linux_dsm_epyc7002/fs/xfs/libxfs/xfs_iext_tree.c
Dave Chinner 0b61f8a407 xfs: convert to SPDX license tags
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/

This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:

for f in `git grep -l "GNU General" fs/xfs/` ; do
	echo $f
	cat $f | awk -f hdr.awk > $f.new
	mv -f $f.new $f
done

And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:

$ cat hdr.awk
BEGIN {
	hdr = 1.0
	tag = "GPL-2.0"
	str = ""
}

/^ \* This program is free software/ {
	hdr = 2.0;
	next
}

/any later version./ {
	tag = "GPL-2.0+"
	next
}

/^ \*\// {
	if (hdr > 0.0) {
		print "// SPDX-License-Identifier: " tag
		print str
		print $0
		str=""
		hdr = 0.0
		next
	}
	print $0
	next
}

/^ \* / {
	if (hdr > 1.0)
		next
	if (hdr > 0.0) {
		if (str != "")
			str = str "\n"
		str = str $0
		next
	}
	print $0
	next
}

/^ \*/ {
	if (hdr > 0.0)
		next
	print $0
	next
}

// {
	if (hdr > 0.0) {
		if (str != "")
			str = str "\n"
		str = str $0
		next
	}
	print $0
}

END { }
$

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-06-06 14:17:53 -07:00

1036 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2017 Christoph Hellwig.
*/
#include <linux/cache.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include "xfs.h"
#include "xfs_format.h"
#include "xfs_bit.h"
#include "xfs_log_format.h"
#include "xfs_inode.h"
#include "xfs_inode_fork.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_trace.h"
/*
* In-core extent record layout:
*
* +-------+----------------------------+
* | 00:53 | all 54 bits of startoff |
* | 54:63 | low 10 bits of startblock |
* +-------+----------------------------+
* | 00:20 | all 21 bits of length |
* | 21 | unwritten extent bit |
* | 22:63 | high 42 bits of startblock |
* +-------+----------------------------+
*/
#define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN)
#define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
#define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
struct xfs_iext_rec {
uint64_t lo;
uint64_t hi;
};
/*
* Given that the length can't be a zero, only an empty hi value indicates an
* unused record.
*/
static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
{
return rec->hi == 0;
}
static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
{
rec->lo = 0;
rec->hi = 0;
}
static void
xfs_iext_set(
struct xfs_iext_rec *rec,
struct xfs_bmbt_irec *irec)
{
ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
rec->lo |= (irec->br_startblock << 54);
rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
if (irec->br_state == XFS_EXT_UNWRITTEN)
rec->hi |= (1 << 21);
}
static void
xfs_iext_get(
struct xfs_bmbt_irec *irec,
struct xfs_iext_rec *rec)
{
irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
irec->br_startblock = rec->lo >> 54;
irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
if (rec->hi & (1 << 21))
irec->br_state = XFS_EXT_UNWRITTEN;
else
irec->br_state = XFS_EXT_NORM;
}
enum {
NODE_SIZE = 256,
KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
sizeof(struct xfs_iext_rec),
};
/*
* In-core extent btree block layout:
*
* There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
*
* The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
* contain the startoffset, blockcount, startblock and unwritten extent flag.
* See above for the exact format, followed by pointers to the previous and next
* leaf blocks (if there are any).
*
* The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
* by an equal number of pointers to the btree blocks at the next lower level.
*
* +-------+-------+-------+-------+-------+----------+----------+
* Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
* +-------+-------+-------+-------+-------+----------+----------+
*
* +-------+-------+-------+-------+-------+-------+------+-------+
* Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
* +-------+-------+-------+-------+-------+-------+------+-------+
*/
struct xfs_iext_node {
uint64_t keys[KEYS_PER_NODE];
#define XFS_IEXT_KEY_INVALID (1ULL << 63)
void *ptrs[KEYS_PER_NODE];
};
struct xfs_iext_leaf {
struct xfs_iext_rec recs[RECS_PER_LEAF];
struct xfs_iext_leaf *prev;
struct xfs_iext_leaf *next;
};
inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
{
return ifp->if_bytes / sizeof(struct xfs_iext_rec);
}
static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
{
if (ifp->if_height == 1)
return xfs_iext_count(ifp);
return RECS_PER_LEAF;
}
static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
{
return &cur->leaf->recs[cur->pos];
}
static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
if (!cur->leaf)
return false;
if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
return false;
if (xfs_iext_rec_is_empty(cur_rec(cur)))
return false;
return true;
}
static void *
xfs_iext_find_first_leaf(
struct xfs_ifork *ifp)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height;
if (!ifp->if_height)
return NULL;
for (height = ifp->if_height; height > 1; height--) {
node = node->ptrs[0];
ASSERT(node);
}
return node;
}
static void *
xfs_iext_find_last_leaf(
struct xfs_ifork *ifp)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height, i;
if (!ifp->if_height)
return NULL;
for (height = ifp->if_height; height > 1; height--) {
for (i = 1; i < KEYS_PER_NODE; i++)
if (!node->ptrs[i])
break;
node = node->ptrs[i - 1];
ASSERT(node);
}
return node;
}
void
xfs_iext_first(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
cur->pos = 0;
cur->leaf = xfs_iext_find_first_leaf(ifp);
}
void
xfs_iext_last(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
int i;
cur->leaf = xfs_iext_find_last_leaf(ifp);
if (!cur->leaf) {
cur->pos = 0;
return;
}
for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
break;
}
cur->pos = i - 1;
}
void
xfs_iext_next(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
if (!cur->leaf) {
ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
xfs_iext_first(ifp, cur);
return;
}
ASSERT(cur->pos >= 0);
ASSERT(cur->pos < xfs_iext_max_recs(ifp));
cur->pos++;
if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
cur->leaf->next) {
cur->leaf = cur->leaf->next;
cur->pos = 0;
}
}
void
xfs_iext_prev(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
if (!cur->leaf) {
ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
xfs_iext_last(ifp, cur);
return;
}
ASSERT(cur->pos >= 0);
ASSERT(cur->pos <= RECS_PER_LEAF);
recurse:
do {
cur->pos--;
if (xfs_iext_valid(ifp, cur))
return;
} while (cur->pos > 0);
if (ifp->if_height > 1 && cur->leaf->prev) {
cur->leaf = cur->leaf->prev;
cur->pos = RECS_PER_LEAF;
goto recurse;
}
}
static inline int
xfs_iext_key_cmp(
struct xfs_iext_node *node,
int n,
xfs_fileoff_t offset)
{
if (node->keys[n] > offset)
return 1;
if (node->keys[n] < offset)
return -1;
return 0;
}
static inline int
xfs_iext_rec_cmp(
struct xfs_iext_rec *rec,
xfs_fileoff_t offset)
{
uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
if (rec_offset > offset)
return 1;
if (rec_offset + rec_len <= offset)
return -1;
return 0;
}
static void *
xfs_iext_find_level(
struct xfs_ifork *ifp,
xfs_fileoff_t offset,
int level)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height, i;
if (!ifp->if_height)
return NULL;
for (height = ifp->if_height; height > level; height--) {
for (i = 1; i < KEYS_PER_NODE; i++)
if (xfs_iext_key_cmp(node, i, offset) > 0)
break;
node = node->ptrs[i - 1];
if (!node)
break;
}
return node;
}
static int
xfs_iext_node_pos(
struct xfs_iext_node *node,
xfs_fileoff_t offset)
{
int i;
for (i = 1; i < KEYS_PER_NODE; i++) {
if (xfs_iext_key_cmp(node, i, offset) > 0)
break;
}
return i - 1;
}
static int
xfs_iext_node_insert_pos(
struct xfs_iext_node *node,
xfs_fileoff_t offset)
{
int i;
for (i = 0; i < KEYS_PER_NODE; i++) {
if (xfs_iext_key_cmp(node, i, offset) > 0)
return i;
}
return KEYS_PER_NODE;
}
static int
xfs_iext_node_nr_entries(
struct xfs_iext_node *node,
int start)
{
int i;
for (i = start; i < KEYS_PER_NODE; i++) {
if (node->keys[i] == XFS_IEXT_KEY_INVALID)
break;
}
return i;
}
static int
xfs_iext_leaf_nr_entries(
struct xfs_ifork *ifp,
struct xfs_iext_leaf *leaf,
int start)
{
int i;
for (i = start; i < xfs_iext_max_recs(ifp); i++) {
if (xfs_iext_rec_is_empty(&leaf->recs[i]))
break;
}
return i;
}
static inline uint64_t
xfs_iext_leaf_key(
struct xfs_iext_leaf *leaf,
int n)
{
return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
}
static void
xfs_iext_grow(
struct xfs_ifork *ifp)
{
struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
int i;
if (ifp->if_height == 1) {
struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
node->keys[0] = xfs_iext_leaf_key(prev, 0);
node->ptrs[0] = prev;
} else {
struct xfs_iext_node *prev = ifp->if_u1.if_root;
ASSERT(ifp->if_height > 1);
node->keys[0] = prev->keys[0];
node->ptrs[0] = prev;
}
for (i = 1; i < KEYS_PER_NODE; i++)
node->keys[i] = XFS_IEXT_KEY_INVALID;
ifp->if_u1.if_root = node;
ifp->if_height++;
}
static void
xfs_iext_update_node(
struct xfs_ifork *ifp,
xfs_fileoff_t old_offset,
xfs_fileoff_t new_offset,
int level,
void *ptr)
{
struct xfs_iext_node *node = ifp->if_u1.if_root;
int height, i;
for (height = ifp->if_height; height > level; height--) {
for (i = 0; i < KEYS_PER_NODE; i++) {
if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
break;
if (node->keys[i] == old_offset)
node->keys[i] = new_offset;
}
node = node->ptrs[i - 1];
ASSERT(node);
}
ASSERT(node == ptr);
}
static struct xfs_iext_node *
xfs_iext_split_node(
struct xfs_iext_node **nodep,
int *pos,
int *nr_entries)
{
struct xfs_iext_node *node = *nodep;
struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
const int nr_move = KEYS_PER_NODE / 2;
int nr_keep = nr_move + (KEYS_PER_NODE & 1);
int i = 0;
/* for sequential append operations just spill over into the new node */
if (*pos == KEYS_PER_NODE) {
*nodep = new;
*pos = 0;
*nr_entries = 0;
goto done;
}
for (i = 0; i < nr_move; i++) {
new->keys[i] = node->keys[nr_keep + i];
new->ptrs[i] = node->ptrs[nr_keep + i];
node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
node->ptrs[nr_keep + i] = NULL;
}
if (*pos >= nr_keep) {
*nodep = new;
*pos -= nr_keep;
*nr_entries = nr_move;
} else {
*nr_entries = nr_keep;
}
done:
for (; i < KEYS_PER_NODE; i++)
new->keys[i] = XFS_IEXT_KEY_INVALID;
return new;
}
static void
xfs_iext_insert_node(
struct xfs_ifork *ifp,
uint64_t offset,
void *ptr,
int level)
{
struct xfs_iext_node *node, *new;
int i, pos, nr_entries;
again:
if (ifp->if_height < level)
xfs_iext_grow(ifp);
new = NULL;
node = xfs_iext_find_level(ifp, offset, level);
pos = xfs_iext_node_insert_pos(node, offset);
nr_entries = xfs_iext_node_nr_entries(node, pos);
ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
ASSERT(nr_entries <= KEYS_PER_NODE);
if (nr_entries == KEYS_PER_NODE)
new = xfs_iext_split_node(&node, &pos, &nr_entries);
/*
* Update the pointers in higher levels if the first entry changes
* in an existing node.
*/
if (node != new && pos == 0 && nr_entries > 0)
xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
for (i = nr_entries; i > pos; i--) {
node->keys[i] = node->keys[i - 1];
node->ptrs[i] = node->ptrs[i - 1];
}
node->keys[pos] = offset;
node->ptrs[pos] = ptr;
if (new) {
offset = new->keys[0];
ptr = new;
level++;
goto again;
}
}
static struct xfs_iext_leaf *
xfs_iext_split_leaf(
struct xfs_iext_cursor *cur,
int *nr_entries)
{
struct xfs_iext_leaf *leaf = cur->leaf;
struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
const int nr_move = RECS_PER_LEAF / 2;
int nr_keep = nr_move + (RECS_PER_LEAF & 1);
int i;
/* for sequential append operations just spill over into the new node */
if (cur->pos == RECS_PER_LEAF) {
cur->leaf = new;
cur->pos = 0;
*nr_entries = 0;
goto done;
}
for (i = 0; i < nr_move; i++) {
new->recs[i] = leaf->recs[nr_keep + i];
xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
}
if (cur->pos >= nr_keep) {
cur->leaf = new;
cur->pos -= nr_keep;
*nr_entries = nr_move;
} else {
*nr_entries = nr_keep;
}
done:
if (leaf->next)
leaf->next->prev = new;
new->next = leaf->next;
new->prev = leaf;
leaf->next = new;
return new;
}
static void
xfs_iext_alloc_root(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
ASSERT(ifp->if_bytes == 0);
ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
ifp->if_height = 1;
/* now that we have a node step into it */
cur->leaf = ifp->if_u1.if_root;
cur->pos = 0;
}
static void
xfs_iext_realloc_root(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur)
{
size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
void *new;
/* account for the prev/next pointers */
if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
new_size = NODE_SIZE;
new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
ifp->if_u1.if_root = new;
cur->leaf = new;
}
void
xfs_iext_insert(
struct xfs_inode *ip,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *irec,
int state)
{
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
xfs_fileoff_t offset = irec->br_startoff;
struct xfs_iext_leaf *new = NULL;
int nr_entries, i;
if (ifp->if_height == 0)
xfs_iext_alloc_root(ifp, cur);
else if (ifp->if_height == 1)
xfs_iext_realloc_root(ifp, cur);
nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
ASSERT(nr_entries <= RECS_PER_LEAF);
ASSERT(cur->pos >= nr_entries ||
xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
if (nr_entries == RECS_PER_LEAF)
new = xfs_iext_split_leaf(cur, &nr_entries);
/*
* Update the pointers in higher levels if the first entry changes
* in an existing node.
*/
if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
offset, 1, cur->leaf);
}
for (i = nr_entries; i > cur->pos; i--)
cur->leaf->recs[i] = cur->leaf->recs[i - 1];
xfs_iext_set(cur_rec(cur), irec);
ifp->if_bytes += sizeof(struct xfs_iext_rec);
trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
if (new)
xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
}
static struct xfs_iext_node *
xfs_iext_rebalance_node(
struct xfs_iext_node *parent,
int *pos,
struct xfs_iext_node *node,
int nr_entries)
{
/*
* If the neighbouring nodes are completely full, or have different
* parents, we might never be able to merge our node, and will only
* delete it once the number of entries hits zero.
*/
if (nr_entries == 0)
return node;
if (*pos > 0) {
struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
if (nr_prev + nr_entries <= KEYS_PER_NODE) {
for (i = 0; i < nr_entries; i++) {
prev->keys[nr_prev + i] = node->keys[i];
prev->ptrs[nr_prev + i] = node->ptrs[i];
}
return node;
}
}
if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
struct xfs_iext_node *next = parent->ptrs[*pos + 1];
int nr_next = xfs_iext_node_nr_entries(next, 0), i;
if (nr_entries + nr_next <= KEYS_PER_NODE) {
/*
* Merge the next node into this node so that we don't
* have to do an additional update of the keys in the
* higher levels.
*/
for (i = 0; i < nr_next; i++) {
node->keys[nr_entries + i] = next->keys[i];
node->ptrs[nr_entries + i] = next->ptrs[i];
}
++*pos;
return next;
}
}
return NULL;
}
static void
xfs_iext_remove_node(
struct xfs_ifork *ifp,
xfs_fileoff_t offset,
void *victim)
{
struct xfs_iext_node *node, *parent;
int level = 2, pos, nr_entries, i;
ASSERT(level <= ifp->if_height);
node = xfs_iext_find_level(ifp, offset, level);
pos = xfs_iext_node_pos(node, offset);
again:
ASSERT(node->ptrs[pos]);
ASSERT(node->ptrs[pos] == victim);
kmem_free(victim);
nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
offset = node->keys[0];
for (i = pos; i < nr_entries; i++) {
node->keys[i] = node->keys[i + 1];
node->ptrs[i] = node->ptrs[i + 1];
}
node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
node->ptrs[nr_entries] = NULL;
if (pos == 0 && nr_entries > 0) {
xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
offset = node->keys[0];
}
if (nr_entries >= KEYS_PER_NODE / 2)
return;
if (level < ifp->if_height) {
/*
* If we aren't at the root yet try to find a neighbour node to
* merge with (or delete the node if it is empty), and then
* recurse up to the next level.
*/
level++;
parent = xfs_iext_find_level(ifp, offset, level);
pos = xfs_iext_node_pos(parent, offset);
ASSERT(pos != KEYS_PER_NODE);
ASSERT(parent->ptrs[pos] == node);
node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
if (node) {
victim = node;
node = parent;
goto again;
}
} else if (nr_entries == 1) {
/*
* If we are at the root and only one entry is left we can just
* free this node and update the root pointer.
*/
ASSERT(node == ifp->if_u1.if_root);
ifp->if_u1.if_root = node->ptrs[0];
ifp->if_height--;
kmem_free(node);
}
}
static void
xfs_iext_rebalance_leaf(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur,
struct xfs_iext_leaf *leaf,
xfs_fileoff_t offset,
int nr_entries)
{
/*
* If the neighbouring nodes are completely full we might never be able
* to merge our node, and will only delete it once the number of
* entries hits zero.
*/
if (nr_entries == 0)
goto remove_node;
if (leaf->prev) {
int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
if (nr_prev + nr_entries <= RECS_PER_LEAF) {
for (i = 0; i < nr_entries; i++)
leaf->prev->recs[nr_prev + i] = leaf->recs[i];
if (cur->leaf == leaf) {
cur->leaf = leaf->prev;
cur->pos += nr_prev;
}
goto remove_node;
}
}
if (leaf->next) {
int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
if (nr_entries + nr_next <= RECS_PER_LEAF) {
/*
* Merge the next node into this node so that we don't
* have to do an additional update of the keys in the
* higher levels.
*/
for (i = 0; i < nr_next; i++) {
leaf->recs[nr_entries + i] =
leaf->next->recs[i];
}
if (cur->leaf == leaf->next) {
cur->leaf = leaf;
cur->pos += nr_entries;
}
offset = xfs_iext_leaf_key(leaf->next, 0);
leaf = leaf->next;
goto remove_node;
}
}
return;
remove_node:
if (leaf->prev)
leaf->prev->next = leaf->next;
if (leaf->next)
leaf->next->prev = leaf->prev;
xfs_iext_remove_node(ifp, offset, leaf);
}
static void
xfs_iext_free_last_leaf(
struct xfs_ifork *ifp)
{
ifp->if_height--;
kmem_free(ifp->if_u1.if_root);
ifp->if_u1.if_root = NULL;
}
void
xfs_iext_remove(
struct xfs_inode *ip,
struct xfs_iext_cursor *cur,
int state)
{
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
struct xfs_iext_leaf *leaf = cur->leaf;
xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0);
int i, nr_entries;
trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
ASSERT(ifp->if_height > 0);
ASSERT(ifp->if_u1.if_root != NULL);
ASSERT(xfs_iext_valid(ifp, cur));
nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
for (i = cur->pos; i < nr_entries; i++)
leaf->recs[i] = leaf->recs[i + 1];
xfs_iext_rec_clear(&leaf->recs[nr_entries]);
ifp->if_bytes -= sizeof(struct xfs_iext_rec);
if (cur->pos == 0 && nr_entries > 0) {
xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
leaf);
offset = xfs_iext_leaf_key(leaf, 0);
} else if (cur->pos == nr_entries) {
if (ifp->if_height > 1 && leaf->next)
cur->leaf = leaf->next;
else
cur->leaf = NULL;
cur->pos = 0;
}
if (nr_entries >= RECS_PER_LEAF / 2)
return;
if (ifp->if_height > 1)
xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
else if (nr_entries == 0)
xfs_iext_free_last_leaf(ifp);
}
/*
* Lookup the extent covering bno.
*
* If there is an extent covering bno return the extent index, and store the
* expanded extent structure in *gotp, and the extent cursor in *cur.
* If there is no extent covering bno, but there is an extent after it (e.g.
* it lies in a hole) return that extent in *gotp and its cursor in *cur
* instead.
* If bno is beyond the last extent return false, and return an invalid
* cursor value.
*/
bool
xfs_iext_lookup_extent(
struct xfs_inode *ip,
struct xfs_ifork *ifp,
xfs_fileoff_t offset,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *gotp)
{
XFS_STATS_INC(ip->i_mount, xs_look_exlist);
cur->leaf = xfs_iext_find_level(ifp, offset, 1);
if (!cur->leaf) {
cur->pos = 0;
return false;
}
for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
struct xfs_iext_rec *rec = cur_rec(cur);
if (xfs_iext_rec_is_empty(rec))
break;
if (xfs_iext_rec_cmp(rec, offset) >= 0)
goto found;
}
/* Try looking in the next node for an entry > offset */
if (ifp->if_height == 1 || !cur->leaf->next)
return false;
cur->leaf = cur->leaf->next;
cur->pos = 0;
if (!xfs_iext_valid(ifp, cur))
return false;
found:
xfs_iext_get(gotp, cur_rec(cur));
return true;
}
/*
* Returns the last extent before end, and if this extent doesn't cover
* end, update end to the end of the extent.
*/
bool
xfs_iext_lookup_extent_before(
struct xfs_inode *ip,
struct xfs_ifork *ifp,
xfs_fileoff_t *end,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *gotp)
{
/* could be optimized to not even look up the next on a match.. */
if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
gotp->br_startoff <= *end - 1)
return true;
if (!xfs_iext_prev_extent(ifp, cur, gotp))
return false;
*end = gotp->br_startoff + gotp->br_blockcount;
return true;
}
void
xfs_iext_update_extent(
struct xfs_inode *ip,
int state,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *new)
{
struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state);
if (cur->pos == 0) {
struct xfs_bmbt_irec old;
xfs_iext_get(&old, cur_rec(cur));
if (new->br_startoff != old.br_startoff) {
xfs_iext_update_node(ifp, old.br_startoff,
new->br_startoff, 1, cur->leaf);
}
}
trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
xfs_iext_set(cur_rec(cur), new);
trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
}
/*
* Return true if the cursor points at an extent and return the extent structure
* in gotp. Else return false.
*/
bool
xfs_iext_get_extent(
struct xfs_ifork *ifp,
struct xfs_iext_cursor *cur,
struct xfs_bmbt_irec *gotp)
{
if (!xfs_iext_valid(ifp, cur))
return false;
xfs_iext_get(gotp, cur_rec(cur));
return true;
}
/*
* This is a recursive function, because of that we need to be extremely
* careful with stack usage.
*/
static void
xfs_iext_destroy_node(
struct xfs_iext_node *node,
int level)
{
int i;
if (level > 1) {
for (i = 0; i < KEYS_PER_NODE; i++) {
if (node->keys[i] == XFS_IEXT_KEY_INVALID)
break;
xfs_iext_destroy_node(node->ptrs[i], level - 1);
}
}
kmem_free(node);
}
void
xfs_iext_destroy(
struct xfs_ifork *ifp)
{
xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
ifp->if_bytes = 0;
ifp->if_height = 0;
ifp->if_u1.if_root = NULL;
}