mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 05:06:21 +07:00
87d60b63e0
Dump the aliasing PPGTT with it. The aliasing PPGTT should actually always be empty. TODO: Broadwell. Since we don't yet use full PPGTT on Broadwell, not having the dumper is okay. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
1839 lines
52 KiB
C
1839 lines
52 KiB
C
/*
|
|
* Copyright © 2010 Daniel Vetter
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
|
|
#define GEN6_PPGTT_PD_ENTRIES 512
|
|
#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
|
|
typedef uint64_t gen8_gtt_pte_t;
|
|
typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
|
|
|
|
/* PPGTT stuff */
|
|
#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
|
|
#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
|
|
|
|
#define GEN6_PDE_VALID (1 << 0)
|
|
/* gen6+ has bit 11-4 for physical addr bit 39-32 */
|
|
#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
|
|
|
|
#define GEN6_PTE_VALID (1 << 0)
|
|
#define GEN6_PTE_UNCACHED (1 << 1)
|
|
#define HSW_PTE_UNCACHED (0)
|
|
#define GEN6_PTE_CACHE_LLC (2 << 1)
|
|
#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
|
|
#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
|
|
#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
|
|
|
|
/* Cacheability Control is a 4-bit value. The low three bits are stored in *
|
|
* bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
|
|
*/
|
|
#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
|
|
(((bits) & 0x8) << (11 - 3)))
|
|
#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
|
|
#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
|
|
#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
|
|
#define HSW_WB_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x8)
|
|
#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
|
|
#define HSW_WT_ELLC_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x7)
|
|
|
|
#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
|
|
#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
|
|
#define GEN8_LEGACY_PDPS 4
|
|
|
|
#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
|
|
#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
|
|
#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
|
|
#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
|
|
|
|
static void ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags);
|
|
static void ppgtt_unbind_vma(struct i915_vma *vma);
|
|
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
|
|
|
|
static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
|
|
pte |= addr;
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= PPAT_CACHED_INDEX;
|
|
else
|
|
pte |= PPAT_UNCACHED_INDEX;
|
|
return pte;
|
|
}
|
|
|
|
static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
|
|
dma_addr_t addr,
|
|
enum i915_cache_level level)
|
|
{
|
|
gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
|
|
pde |= addr;
|
|
if (level != I915_CACHE_NONE)
|
|
pde |= PPAT_CACHED_PDE_INDEX;
|
|
else
|
|
pde |= PPAT_UNCACHED_INDEX;
|
|
return pde;
|
|
}
|
|
|
|
static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
pte |= GEN7_PTE_CACHE_L3_LLC;
|
|
break;
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
#define BYT_PTE_WRITEABLE (1 << 1)
|
|
#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
|
|
|
|
static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
/* Mark the page as writeable. Other platforms don't have a
|
|
* setting for read-only/writable, so this matches that behavior.
|
|
*/
|
|
pte |= BYT_PTE_WRITEABLE;
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= HSW_WB_LLC_AGE3;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= HSW_WT_ELLC_LLC_AGE3;
|
|
break;
|
|
default:
|
|
pte |= HSW_WB_ELLC_LLC_AGE3;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
/* Broadwell Page Directory Pointer Descriptors */
|
|
static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
|
|
uint64_t val, bool synchronous)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
int ret;
|
|
|
|
BUG_ON(entry >= 4);
|
|
|
|
if (synchronous) {
|
|
I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
|
|
I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
|
|
return 0;
|
|
}
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
|
|
intel_ring_emit(ring, (u32)(val >> 32));
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
|
|
intel_ring_emit(ring, (u32)(val));
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
int i, ret;
|
|
|
|
/* bit of a hack to find the actual last used pd */
|
|
int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
|
|
|
|
for (i = used_pd - 1; i >= 0; i--) {
|
|
dma_addr_t addr = ppgtt->pd_dma_addr[i];
|
|
ret = gen8_write_pdp(ring, i, addr, synchronous);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
|
|
unsigned first_entry,
|
|
unsigned num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen8_gtt_pte_t *pt_vaddr, scratch_pte;
|
|
unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
|
|
unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
|
|
unsigned last_pte, i;
|
|
|
|
scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
|
|
I915_CACHE_LLC, use_scratch);
|
|
|
|
while (num_entries) {
|
|
struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
|
|
|
|
last_pte = first_pte + num_entries;
|
|
if (last_pte > GEN8_PTES_PER_PAGE)
|
|
last_pte = GEN8_PTES_PER_PAGE;
|
|
|
|
pt_vaddr = kmap_atomic(page_table);
|
|
|
|
for (i = first_pte; i < last_pte; i++)
|
|
pt_vaddr[i] = scratch_pte;
|
|
|
|
kunmap_atomic(pt_vaddr);
|
|
|
|
num_entries -= last_pte - first_pte;
|
|
first_pte = 0;
|
|
act_pt++;
|
|
}
|
|
}
|
|
|
|
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *pages,
|
|
unsigned first_entry,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen8_gtt_pte_t *pt_vaddr;
|
|
unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
|
|
unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
|
|
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
|
|
dma_addr_t page_addr;
|
|
|
|
page_addr = sg_dma_address(sg_iter.sg) +
|
|
(sg_iter.sg_pgoffset << PAGE_SHIFT);
|
|
pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
|
|
true);
|
|
if (++act_pte == GEN8_PTES_PER_PAGE) {
|
|
kunmap_atomic(pt_vaddr);
|
|
act_pt++;
|
|
pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
|
|
act_pte = 0;
|
|
|
|
}
|
|
}
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
|
|
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
int i, j;
|
|
|
|
list_del(&vm->global_link);
|
|
drm_mm_takedown(&vm->mm);
|
|
|
|
for (i = 0; i < ppgtt->num_pd_pages ; i++) {
|
|
if (ppgtt->pd_dma_addr[i]) {
|
|
pci_unmap_page(ppgtt->base.dev->pdev,
|
|
ppgtt->pd_dma_addr[i],
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
|
|
if (addr)
|
|
pci_unmap_page(ppgtt->base.dev->pdev,
|
|
addr,
|
|
PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
}
|
|
}
|
|
kfree(ppgtt->gen8_pt_dma_addr[i]);
|
|
}
|
|
|
|
__free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
|
|
__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
|
|
}
|
|
|
|
/**
|
|
* GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
|
|
* net effect resembling a 2-level page table in normal x86 terms. Each PDP
|
|
* represents 1GB of memory
|
|
* 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
|
|
*
|
|
* TODO: Do something with the size parameter
|
|
**/
|
|
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
|
|
{
|
|
struct page *pt_pages;
|
|
int i, j, ret = -ENOMEM;
|
|
const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
|
|
const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
|
|
|
|
if (size % (1<<30))
|
|
DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
|
|
|
|
/* FIXME: split allocation into smaller pieces. For now we only ever do
|
|
* this once, but with full PPGTT, the multiple contiguous allocations
|
|
* will be bad.
|
|
*/
|
|
ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
|
|
if (!ppgtt->pd_pages)
|
|
return -ENOMEM;
|
|
|
|
pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
|
|
if (!pt_pages) {
|
|
__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ppgtt->gen8_pt_pages = pt_pages;
|
|
ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
|
|
ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
|
|
ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
|
|
ppgtt->enable = gen8_ppgtt_enable;
|
|
ppgtt->switch_mm = gen8_mm_switch;
|
|
ppgtt->base.clear_range = gen8_ppgtt_clear_range;
|
|
ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
|
|
ppgtt->base.cleanup = gen8_ppgtt_cleanup;
|
|
ppgtt->base.start = 0;
|
|
ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
|
|
|
|
BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
|
|
|
|
/*
|
|
* - Create a mapping for the page directories.
|
|
* - For each page directory:
|
|
* allocate space for page table mappings.
|
|
* map each page table
|
|
*/
|
|
for (i = 0; i < max_pdp; i++) {
|
|
dma_addr_t temp;
|
|
temp = pci_map_page(ppgtt->base.dev->pdev,
|
|
&ppgtt->pd_pages[i], 0,
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
|
|
goto err_out;
|
|
|
|
ppgtt->pd_dma_addr[i] = temp;
|
|
|
|
ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
|
|
if (!ppgtt->gen8_pt_dma_addr[i])
|
|
goto err_out;
|
|
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
|
|
temp = pci_map_page(ppgtt->base.dev->pdev,
|
|
p, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
|
|
goto err_out;
|
|
|
|
ppgtt->gen8_pt_dma_addr[i][j] = temp;
|
|
}
|
|
}
|
|
|
|
/* For now, the PPGTT helper functions all require that the PDEs are
|
|
* plugged in correctly. So we do that now/here. For aliasing PPGTT, we
|
|
* will never need to touch the PDEs again */
|
|
for (i = 0; i < max_pdp; i++) {
|
|
gen8_ppgtt_pde_t *pd_vaddr;
|
|
pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
|
|
pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
|
|
I915_CACHE_LLC);
|
|
}
|
|
kunmap_atomic(pd_vaddr);
|
|
}
|
|
|
|
ppgtt->base.clear_range(&ppgtt->base, 0,
|
|
ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
|
|
true);
|
|
|
|
DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
|
|
ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
|
|
DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
|
|
ppgtt->num_pt_pages,
|
|
(ppgtt->num_pt_pages - num_pt_pages) +
|
|
size % (1<<30));
|
|
return 0;
|
|
|
|
err_out:
|
|
ppgtt->base.cleanup(&ppgtt->base);
|
|
return ret;
|
|
}
|
|
|
|
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
|
|
{
|
|
struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
|
|
struct i915_address_space *vm = &ppgtt->base;
|
|
gen6_gtt_pte_t __iomem *pd_addr;
|
|
gen6_gtt_pte_t scratch_pte;
|
|
uint32_t pd_entry;
|
|
int pte, pde;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
|
|
|
|
pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
|
|
ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
|
|
|
|
seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
|
|
ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
|
|
for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
|
|
u32 expected;
|
|
gen6_gtt_pte_t *pt_vaddr;
|
|
dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
|
|
pd_entry = readl(pd_addr + pde);
|
|
expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
|
|
|
|
if (pd_entry != expected)
|
|
seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
|
|
pde,
|
|
pd_entry,
|
|
expected);
|
|
seq_printf(m, "\tPDE: %x\n", pd_entry);
|
|
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
|
|
for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
|
|
unsigned long va =
|
|
(pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
|
|
(pte * PAGE_SIZE);
|
|
int i;
|
|
bool found = false;
|
|
for (i = 0; i < 4; i++)
|
|
if (pt_vaddr[pte + i] != scratch_pte)
|
|
found = true;
|
|
if (!found)
|
|
continue;
|
|
|
|
seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
|
|
for (i = 0; i < 4; i++) {
|
|
if (pt_vaddr[pte + i] != scratch_pte)
|
|
seq_printf(m, " %08x", pt_vaddr[pte + i]);
|
|
else
|
|
seq_puts(m, " SCRATCH ");
|
|
}
|
|
seq_puts(m, "\n");
|
|
}
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
}
|
|
|
|
static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
|
|
gen6_gtt_pte_t __iomem *pd_addr;
|
|
uint32_t pd_entry;
|
|
int i;
|
|
|
|
WARN_ON(ppgtt->pd_offset & 0x3f);
|
|
pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
|
|
ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
dma_addr_t pt_addr;
|
|
|
|
pt_addr = ppgtt->pt_dma_addr[i];
|
|
pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
|
|
pd_entry |= GEN6_PDE_VALID;
|
|
|
|
writel(pd_entry, pd_addr + i);
|
|
}
|
|
readl(pd_addr);
|
|
}
|
|
|
|
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
BUG_ON(ppgtt->pd_offset & 0x3f);
|
|
|
|
return (ppgtt->pd_offset / 64) << 16;
|
|
}
|
|
|
|
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* If we're in reset, we can assume the GPU is sufficiently idle to
|
|
* manually frob these bits. Ideally we could use the ring functions,
|
|
* except our error handling makes it quite difficult (can't use
|
|
* intel_ring_begin, ring->flush, or intel_ring_advance)
|
|
*
|
|
* FIXME: We should try not to special case reset
|
|
*/
|
|
if (synchronous ||
|
|
i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
POSTING_READ(RING_PP_DIR_BASE(ring));
|
|
return 0;
|
|
}
|
|
|
|
/* NB: TLBs must be flushed and invalidated before a switch */
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
|
|
intel_ring_emit(ring, PP_DIR_DCLV_2G);
|
|
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
|
|
intel_ring_emit(ring, get_pd_offset(ppgtt));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* If we're in reset, we can assume the GPU is sufficiently idle to
|
|
* manually frob these bits. Ideally we could use the ring functions,
|
|
* except our error handling makes it quite difficult (can't use
|
|
* intel_ring_begin, ring->flush, or intel_ring_advance)
|
|
*
|
|
* FIXME: We should try not to special case reset
|
|
*/
|
|
if (synchronous ||
|
|
i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
POSTING_READ(RING_PP_DIR_BASE(ring));
|
|
return 0;
|
|
}
|
|
|
|
/* NB: TLBs must be flushed and invalidated before a switch */
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
|
|
intel_ring_emit(ring, PP_DIR_DCLV_2G);
|
|
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
|
|
intel_ring_emit(ring, get_pd_offset(ppgtt));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
/* XXX: RCS is the only one to auto invalidate the TLBs? */
|
|
if (ring->id != RCS) {
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_ring_buffer *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!synchronous)
|
|
return 0;
|
|
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
|
|
POSTING_READ(RING_PP_DIR_DCLV(ring));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int j, ret;
|
|
|
|
for_each_ring(ring, dev_priv, j) {
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
|
|
/* We promise to do a switch later with FULL PPGTT. If this is
|
|
* aliasing, this is the one and only switch we'll do */
|
|
if (USES_FULL_PPGTT(dev))
|
|
continue;
|
|
|
|
ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
goto err_out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
for_each_ring(ring, dev_priv, j)
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
|
|
return ret;
|
|
}
|
|
|
|
static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
uint32_t ecochk, ecobits;
|
|
int i;
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
if (IS_HASWELL(dev)) {
|
|
ecochk |= ECOCHK_PPGTT_WB_HSW;
|
|
} else {
|
|
ecochk |= ECOCHK_PPGTT_LLC_IVB;
|
|
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
|
|
}
|
|
I915_WRITE(GAM_ECOCHK, ecochk);
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
int ret;
|
|
/* GFX_MODE is per-ring on gen7+ */
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
|
|
/* We promise to do a switch later with FULL PPGTT. If this is
|
|
* aliasing, this is the one and only switch we'll do */
|
|
if (USES_FULL_PPGTT(dev))
|
|
continue;
|
|
|
|
ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
drm_i915_private_t *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
uint32_t ecochk, gab_ctl, ecobits;
|
|
int i;
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
|
|
ECOBITS_PPGTT_CACHE64B);
|
|
|
|
gab_ctl = I915_READ(GAB_CTL);
|
|
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
|
|
|
|
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
int ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* PPGTT support for Sandybdrige/Gen6 and later */
|
|
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
|
|
unsigned first_entry,
|
|
unsigned num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen6_gtt_pte_t *pt_vaddr, scratch_pte;
|
|
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
|
|
unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
|
|
unsigned last_pte, i;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
|
|
|
|
while (num_entries) {
|
|
last_pte = first_pte + num_entries;
|
|
if (last_pte > I915_PPGTT_PT_ENTRIES)
|
|
last_pte = I915_PPGTT_PT_ENTRIES;
|
|
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
|
|
for (i = first_pte; i < last_pte; i++)
|
|
pt_vaddr[i] = scratch_pte;
|
|
|
|
kunmap_atomic(pt_vaddr);
|
|
|
|
num_entries -= last_pte - first_pte;
|
|
first_pte = 0;
|
|
act_pt++;
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *pages,
|
|
unsigned first_entry,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen6_gtt_pte_t *pt_vaddr;
|
|
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
|
|
unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
|
|
dma_addr_t page_addr;
|
|
|
|
page_addr = sg_page_iter_dma_address(&sg_iter);
|
|
pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
|
|
if (++act_pte == I915_PPGTT_PT_ENTRIES) {
|
|
kunmap_atomic(pt_vaddr);
|
|
act_pt++;
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
act_pte = 0;
|
|
|
|
}
|
|
}
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
|
|
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
int i;
|
|
|
|
list_del(&vm->global_link);
|
|
drm_mm_takedown(&ppgtt->base.mm);
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
|
|
if (ppgtt->pt_dma_addr) {
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++)
|
|
pci_unmap_page(ppgtt->base.dev->pdev,
|
|
ppgtt->pt_dma_addr[i],
|
|
4096, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
kfree(ppgtt->pt_dma_addr);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++)
|
|
__free_page(ppgtt->pt_pages[i]);
|
|
kfree(ppgtt->pt_pages);
|
|
kfree(ppgtt);
|
|
}
|
|
|
|
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
#define GEN6_PD_ALIGN (PAGE_SIZE * 16)
|
|
#define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool retried = false;
|
|
int i, ret;
|
|
|
|
/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
|
|
* allocator works in address space sizes, so it's multiplied by page
|
|
* size. We allocate at the top of the GTT to avoid fragmentation.
|
|
*/
|
|
BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
|
|
alloc:
|
|
ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
|
|
&ppgtt->node, GEN6_PD_SIZE,
|
|
GEN6_PD_ALIGN, 0,
|
|
0, dev_priv->gtt.base.total,
|
|
DRM_MM_SEARCH_DEFAULT);
|
|
if (ret == -ENOSPC && !retried) {
|
|
ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
|
|
GEN6_PD_SIZE, GEN6_PD_ALIGN,
|
|
I915_CACHE_NONE, false, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
retried = true;
|
|
goto alloc;
|
|
}
|
|
|
|
if (ppgtt->node.start < dev_priv->gtt.mappable_end)
|
|
DRM_DEBUG("Forced to use aperture for PDEs\n");
|
|
|
|
ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
|
|
ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
|
|
if (IS_GEN6(dev)) {
|
|
ppgtt->enable = gen6_ppgtt_enable;
|
|
ppgtt->switch_mm = gen6_mm_switch;
|
|
} else if (IS_HASWELL(dev)) {
|
|
ppgtt->enable = gen7_ppgtt_enable;
|
|
ppgtt->switch_mm = hsw_mm_switch;
|
|
} else if (IS_GEN7(dev)) {
|
|
ppgtt->enable = gen7_ppgtt_enable;
|
|
ppgtt->switch_mm = gen7_mm_switch;
|
|
} else
|
|
BUG();
|
|
ppgtt->base.clear_range = gen6_ppgtt_clear_range;
|
|
ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
|
|
ppgtt->base.cleanup = gen6_ppgtt_cleanup;
|
|
ppgtt->base.scratch = dev_priv->gtt.base.scratch;
|
|
ppgtt->base.start = 0;
|
|
ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
|
|
ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
if (!ppgtt->pt_pages) {
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
|
|
if (!ppgtt->pt_pages[i])
|
|
goto err_pt_alloc;
|
|
}
|
|
|
|
ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
|
|
GFP_KERNEL);
|
|
if (!ppgtt->pt_dma_addr)
|
|
goto err_pt_alloc;
|
|
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
dma_addr_t pt_addr;
|
|
|
|
pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
|
|
ret = -EIO;
|
|
goto err_pd_pin;
|
|
|
|
}
|
|
ppgtt->pt_dma_addr[i] = pt_addr;
|
|
}
|
|
|
|
ppgtt->base.clear_range(&ppgtt->base, 0,
|
|
ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
|
|
ppgtt->debug_dump = gen6_dump_ppgtt;
|
|
|
|
DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
|
|
ppgtt->node.size >> 20,
|
|
ppgtt->node.start / PAGE_SIZE);
|
|
ppgtt->pd_offset =
|
|
ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
|
|
|
|
return 0;
|
|
|
|
err_pd_pin:
|
|
if (ppgtt->pt_dma_addr) {
|
|
for (i--; i >= 0; i--)
|
|
pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
|
|
4096, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
err_pt_alloc:
|
|
kfree(ppgtt->pt_dma_addr);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
if (ppgtt->pt_pages[i])
|
|
__free_page(ppgtt->pt_pages[i]);
|
|
}
|
|
kfree(ppgtt->pt_pages);
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
|
|
ppgtt->base.dev = dev;
|
|
|
|
if (INTEL_INFO(dev)->gen < 8)
|
|
ret = gen6_ppgtt_init(ppgtt);
|
|
else if (IS_GEN8(dev))
|
|
ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
|
|
else
|
|
BUG();
|
|
|
|
if (!ret) {
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
kref_init(&ppgtt->ref);
|
|
drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
|
|
ppgtt->base.total);
|
|
i915_init_vm(dev_priv, &ppgtt->base);
|
|
if (INTEL_INFO(dev)->gen < 8) {
|
|
gen6_write_pdes(ppgtt);
|
|
DRM_DEBUG("Adding PPGTT at offset %x\n",
|
|
ppgtt->pd_offset << 10);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
WARN_ON(flags);
|
|
|
|
vma->vm->insert_entries(vma->vm, vma->obj->pages, entry, cache_level);
|
|
}
|
|
|
|
static void ppgtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
vma->vm->clear_range(vma->vm,
|
|
entry,
|
|
vma->obj->base.size >> PAGE_SHIFT,
|
|
true);
|
|
}
|
|
|
|
extern int intel_iommu_gfx_mapped;
|
|
/* Certain Gen5 chipsets require require idling the GPU before
|
|
* unmapping anything from the GTT when VT-d is enabled.
|
|
*/
|
|
static inline bool needs_idle_maps(struct drm_device *dev)
|
|
{
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
/* Query intel_iommu to see if we need the workaround. Presumably that
|
|
* was loaded first.
|
|
*/
|
|
if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static bool do_idling(struct drm_i915_private *dev_priv)
|
|
{
|
|
bool ret = dev_priv->mm.interruptible;
|
|
|
|
if (unlikely(dev_priv->gtt.do_idle_maps)) {
|
|
dev_priv->mm.interruptible = false;
|
|
if (i915_gpu_idle(dev_priv->dev)) {
|
|
DRM_ERROR("Couldn't idle GPU\n");
|
|
/* Wait a bit, in hopes it avoids the hang */
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
|
|
{
|
|
if (unlikely(dev_priv->gtt.do_idle_maps))
|
|
dev_priv->mm.interruptible = interruptible;
|
|
}
|
|
|
|
void i915_check_and_clear_faults(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ring_buffer *ring;
|
|
int i;
|
|
|
|
if (INTEL_INFO(dev)->gen < 6)
|
|
return;
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
u32 fault_reg;
|
|
fault_reg = I915_READ(RING_FAULT_REG(ring));
|
|
if (fault_reg & RING_FAULT_VALID) {
|
|
DRM_DEBUG_DRIVER("Unexpected fault\n"
|
|
"\tAddr: 0x%08lx\\n"
|
|
"\tAddress space: %s\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
fault_reg & PAGE_MASK,
|
|
fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
|
|
RING_FAULT_SRCID(fault_reg),
|
|
RING_FAULT_FAULT_TYPE(fault_reg));
|
|
I915_WRITE(RING_FAULT_REG(ring),
|
|
fault_reg & ~RING_FAULT_VALID);
|
|
}
|
|
}
|
|
POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
|
|
}
|
|
|
|
void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* Don't bother messing with faults pre GEN6 as we have little
|
|
* documentation supporting that it's a good idea.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 6)
|
|
return;
|
|
|
|
i915_check_and_clear_faults(dev);
|
|
|
|
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
|
|
dev_priv->gtt.base.start / PAGE_SIZE,
|
|
dev_priv->gtt.base.total / PAGE_SIZE,
|
|
false);
|
|
}
|
|
|
|
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_address_space *vm;
|
|
|
|
i915_check_and_clear_faults(dev);
|
|
|
|
/* First fill our portion of the GTT with scratch pages */
|
|
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
|
|
dev_priv->gtt.base.start / PAGE_SIZE,
|
|
dev_priv->gtt.base.total / PAGE_SIZE,
|
|
true);
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
struct i915_vma *vma = i915_gem_obj_to_vma(obj,
|
|
&dev_priv->gtt.base);
|
|
if (!vma)
|
|
continue;
|
|
|
|
i915_gem_clflush_object(obj, obj->pin_display);
|
|
/* The bind_vma code tries to be smart about tracking mappings.
|
|
* Unfortunately above, we've just wiped out the mappings
|
|
* without telling our object about it. So we need to fake it.
|
|
*/
|
|
obj->has_global_gtt_mapping = 0;
|
|
vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
|
|
}
|
|
|
|
|
|
if (INTEL_INFO(dev)->gen >= 8)
|
|
return;
|
|
|
|
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
|
|
/* TODO: Perhaps it shouldn't be gen6 specific */
|
|
if (i915_is_ggtt(vm)) {
|
|
if (dev_priv->mm.aliasing_ppgtt)
|
|
gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
|
|
continue;
|
|
}
|
|
|
|
gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
|
|
}
|
|
|
|
i915_gem_chipset_flush(dev);
|
|
}
|
|
|
|
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->has_dma_mapping)
|
|
return 0;
|
|
|
|
if (!dma_map_sg(&obj->base.dev->pdev->dev,
|
|
obj->pages->sgl, obj->pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL))
|
|
return -ENOSPC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
|
|
{
|
|
#ifdef writeq
|
|
writeq(pte, addr);
|
|
#else
|
|
iowrite32((u32)pte, addr);
|
|
iowrite32(pte >> 32, addr + 4);
|
|
#endif
|
|
}
|
|
|
|
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *st,
|
|
unsigned int first_entry,
|
|
enum i915_cache_level level)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen8_gtt_pte_t __iomem *gtt_entries =
|
|
(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
|
|
int i = 0;
|
|
struct sg_page_iter sg_iter;
|
|
dma_addr_t addr;
|
|
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
|
|
addr = sg_dma_address(sg_iter.sg) +
|
|
(sg_iter.sg_pgoffset << PAGE_SHIFT);
|
|
gen8_set_pte(>t_entries[i],
|
|
gen8_pte_encode(addr, level, true));
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* XXX: This serves as a posting read to make sure that the PTE has
|
|
* actually been updated. There is some concern that even though
|
|
* registers and PTEs are within the same BAR that they are potentially
|
|
* of NUMA access patterns. Therefore, even with the way we assume
|
|
* hardware should work, we must keep this posting read for paranoia.
|
|
*/
|
|
if (i != 0)
|
|
WARN_ON(readq(>t_entries[i-1])
|
|
!= gen8_pte_encode(addr, level, true));
|
|
|
|
#if 0 /* TODO: Still needed on GEN8? */
|
|
/* This next bit makes the above posting read even more important. We
|
|
* want to flush the TLBs only after we're certain all the PTE updates
|
|
* have finished.
|
|
*/
|
|
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Binds an object into the global gtt with the specified cache level. The object
|
|
* will be accessible to the GPU via commands whose operands reference offsets
|
|
* within the global GTT as well as accessible by the GPU through the GMADR
|
|
* mapped BAR (dev_priv->mm.gtt->gtt).
|
|
*/
|
|
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *st,
|
|
unsigned int first_entry,
|
|
enum i915_cache_level level)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen6_gtt_pte_t __iomem *gtt_entries =
|
|
(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
|
|
int i = 0;
|
|
struct sg_page_iter sg_iter;
|
|
dma_addr_t addr;
|
|
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
|
|
addr = sg_page_iter_dma_address(&sg_iter);
|
|
iowrite32(vm->pte_encode(addr, level, true), >t_entries[i]);
|
|
i++;
|
|
}
|
|
|
|
/* XXX: This serves as a posting read to make sure that the PTE has
|
|
* actually been updated. There is some concern that even though
|
|
* registers and PTEs are within the same BAR that they are potentially
|
|
* of NUMA access patterns. Therefore, even with the way we assume
|
|
* hardware should work, we must keep this posting read for paranoia.
|
|
*/
|
|
if (i != 0)
|
|
WARN_ON(readl(>t_entries[i-1]) !=
|
|
vm->pte_encode(addr, level, true));
|
|
|
|
/* This next bit makes the above posting read even more important. We
|
|
* want to flush the TLBs only after we're certain all the PTE updates
|
|
* have finished.
|
|
*/
|
|
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
}
|
|
|
|
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
|
|
unsigned int first_entry,
|
|
unsigned int num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
|
|
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = gen8_pte_encode(vm->scratch.addr,
|
|
I915_CACHE_LLC,
|
|
use_scratch);
|
|
for (i = 0; i < num_entries; i++)
|
|
gen8_set_pte(>t_base[i], scratch_pte);
|
|
readl(gtt_base);
|
|
}
|
|
|
|
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
|
|
unsigned int first_entry,
|
|
unsigned int num_entries,
|
|
bool use_scratch)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
|
|
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
|
|
|
|
for (i = 0; i < num_entries; i++)
|
|
iowrite32(scratch_pte, >t_base[i]);
|
|
readl(gtt_base);
|
|
}
|
|
|
|
|
|
static void i915_ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
|
|
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
|
|
|
|
BUG_ON(!i915_is_ggtt(vma->vm));
|
|
intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
|
|
vma->obj->has_global_gtt_mapping = 1;
|
|
}
|
|
|
|
static void i915_ggtt_clear_range(struct i915_address_space *vm,
|
|
unsigned int first_entry,
|
|
unsigned int num_entries,
|
|
bool unused)
|
|
{
|
|
intel_gtt_clear_range(first_entry, num_entries);
|
|
}
|
|
|
|
static void i915_ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
const unsigned int first = vma->node.start >> PAGE_SHIFT;
|
|
const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
|
|
|
|
BUG_ON(!i915_is_ggtt(vma->vm));
|
|
vma->obj->has_global_gtt_mapping = 0;
|
|
intel_gtt_clear_range(first, size);
|
|
}
|
|
|
|
static void ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct drm_device *dev = vma->vm->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
/* If there is no aliasing PPGTT, or the caller needs a global mapping,
|
|
* or we have a global mapping already but the cacheability flags have
|
|
* changed, set the global PTEs.
|
|
*
|
|
* If there is an aliasing PPGTT it is anecdotally faster, so use that
|
|
* instead if none of the above hold true.
|
|
*
|
|
* NB: A global mapping should only be needed for special regions like
|
|
* "gtt mappable", SNB errata, or if specified via special execbuf
|
|
* flags. At all other times, the GPU will use the aliasing PPGTT.
|
|
*/
|
|
if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
|
|
if (!obj->has_global_gtt_mapping ||
|
|
(cache_level != obj->cache_level)) {
|
|
vma->vm->insert_entries(vma->vm, obj->pages, entry,
|
|
cache_level);
|
|
obj->has_global_gtt_mapping = 1;
|
|
}
|
|
}
|
|
|
|
if (dev_priv->mm.aliasing_ppgtt &&
|
|
(!obj->has_aliasing_ppgtt_mapping ||
|
|
(cache_level != obj->cache_level))) {
|
|
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
|
|
appgtt->base.insert_entries(&appgtt->base,
|
|
vma->obj->pages, entry, cache_level);
|
|
vma->obj->has_aliasing_ppgtt_mapping = 1;
|
|
}
|
|
}
|
|
|
|
static void ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
struct drm_device *dev = vma->vm->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
|
|
if (obj->has_global_gtt_mapping) {
|
|
vma->vm->clear_range(vma->vm, entry,
|
|
vma->obj->base.size >> PAGE_SHIFT,
|
|
true);
|
|
obj->has_global_gtt_mapping = 0;
|
|
}
|
|
|
|
if (obj->has_aliasing_ppgtt_mapping) {
|
|
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
|
|
appgtt->base.clear_range(&appgtt->base,
|
|
entry,
|
|
obj->base.size >> PAGE_SHIFT,
|
|
true);
|
|
obj->has_aliasing_ppgtt_mapping = 0;
|
|
}
|
|
}
|
|
|
|
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool interruptible;
|
|
|
|
interruptible = do_idling(dev_priv);
|
|
|
|
if (!obj->has_dma_mapping)
|
|
dma_unmap_sg(&dev->pdev->dev,
|
|
obj->pages->sgl, obj->pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
undo_idling(dev_priv, interruptible);
|
|
}
|
|
|
|
static void i915_gtt_color_adjust(struct drm_mm_node *node,
|
|
unsigned long color,
|
|
unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
if (node->color != color)
|
|
*start += 4096;
|
|
|
|
if (!list_empty(&node->node_list)) {
|
|
node = list_entry(node->node_list.next,
|
|
struct drm_mm_node,
|
|
node_list);
|
|
if (node->allocated && node->color != color)
|
|
*end -= 4096;
|
|
}
|
|
}
|
|
|
|
void i915_gem_setup_global_gtt(struct drm_device *dev,
|
|
unsigned long start,
|
|
unsigned long mappable_end,
|
|
unsigned long end)
|
|
{
|
|
/* Let GEM Manage all of the aperture.
|
|
*
|
|
* However, leave one page at the end still bound to the scratch page.
|
|
* There are a number of places where the hardware apparently prefetches
|
|
* past the end of the object, and we've seen multiple hangs with the
|
|
* GPU head pointer stuck in a batchbuffer bound at the last page of the
|
|
* aperture. One page should be enough to keep any prefetching inside
|
|
* of the aperture.
|
|
*/
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
|
|
struct drm_mm_node *entry;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long hole_start, hole_end;
|
|
|
|
BUG_ON(mappable_end > end);
|
|
|
|
/* Subtract the guard page ... */
|
|
drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
|
|
if (!HAS_LLC(dev))
|
|
dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
|
|
|
|
/* Mark any preallocated objects as occupied */
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
|
|
int ret;
|
|
DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
|
|
i915_gem_obj_ggtt_offset(obj), obj->base.size);
|
|
|
|
WARN_ON(i915_gem_obj_ggtt_bound(obj));
|
|
ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("Reservation failed\n");
|
|
obj->has_global_gtt_mapping = 1;
|
|
}
|
|
|
|
dev_priv->gtt.base.start = start;
|
|
dev_priv->gtt.base.total = end - start;
|
|
|
|
/* Clear any non-preallocated blocks */
|
|
drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
|
|
const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
|
|
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
|
|
hole_start, hole_end);
|
|
ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
|
|
}
|
|
|
|
/* And finally clear the reserved guard page */
|
|
ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
|
|
}
|
|
|
|
void i915_gem_init_global_gtt(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long gtt_size, mappable_size;
|
|
|
|
gtt_size = dev_priv->gtt.base.total;
|
|
mappable_size = dev_priv->gtt.mappable_end;
|
|
|
|
i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
|
|
}
|
|
|
|
static int setup_scratch_page(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct page *page;
|
|
dma_addr_t dma_addr;
|
|
|
|
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
|
|
if (page == NULL)
|
|
return -ENOMEM;
|
|
get_page(page);
|
|
set_pages_uc(page, 1);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
if (pci_dma_mapping_error(dev->pdev, dma_addr))
|
|
return -EINVAL;
|
|
#else
|
|
dma_addr = page_to_phys(page);
|
|
#endif
|
|
dev_priv->gtt.base.scratch.page = page;
|
|
dev_priv->gtt.base.scratch.addr = dma_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void teardown_scratch_page(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct page *page = dev_priv->gtt.base.scratch.page;
|
|
|
|
set_pages_wb(page, 1);
|
|
pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
put_page(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
|
|
return snb_gmch_ctl << 20;
|
|
}
|
|
|
|
static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
|
|
if (bdw_gmch_ctl)
|
|
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
|
|
if (bdw_gmch_ctl > 4) {
|
|
WARN_ON(!i915_preliminary_hw_support);
|
|
return 4<<20;
|
|
}
|
|
|
|
return bdw_gmch_ctl << 20;
|
|
}
|
|
|
|
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
|
|
return snb_gmch_ctl << 25; /* 32 MB units */
|
|
}
|
|
|
|
static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
|
|
return bdw_gmch_ctl << 25; /* 32 MB units */
|
|
}
|
|
|
|
static int ggtt_probe_common(struct drm_device *dev,
|
|
size_t gtt_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
phys_addr_t gtt_bus_addr;
|
|
int ret;
|
|
|
|
/* For Modern GENs the PTEs and register space are split in the BAR */
|
|
gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
|
|
(pci_resource_len(dev->pdev, 0) / 2);
|
|
|
|
dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
|
|
if (!dev_priv->gtt.gsm) {
|
|
DRM_ERROR("Failed to map the gtt page table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = setup_scratch_page(dev);
|
|
if (ret) {
|
|
DRM_ERROR("Scratch setup failed\n");
|
|
/* iounmap will also get called at remove, but meh */
|
|
iounmap(dev_priv->gtt.gsm);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
|
|
* bits. When using advanced contexts each context stores its own PAT, but
|
|
* writing this data shouldn't be harmful even in those cases. */
|
|
static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
|
|
{
|
|
#define GEN8_PPAT_UC (0<<0)
|
|
#define GEN8_PPAT_WC (1<<0)
|
|
#define GEN8_PPAT_WT (2<<0)
|
|
#define GEN8_PPAT_WB (3<<0)
|
|
#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
|
|
/* FIXME(BDW): Bspec is completely confused about cache control bits. */
|
|
#define GEN8_PPAT_LLC (1<<2)
|
|
#define GEN8_PPAT_LLCELLC (2<<2)
|
|
#define GEN8_PPAT_LLCeLLC (3<<2)
|
|
#define GEN8_PPAT_AGE(x) (x<<4)
|
|
#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
|
|
uint64_t pat;
|
|
|
|
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
|
|
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
|
|
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
|
|
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
|
|
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
|
|
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
|
|
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
|
|
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
|
|
/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
|
|
* write would work. */
|
|
I915_WRITE(GEN8_PRIVATE_PAT, pat);
|
|
I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
|
|
}
|
|
|
|
static int gen8_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned int gtt_size;
|
|
u16 snb_gmch_ctl;
|
|
int ret;
|
|
|
|
/* TODO: We're not aware of mappable constraints on gen8 yet */
|
|
*mappable_base = pci_resource_start(dev->pdev, 2);
|
|
*mappable_end = pci_resource_len(dev->pdev, 2);
|
|
|
|
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
|
|
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
|
|
|
|
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
*stolen = gen8_get_stolen_size(snb_gmch_ctl);
|
|
|
|
gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
|
|
*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
|
|
|
|
gen8_setup_private_ppat(dev_priv);
|
|
|
|
ret = ggtt_probe_common(dev, gtt_size);
|
|
|
|
dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
|
|
dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gen6_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned int gtt_size;
|
|
u16 snb_gmch_ctl;
|
|
int ret;
|
|
|
|
*mappable_base = pci_resource_start(dev->pdev, 2);
|
|
*mappable_end = pci_resource_len(dev->pdev, 2);
|
|
|
|
/* 64/512MB is the current min/max we actually know of, but this is just
|
|
* a coarse sanity check.
|
|
*/
|
|
if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
|
|
DRM_ERROR("Unknown GMADR size (%lx)\n",
|
|
dev_priv->gtt.mappable_end);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
|
|
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
|
|
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
*stolen = gen6_get_stolen_size(snb_gmch_ctl);
|
|
|
|
gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
|
|
*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
|
|
|
|
ret = ggtt_probe_common(dev, gtt_size);
|
|
|
|
dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
|
|
dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gen6_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
|
|
struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
|
|
|
|
drm_mm_takedown(&vm->mm);
|
|
iounmap(gtt->gsm);
|
|
teardown_scratch_page(vm->dev);
|
|
}
|
|
|
|
static int i915_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
|
|
if (!ret) {
|
|
DRM_ERROR("failed to set up gmch\n");
|
|
return -EIO;
|
|
}
|
|
|
|
intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
|
|
|
|
dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
|
|
dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
intel_gmch_remove();
|
|
}
|
|
|
|
int i915_gem_gtt_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_gtt *gtt = &dev_priv->gtt;
|
|
int ret;
|
|
|
|
if (INTEL_INFO(dev)->gen <= 5) {
|
|
gtt->gtt_probe = i915_gmch_probe;
|
|
gtt->base.cleanup = i915_gmch_remove;
|
|
} else if (INTEL_INFO(dev)->gen < 8) {
|
|
gtt->gtt_probe = gen6_gmch_probe;
|
|
gtt->base.cleanup = gen6_gmch_remove;
|
|
if (IS_HASWELL(dev) && dev_priv->ellc_size)
|
|
gtt->base.pte_encode = iris_pte_encode;
|
|
else if (IS_HASWELL(dev))
|
|
gtt->base.pte_encode = hsw_pte_encode;
|
|
else if (IS_VALLEYVIEW(dev))
|
|
gtt->base.pte_encode = byt_pte_encode;
|
|
else if (INTEL_INFO(dev)->gen >= 7)
|
|
gtt->base.pte_encode = ivb_pte_encode;
|
|
else
|
|
gtt->base.pte_encode = snb_pte_encode;
|
|
} else {
|
|
dev_priv->gtt.gtt_probe = gen8_gmch_probe;
|
|
dev_priv->gtt.base.cleanup = gen6_gmch_remove;
|
|
}
|
|
|
|
ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
|
|
>t->mappable_base, >t->mappable_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gtt->base.dev = dev;
|
|
|
|
/* GMADR is the PCI mmio aperture into the global GTT. */
|
|
DRM_INFO("Memory usable by graphics device = %zdM\n",
|
|
gtt->base.total >> 20);
|
|
DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
|
|
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
|
|
if (vma == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&vma->vma_link);
|
|
INIT_LIST_HEAD(&vma->mm_list);
|
|
INIT_LIST_HEAD(&vma->exec_list);
|
|
vma->vm = vm;
|
|
vma->obj = obj;
|
|
|
|
switch (INTEL_INFO(vm->dev)->gen) {
|
|
case 8:
|
|
case 7:
|
|
case 6:
|
|
if (i915_is_ggtt(vm)) {
|
|
vma->unbind_vma = ggtt_unbind_vma;
|
|
vma->bind_vma = ggtt_bind_vma;
|
|
} else {
|
|
vma->unbind_vma = ppgtt_unbind_vma;
|
|
vma->bind_vma = ppgtt_bind_vma;
|
|
}
|
|
break;
|
|
case 5:
|
|
case 4:
|
|
case 3:
|
|
case 2:
|
|
BUG_ON(!i915_is_ggtt(vm));
|
|
vma->unbind_vma = i915_ggtt_unbind_vma;
|
|
vma->bind_vma = i915_ggtt_bind_vma;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
/* Keep GGTT vmas first to make debug easier */
|
|
if (i915_is_ggtt(vm))
|
|
list_add(&vma->vma_link, &obj->vma_list);
|
|
else
|
|
list_add_tail(&vma->vma_link, &obj->vma_list);
|
|
|
|
return vma;
|
|
}
|
|
|
|
struct i915_vma *
|
|
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
vma = i915_gem_obj_to_vma(obj, vm);
|
|
if (!vma)
|
|
vma = __i915_gem_vma_create(obj, vm);
|
|
|
|
return vma;
|
|
}
|