linux_dsm_epyc7002/arch/powerpc/mm/init_64.c
Aneesh Kumar K.V b8f1b4f860 powerpc/mm: Convert early cpu/mmu feature check to use the new helpers
This switches early feature checks to use the non static key variant of
the function. In later patches we will be switching cpu_has_feature()
and mmu_has_feature() to use static keys and we can use them only after
static key/jump label is initialized. Any check for feature before jump
label init should be done using this new helper.

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-08-01 11:15:01 +10:00

436 lines
11 KiB
C

/*
* PowerPC version
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* Dave Engebretsen <engebret@us.ibm.com>
* Rework for PPC64 port.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#undef DEBUG
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/stddef.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/idr.h>
#include <linux/nodemask.h>
#include <linux/module.h>
#include <linux/poison.h>
#include <linux/memblock.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/mmu.h>
#include <asm/uaccess.h>
#include <asm/smp.h>
#include <asm/machdep.h>
#include <asm/tlb.h>
#include <asm/eeh.h>
#include <asm/processor.h>
#include <asm/mmzone.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/iommu.h>
#include <asm/vdso.h>
#include "mmu_decl.h"
#ifdef CONFIG_PPC_STD_MMU_64
#if H_PGTABLE_RANGE > USER_VSID_RANGE
#warning Limited user VSID range means pagetable space is wasted
#endif
#if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
#warning TASK_SIZE is smaller than it needs to be.
#endif
#endif /* CONFIG_PPC_STD_MMU_64 */
phys_addr_t memstart_addr = ~0;
EXPORT_SYMBOL_GPL(memstart_addr);
phys_addr_t kernstart_addr;
EXPORT_SYMBOL_GPL(kernstart_addr);
static void pgd_ctor(void *addr)
{
memset(addr, 0, PGD_TABLE_SIZE);
}
static void pud_ctor(void *addr)
{
memset(addr, 0, PUD_TABLE_SIZE);
}
static void pmd_ctor(void *addr)
{
memset(addr, 0, PMD_TABLE_SIZE);
}
struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
/*
* Create a kmem_cache() for pagetables. This is not used for PTE
* pages - they're linked to struct page, come from the normal free
* pages pool and have a different entry size (see real_pte_t) to
* everything else. Caches created by this function are used for all
* the higher level pagetables, and for hugepage pagetables.
*/
void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
{
char *name;
unsigned long table_size = sizeof(void *) << shift;
unsigned long align = table_size;
/* When batching pgtable pointers for RCU freeing, we store
* the index size in the low bits. Table alignment must be
* big enough to fit it.
*
* Likewise, hugeapge pagetable pointers contain a (different)
* shift value in the low bits. All tables must be aligned so
* as to leave enough 0 bits in the address to contain it. */
unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
HUGEPD_SHIFT_MASK + 1);
struct kmem_cache *new;
/* It would be nice if this was a BUILD_BUG_ON(), but at the
* moment, gcc doesn't seem to recognize is_power_of_2 as a
* constant expression, so so much for that. */
BUG_ON(!is_power_of_2(minalign));
BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
if (PGT_CACHE(shift))
return; /* Already have a cache of this size */
align = max_t(unsigned long, align, minalign);
name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
new = kmem_cache_create(name, table_size, align, 0, ctor);
kfree(name);
pgtable_cache[shift - 1] = new;
pr_debug("Allocated pgtable cache for order %d\n", shift);
}
void pgtable_cache_init(void)
{
pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
/*
* In all current configs, when the PUD index exists it's the
* same size as either the pgd or pmd index except with THP enabled
* on book3s 64
*/
if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
panic("Couldn't allocate pgtable caches");
if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
panic("Couldn't allocate pud pgtable caches");
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Given an address within the vmemmap, determine the pfn of the page that
* represents the start of the section it is within. Note that we have to
* do this by hand as the proffered address may not be correctly aligned.
* Subtraction of non-aligned pointers produces undefined results.
*/
static unsigned long __meminit vmemmap_section_start(unsigned long page)
{
unsigned long offset = page - ((unsigned long)(vmemmap));
/* Return the pfn of the start of the section. */
return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
}
/*
* Check if this vmemmap page is already initialised. If any section
* which overlaps this vmemmap page is initialised then this page is
* initialised already.
*/
static int __meminit vmemmap_populated(unsigned long start, int page_size)
{
unsigned long end = start + page_size;
start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
if (pfn_valid(page_to_pfn((struct page *)start)))
return 1;
return 0;
}
struct vmemmap_backing *vmemmap_list;
static struct vmemmap_backing *next;
static int num_left;
static int num_freed;
static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
{
struct vmemmap_backing *vmem_back;
/* get from freed entries first */
if (num_freed) {
num_freed--;
vmem_back = next;
next = next->list;
return vmem_back;
}
/* allocate a page when required and hand out chunks */
if (!num_left) {
next = vmemmap_alloc_block(PAGE_SIZE, node);
if (unlikely(!next)) {
WARN_ON(1);
return NULL;
}
num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
}
num_left--;
return next++;
}
static __meminit void vmemmap_list_populate(unsigned long phys,
unsigned long start,
int node)
{
struct vmemmap_backing *vmem_back;
vmem_back = vmemmap_list_alloc(node);
if (unlikely(!vmem_back)) {
WARN_ON(1);
return;
}
vmem_back->phys = phys;
vmem_back->virt_addr = start;
vmem_back->list = vmemmap_list;
vmemmap_list = vmem_back;
}
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
/* Align to the page size of the linear mapping. */
start = _ALIGN_DOWN(start, page_size);
pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
for (; start < end; start += page_size) {
void *p;
int rc;
if (vmemmap_populated(start, page_size))
continue;
p = vmemmap_alloc_block(page_size, node);
if (!p)
return -ENOMEM;
vmemmap_list_populate(__pa(p), start, node);
pr_debug(" * %016lx..%016lx allocated at %p\n",
start, start + page_size, p);
rc = vmemmap_create_mapping(start, page_size, __pa(p));
if (rc < 0) {
pr_warning(
"vmemmap_populate: Unable to create vmemmap mapping: %d\n",
rc);
return -EFAULT;
}
}
return 0;
}
#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long vmemmap_list_free(unsigned long start)
{
struct vmemmap_backing *vmem_back, *vmem_back_prev;
vmem_back_prev = vmem_back = vmemmap_list;
/* look for it with prev pointer recorded */
for (; vmem_back; vmem_back = vmem_back->list) {
if (vmem_back->virt_addr == start)
break;
vmem_back_prev = vmem_back;
}
if (unlikely(!vmem_back)) {
WARN_ON(1);
return 0;
}
/* remove it from vmemmap_list */
if (vmem_back == vmemmap_list) /* remove head */
vmemmap_list = vmem_back->list;
else
vmem_back_prev->list = vmem_back->list;
/* next point to this freed entry */
vmem_back->list = next;
next = vmem_back;
num_freed++;
return vmem_back->phys;
}
void __ref vmemmap_free(unsigned long start, unsigned long end)
{
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
start = _ALIGN_DOWN(start, page_size);
pr_debug("vmemmap_free %lx...%lx\n", start, end);
for (; start < end; start += page_size) {
unsigned long addr;
/*
* the section has already be marked as invalid, so
* vmemmap_populated() true means some other sections still
* in this page, so skip it.
*/
if (vmemmap_populated(start, page_size))
continue;
addr = vmemmap_list_free(start);
if (addr) {
struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
if (PageReserved(page)) {
/* allocated from bootmem */
if (page_size < PAGE_SIZE) {
/*
* this shouldn't happen, but if it is
* the case, leave the memory there
*/
WARN_ON_ONCE(1);
} else {
unsigned int nr_pages =
1 << get_order(page_size);
while (nr_pages--)
free_reserved_page(page++);
}
} else
free_pages((unsigned long)(__va(addr)),
get_order(page_size));
vmemmap_remove_mapping(start, page_size);
}
}
}
#endif
void register_page_bootmem_memmap(unsigned long section_nr,
struct page *start_page, unsigned long size)
{
}
/*
* We do not have access to the sparsemem vmemmap, so we fallback to
* walking the list of sparsemem blocks which we already maintain for
* the sake of crashdump. In the long run, we might want to maintain
* a tree if performance of that linear walk becomes a problem.
*
* realmode_pfn_to_page functions can fail due to:
* 1) As real sparsemem blocks do not lay in RAM continously (they
* are in virtual address space which is not available in the real mode),
* the requested page struct can be split between blocks so get_page/put_page
* may fail.
* 2) When huge pages are used, the get_page/put_page API will fail
* in real mode as the linked addresses in the page struct are virtual
* too.
*/
struct page *realmode_pfn_to_page(unsigned long pfn)
{
struct vmemmap_backing *vmem_back;
struct page *page;
unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
if (pg_va < vmem_back->virt_addr)
continue;
/* After vmemmap_list entry free is possible, need check all */
if ((pg_va + sizeof(struct page)) <=
(vmem_back->virt_addr + page_size)) {
page = (struct page *) (vmem_back->phys + pg_va -
vmem_back->virt_addr);
return page;
}
}
/* Probably that page struct is split between real pages */
return NULL;
}
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
#elif defined(CONFIG_FLATMEM)
struct page *realmode_pfn_to_page(unsigned long pfn)
{
struct page *page = pfn_to_page(pfn);
return page;
}
EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
#endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
#ifdef CONFIG_PPC_STD_MMU_64
static bool disable_radix;
static int __init parse_disable_radix(char *p)
{
disable_radix = true;
return 0;
}
early_param("disable_radix", parse_disable_radix);
void __init mmu_early_init_devtree(void)
{
/* Disable radix mode based on kernel command line. */
if (disable_radix)
cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
if (early_radix_enabled())
radix__early_init_devtree();
else
hash__early_init_devtree();
}
#endif /* CONFIG_PPC_STD_MMU_64 */