;
unsigned int i;
for (i = 0; i < submit->nr_pmrs; i++) {
const struct etnaviv_perfmon_request *pmr = submit->pmrs + i;
if (pmr->flags == flags)
etnaviv_perfmon_process(gpu, pmr, submit->exec_state);
}
}
static void sync_point_perfmon_sample_pre(struct etnaviv_gpu *gpu,
struct etnaviv_event *event)
{
u32 val;
/* disable clock gating */
val = gpu_read(gpu, VIVS_PM_POWER_CONTROLS);
val &= ~VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING;
gpu_write(gpu, VIVS_PM_POWER_CONTROLS, val);
/* enable debug register */
val = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
val &= ~VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, val);
sync_point_perfmon_sample(gpu, event, ETNA_PM_PROCESS_PRE);
}
static void sync_point_perfmon_sample_post(struct etnaviv_gpu *gpu,
struct etnaviv_event *event)
{
const struct etnaviv_gem_submit *submit = event->submit;
unsigned int i;
u32 val;
sync_point_perfmon_sample(gpu, event, ETNA_PM_PROCESS_POST);
for (i = 0; i < submit->nr_pmrs; i++) {
const struct etnaviv_perfmon_request *pmr = submit->pmrs + i;
*pmr->bo_vma = pmr->sequence;
}
/* disable debug register */
val = gpu_read(gpu, VIVS_HI_CLOCK_CONTROL);
val |= VIVS_HI_CLOCK_CONTROL_DISABLE_DEBUG_REGISTERS;
gpu_write(gpu, VIVS_HI_CLOCK_CONTROL, val);
/* enable clock gating */
val = gpu_read(gpu, VIVS_PM_POWER_CONTROLS);
val |= VIVS_PM_POWER_CONTROLS_ENABLE_MODULE_CLOCK_GATING;
gpu_write(gpu, VIVS_PM_POWER_CONTROLS, val);
}
/* add bo's to gpu's ring, and kick gpu: */
struct dma_fence *etnaviv_gpu_submit(struct etnaviv_gem_submit *submit)
{
struct etnaviv_gpu *gpu = submit->gpu;
struct dma_fence *gpu_fence;
unsigned int i, nr_events = 1, event[3];
int ret;
if (!submit->runtime_resumed) {
ret = pm_runtime_get_sync(gpu->dev);
if (ret < 0)
return NULL;
submit->runtime_resumed = true;
}
/*
* if there are performance monitor requests we need to have
* - a sync point to re-configure gpu and process ETNA_PM_PROCESS_PRE
* requests.
* - a sync point to re-configure gpu, process ETNA_PM_PROCESS_POST requests
* and update the sequence number for userspace.
*/
if (submit->nr_pmrs)
nr_events = 3;
ret = event_alloc(gpu, nr_events, event);
if (ret) {
DRM_ERROR("no free events\n");
return NULL;
}
mutex_lock(&gpu->lock);
gpu_fence = etnaviv_gpu_fence_alloc(gpu);
if (!gpu_fence) {
for (i = 0; i < nr_events; i++)
event_free(gpu, event[i]);
goto out_unlock;
}
if (submit->nr_pmrs) {
gpu->event[event[1]].sync_point = &sync_point_perfmon_sample_pre;
kref_get(&submit->refcount);
gpu->event[event[1]].submit = submit;
etnaviv_sync_point_queue(gpu, event[1]);
}
gpu->event[event[0]].fence = gpu_fence;
submit->cmdbuf.user_size = submit->cmdbuf.size - 8;
etnaviv_buffer_queue(gpu, submit->exec_state, event[0],
&submit->cmdbuf);
if (submit->nr_pmrs) {
gpu->event[event[2]].sync_point = &sync_point_perfmon_sample_post;
kref_get(&submit->refcount);
gpu->event[event[2]].submit = submit;
etnaviv_sync_point_queue(gpu, event[2]);
}
out_unlock:
mutex_unlock(&gpu->lock);
return gpu_fence;
}
static void sync_point_worker(struct work_struct *work)
{
struct etnaviv_gpu *gpu = container_of(work, struct etnaviv_gpu,
sync_point_work);
struct etnaviv_event *event = &gpu->event[gpu->sync_point_event];
u32 addr = gpu_read(gpu, VIVS_FE_DMA_ADDRESS);
event->sync_point(gpu, event);
etnaviv_submit_put(event->submit);
event_free(gpu, gpu->sync_point_event);
/* restart FE last to avoid GPU and IRQ racing against this worker */
etnaviv_gpu_start_fe(gpu, addr + 2, 2);
}
static void dump_mmu_fault(struct etnaviv_gpu *gpu)
{
u32 status_reg, status;
int i;
if (gpu->sec_mode == ETNA_SEC_NONE)
status_reg = VIVS_MMUv2_STATUS;
else
status_reg = VIVS_MMUv2_SEC_STATUS;
status = gpu_read(gpu, status_reg);
dev_err_ratelimited(gpu->dev, "MMU fault status 0x%08x\n", status);
for (i = 0; i < 4; i++) {
u32 address_reg;
if (!(status & (VIVS_MMUv2_STATUS_EXCEPTION0__MASK << (i * 4))))
continue;
if (gpu->sec_mode == ETNA_SEC_NONE)
address_reg = VIVS_MMUv2_EXCEPTION_ADDR(i);
else
address_reg = VIVS_MMUv2_SEC_EXCEPTION_ADDR;
dev_err_ratelimited(gpu->dev, "MMU %d fault addr 0x%08x\n", i,
gpu_read(gpu, address_reg));
}
}
static irqreturn_t irq_handler(int irq, void *data)
{
struct etnaviv_gpu *gpu = data;
irqreturn_t ret = IRQ_NONE;
u32 intr = gpu_read(gpu, VIVS_HI_INTR_ACKNOWLEDGE);
if (intr != 0) {
int event;
pm_runtime_mark_last_busy(gpu->dev);
dev_dbg(gpu->dev, "intr 0x%08x\n", intr);
if (intr & VIVS_HI_INTR_ACKNOWLEDGE_AXI_BUS_ERROR) {
dev_err(gpu->dev, "AXI bus error\n");
intr &= ~VIVS_HI_INTR_ACKNOWLEDGE_AXI_BUS_ERROR;
}
if (intr & VIVS_HI_INTR_ACKNOWLEDGE_MMU_EXCEPTION) {
dump_mmu_fault(gpu);
intr &= ~VIVS_HI_INTR_ACKNOWLEDGE_MMU_EXCEPTION;
}
while ((event = ffs(intr)) != 0) {
struct dma_fence *fence;
event -= 1;
intr &= ~(1 << event);
dev_dbg(gpu->dev, "event %u\n", event);
if (gpu->event[event].sync_point) {
gpu->sync_point_event = event;
queue_work(gpu->wq, &gpu->sync_point_work);
}
fence = gpu->event[event].fence;
if (!fence)
continue;
gpu->event[event].fence = NULL;
/*
* Events can be processed out of order. Eg,
* - allocate and queue event 0
* - allocate event 1
* - event 0 completes, we process it
* - allocate and queue event 0
* - event 1 and event 0 complete
* we can end up processing event 0 first, then 1.
*/
if (fence_after(fence->seqno, gpu->completed_fence))
gpu->completed_fence = fence->seqno;
dma_fence_signal(fence);
event_free(gpu, event);
}
ret = IRQ_HANDLED;
}
return ret;
}
static int etnaviv_gpu_clk_enable(struct etnaviv_gpu *gpu)
{
int ret;
if (gpu->clk_reg) {
ret = clk_prepare_enable(gpu->clk_reg);
if (ret)
return ret;
}
if (gpu->clk_bus) {
ret = clk_prepare_enable(gpu->clk_bus);
if (ret)
return ret;
}
if (gpu->clk_core) {
ret = clk_prepare_enable(gpu->clk_core);
if (ret)
goto disable_clk_bus;
}
if (gpu->clk_shader) {
ret = clk_prepare_enable(gpu->clk_shader);
if (ret)
goto disable_clk_core;
}
return 0;
disable_clk_core:
if (gpu->clk_core)
clk_disable_unprepare(gpu->clk_core);
disable_clk_bus:
if (gpu->clk_bus)
clk_disable_unprepare(gpu->clk_bus);
return ret;
}
static int etnaviv_gpu_clk_disable(struct etnaviv_gpu *gpu)
{
if (gpu->clk_shader)
clk_disable_unprepare(gpu->clk_shader);
if (gpu->clk_core)
clk_disable_unprepare(gpu->clk_core);
if (gpu->clk_bus)
clk_disable_unprepare(gpu->clk_bus);
if (gpu->clk_reg)
clk_disable_unprepare(gpu->clk_reg);
return 0;
}
int etnaviv_gpu_wait_idle(struct etnaviv_gpu *gpu, unsigned int timeout_ms)
{
unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
do {
u32 idle = gpu_read(gpu, VIVS_HI_IDLE_STATE);
if ((idle & gpu->idle_mask) == gpu->idle_mask)
return 0;
if (time_is_before_jiffies(timeout)) {
dev_warn(gpu->dev,
"timed out waiting for idle: idle=0x%x\n",
idle);
return -ETIMEDOUT;
}
udelay(5);
} while (1);
}
static int etnaviv_gpu_hw_suspend(struct etnaviv_gpu *gpu)
{
if (gpu->initialized) {
/* Replace the last WAIT with END */
mutex_lock(&gpu->lock);
etnaviv_buffer_end(gpu);
mutex_unlock(&gpu->lock);
/*
* We know that only the FE is busy here, this should
* happen quickly (as the WAIT is only 200 cycles). If
* we fail, just warn and continue.
*/
etnaviv_gpu_wait_idle(gpu, 100);
}
return etnaviv_gpu_clk_disable(gpu);
}
#ifdef CONFIG_PM
static int etnaviv_gpu_hw_resume(struct etnaviv_gpu *gpu)
{
int ret;
ret = mutex_lock_killable(&gpu->lock);
if (ret)
return ret;
etnaviv_gpu_update_clock(gpu);
etnaviv_gpu_hw_init(gpu);
gpu->exec_state = -1;
mutex_unlock(&gpu->lock);
return 0;
}
#endif
static int
etnaviv_gpu_cooling_get_max_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
*state = 6;
return 0;
}
static int
etnaviv_gpu_cooling_get_cur_state(struct thermal_cooling_device *cdev,
unsigned long *state)
{
struct etnaviv_gpu *gpu = cdev->devdata;
*state = gpu->freq_scale;
return 0;
}
static int
etnaviv_gpu_cooling_set_cur_state(struct thermal_cooling_device *cdev,
unsigned long state)
{
struct etnaviv_gpu *gpu = cdev->devdata;
mutex_lock(&gpu->lock);
gpu->freq_scale = state;
if (!pm_runtime_suspended(gpu->dev))
etnaviv_gpu_update_clock(gpu);
mutex_unlock(&gpu->lock);
return 0;
}
static struct thermal_cooling_device_ops cooling_ops = {
.get_max_state = etnaviv_gpu_cooling_get_max_state,
.get_cur_state = etnaviv_gpu_cooling_get_cur_state,
.set_cur_state = etnaviv_gpu_cooling_set_cur_state,
};
static int etnaviv_gpu_bind(struct device *dev, struct device *master,
void *data)
{
struct drm_device *drm = data;
struct etnaviv_drm_private *priv = drm->dev_private;
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
int ret;
if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL)) {
gpu->cooling = thermal_of_cooling_device_register(dev->of_node,
(char *)dev_name(dev), gpu, &cooling_ops);
if (IS_ERR(gpu->cooling))
return PTR_ERR(gpu->cooling);
}
gpu->wq = alloc_ordered_workqueue(dev_name(dev), 0);
if (!gpu->wq) {
ret = -ENOMEM;
goto out_thermal;
}
ret = etnaviv_sched_init(gpu);
if (ret)
goto out_workqueue;
#ifdef CONFIG_PM
ret = pm_runtime_get_sync(gpu->dev);
#else
ret = etnaviv_gpu_clk_enable(gpu);
#endif
if (ret < 0)
goto out_sched;
gpu->drm = drm;
gpu->fence_context = dma_fence_context_alloc(1);
idr_init(&gpu->fence_idr);
spin_lock_init(&gpu->fence_spinlock);
INIT_WORK(&gpu->sync_point_work, sync_point_worker);
init_waitqueue_head(&gpu->fence_event);
priv->gpu[priv->num_gpus++] = gpu;
pm_runtime_mark_last_busy(gpu->dev);
pm_runtime_put_autosuspend(gpu->dev);
return 0;
out_sched:
etnaviv_sched_fini(gpu);
out_workqueue:
destroy_workqueue(gpu->wq);
out_thermal:
if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL))
thermal_cooling_device_unregister(gpu->cooling);
return ret;
}
static void etnaviv_gpu_unbind(struct device *dev, struct device *master,
void *data)
{
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
DBG("%s", dev_name(gpu->dev));
flush_workqueue(gpu->wq);
destroy_workqueue(gpu->wq);
etnaviv_sched_fini(gpu);
#ifdef CONFIG_PM
pm_runtime_get_sync(gpu->dev);
pm_runtime_put_sync_suspend(gpu->dev);
#else
etnaviv_gpu_hw_suspend(gpu);
#endif
if (gpu->initialized) {
etnaviv_cmdbuf_free(&gpu->buffer);
etnaviv_cmdbuf_suballoc_unmap(gpu->mmu, &gpu->cmdbuf_mapping);
etnaviv_iommu_destroy(gpu->mmu);
gpu->initialized = false;
}
gpu->drm = NULL;
idr_destroy(&gpu->fence_idr);
if (IS_ENABLED(CONFIG_DRM_ETNAVIV_THERMAL))
thermal_cooling_device_unregister(gpu->cooling);
gpu->cooling = NULL;
}
static const struct component_ops gpu_ops = {
.bind = etnaviv_gpu_bind,
.unbind = etnaviv_gpu_unbind,
};
static const struct of_device_id etnaviv_gpu_match[] = {
{
.compatible = "vivante,gc"
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, etnaviv_gpu_match);
static int etnaviv_gpu_platform_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct etnaviv_gpu *gpu;
int err;
gpu = devm_kzalloc(dev, sizeof(*gpu), GFP_KERNEL);
if (!gpu)
return -ENOMEM;
gpu->dev = &pdev->dev;
mutex_init(&gpu->lock);
mutex_init(&gpu->fence_lock);
/* Map registers: */
gpu->mmio = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(gpu->mmio))
return PTR_ERR(gpu->mmio);
/* Get Interrupt: */
gpu->irq = platform_get_irq(pdev, 0);
if (gpu->irq < 0) {
dev_err(dev, "failed to get irq: %d\n", gpu->irq);
return gpu->irq;
}
err = devm_request_irq(&pdev->dev, gpu->irq, irq_handler, 0,
dev_name(gpu->dev), gpu);
if (err) {
dev_err(dev, "failed to request IRQ%u: %d\n", gpu->irq, err);
return err;
}
/* Get Clocks: */
gpu->clk_reg = devm_clk_get(&pdev->dev, "reg");
DBG("clk_reg: %p", gpu->clk_reg);
if (IS_ERR(gpu->clk_reg))
gpu->clk_reg = NULL;
gpu->clk_bus = devm_clk_get(&pdev->dev, "bus");
DBG("clk_bus: %p", gpu->clk_bus);
if (IS_ERR(gpu->clk_bus))
gpu->clk_bus = NULL;
gpu->clk_core = devm_clk_get(&pdev->dev, "core");
DBG("clk_core: %p", gpu->clk_core);
if (IS_ERR(gpu->clk_core))
gpu->clk_core = NULL;
gpu->base_rate_core = clk_get_rate(gpu->clk_core);
gpu->clk_shader = devm_clk_get(&pdev->dev, "shader");
DBG("clk_shader: %p", gpu->clk_shader);
if (IS_ERR(gpu->clk_shader))
gpu->clk_shader = NULL;
gpu->base_rate_shader = clk_get_rate(gpu->clk_shader);
/* TODO: figure out max mapped size */
dev_set_drvdata(dev, gpu);
/*
* We treat the device as initially suspended. The runtime PM
* autosuspend delay is rather arbitary: no measurements have
* yet been performed to determine an appropriate value.
*/
pm_runtime_use_autosuspend(gpu->dev);
pm_runtime_set_autosuspend_delay(gpu->dev, 200);
pm_runtime_enable(gpu->dev);
err = component_add(&pdev->dev, &gpu_ops);
if (err < 0) {
dev_err(&pdev->dev, "failed to register component: %d\n", err);
return err;
}
return 0;
}
static int etnaviv_gpu_platform_remove(struct platform_device *pdev)
{
component_del(&pdev->dev, &gpu_ops);
pm_runtime_disable(&pdev->dev);
return 0;
}
#ifdef CONFIG_PM
static int etnaviv_gpu_rpm_suspend(struct device *dev)
{
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
u32 idle, mask;
/* If there are any jobs in the HW queue, we're not idle */
if (atomic_read(&gpu->sched.hw_rq_count))
return -EBUSY;
/* Check whether the hardware (except FE) is idle */
mask = gpu->idle_mask & ~VIVS_HI_IDLE_STATE_FE;
idle = gpu_read(gpu, VIVS_HI_IDLE_STATE) & mask;
if (idle != mask)
return -EBUSY;
return etnaviv_gpu_hw_suspend(gpu);
}
static int etnaviv_gpu_rpm_resume(struct device *dev)
{
struct etnaviv_gpu *gpu = dev_get_drvdata(dev);
int ret;
ret = etnaviv_gpu_clk_enable(gpu);
if (ret)
return ret;
/* Re-initialise the basic hardware state */
if (gpu->drm && gpu->initialized) {
ret = etnaviv_gpu_hw_resume(gpu);
if (ret) {
etnaviv_gpu_clk_disable(gpu);
return ret;
}
}
return 0;
}
#endif
static const struct dev_pm_ops etnaviv_gpu_pm_ops = {
SET_RUNTIME_PM_OPS(etnaviv_gpu_rpm_suspend, etnaviv_gpu_rpm_resume,
NULL)
};
struct platform_driver etnaviv_gpu_driver = {
.driver = {
.name = "etnaviv-gpu",
.owner = THIS_MODULE,
.pm = &etnaviv_gpu_pm_ops,
.of_match_table = etnaviv_gpu_match,
},
.probe = etnaviv_gpu_platform_probe,
.remove = etnaviv_gpu_platform_remove,
.id_table = gpu_ids,
};