mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 11:40:53 +07:00
130a1d76ee
commit f9dfb5e390fab2df9f7944bb91e7705aba14cd26 upstream.
The XSAVE init code initializes all enabled and supported components with
XRSTOR(S) to init state. Then it XSAVEs the state of the components back
into init_fpstate which is used in several places to fill in the init state
of components.
This works correctly with XSAVE, but not with XSAVEOPT and XSAVES because
those use the init optimization and skip writing state of components which
are in init state. So init_fpstate.xsave still contains all zeroes after
this operation.
There are two ways to solve that:
1) Use XSAVE unconditionally, but that requires to reshuffle the buffer when
XSAVES is enabled because XSAVES uses compacted format.
2) Save the components which are known to have a non-zero init state by other
means.
Looking deeper, #2 is the right thing to do because all components the
kernel supports have all-zeroes init state except the legacy features (FP,
SSE). Those cannot be hard coded because the states are not identical on all
CPUs, but they can be saved with FXSAVE which avoids all conditionals.
Use FXSAVE to save the legacy FP/SSE components in init_fpstate along with
a BUILD_BUG_ON() which reminds developers to validate that a newly added
component has all zeroes init state. As a bonus remove the now unused
copy_xregs_to_kernel_booting() crutch.
The XSAVE and reshuffle method can still be implemented in the unlikely
case that components are added which have a non-zero init state and no
other means to save them. For now, FXSAVE is just simple and good enough.
[ bp: Fix a typo or two in the text. ]
Fixes:
|
||
---|---|---|
.. | ||
alpha | ||
arc | ||
arm | ||
arm64 | ||
c6x | ||
csky | ||
h8300 | ||
hexagon | ||
ia64 | ||
m68k | ||
microblaze | ||
mips | ||
nds32 | ||
nios2 | ||
openrisc | ||
parisc | ||
powerpc | ||
riscv | ||
s390 | ||
sh | ||
sparc | ||
um | ||
x86 | ||
xtensa | ||
.gitignore | ||
Kconfig |