linux_dsm_epyc7002/include/linux/sched/mm.h
Peter Zijlstra bf2c59fce4 sched/core: Fix illegal RCU from offline CPUs
In the CPU-offline process, it calls mmdrop() after idle entry and the
subsequent call to cpuhp_report_idle_dead(). Once execution passes the
call to rcu_report_dead(), RCU is ignoring the CPU, which results in
lockdep complaining when mmdrop() uses RCU from either memcg or
debugobjects below.

Fix it by cleaning up the active_mm state from BP instead. Every arch
which has CONFIG_HOTPLUG_CPU should have already called idle_task_exit()
from AP. The only exception is parisc because it switches them to
&init_mm unconditionally (see smp_boot_one_cpu() and smp_cpu_init()),
but the patch will still work there because it calls mmgrab(&init_mm) in
smp_cpu_init() and then should call mmdrop(&init_mm) in finish_cpu().

  WARNING: suspicious RCU usage
  -----------------------------
  kernel/workqueue.c:710 RCU or wq_pool_mutex should be held!

  other info that might help us debug this:

  RCU used illegally from offline CPU!
  Call Trace:
   dump_stack+0xf4/0x164 (unreliable)
   lockdep_rcu_suspicious+0x140/0x164
   get_work_pool+0x110/0x150
   __queue_work+0x1bc/0xca0
   queue_work_on+0x114/0x120
   css_release+0x9c/0xc0
   percpu_ref_put_many+0x204/0x230
   free_pcp_prepare+0x264/0x570
   free_unref_page+0x38/0xf0
   __mmdrop+0x21c/0x2c0
   idle_task_exit+0x170/0x1b0
   pnv_smp_cpu_kill_self+0x38/0x2e0
   cpu_die+0x48/0x64
   arch_cpu_idle_dead+0x30/0x50
   do_idle+0x2f4/0x470
   cpu_startup_entry+0x38/0x40
   start_secondary+0x7a8/0xa80
   start_secondary_resume+0x10/0x14

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Link: https://lkml.kernel.org/r/20200401214033.8448-1-cai@lca.pw
2020-04-30 20:14:41 +02:00

396 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_SCHED_MM_H
#define _LINUX_SCHED_MM_H
#include <linux/kernel.h>
#include <linux/atomic.h>
#include <linux/sched.h>
#include <linux/mm_types.h>
#include <linux/gfp.h>
#include <linux/sync_core.h>
/*
* Routines for handling mm_structs
*/
extern struct mm_struct *mm_alloc(void);
/**
* mmgrab() - Pin a &struct mm_struct.
* @mm: The &struct mm_struct to pin.
*
* Make sure that @mm will not get freed even after the owning task
* exits. This doesn't guarantee that the associated address space
* will still exist later on and mmget_not_zero() has to be used before
* accessing it.
*
* This is a preferred way to to pin @mm for a longer/unbounded amount
* of time.
*
* Use mmdrop() to release the reference acquired by mmgrab().
*
* See also <Documentation/vm/active_mm.rst> for an in-depth explanation
* of &mm_struct.mm_count vs &mm_struct.mm_users.
*/
static inline void mmgrab(struct mm_struct *mm)
{
atomic_inc(&mm->mm_count);
}
extern void __mmdrop(struct mm_struct *mm);
static inline void mmdrop(struct mm_struct *mm)
{
/*
* The implicit full barrier implied by atomic_dec_and_test() is
* required by the membarrier system call before returning to
* user-space, after storing to rq->curr.
*/
if (unlikely(atomic_dec_and_test(&mm->mm_count)))
__mmdrop(mm);
}
void mmdrop(struct mm_struct *mm);
/*
* This has to be called after a get_task_mm()/mmget_not_zero()
* followed by taking the mmap_sem for writing before modifying the
* vmas or anything the coredump pretends not to change from under it.
*
* It also has to be called when mmgrab() is used in the context of
* the process, but then the mm_count refcount is transferred outside
* the context of the process to run down_write() on that pinned mm.
*
* NOTE: find_extend_vma() called from GUP context is the only place
* that can modify the "mm" (notably the vm_start/end) under mmap_sem
* for reading and outside the context of the process, so it is also
* the only case that holds the mmap_sem for reading that must call
* this function. Generally if the mmap_sem is hold for reading
* there's no need of this check after get_task_mm()/mmget_not_zero().
*
* This function can be obsoleted and the check can be removed, after
* the coredump code will hold the mmap_sem for writing before
* invoking the ->core_dump methods.
*/
static inline bool mmget_still_valid(struct mm_struct *mm)
{
return likely(!mm->core_state);
}
/**
* mmget() - Pin the address space associated with a &struct mm_struct.
* @mm: The address space to pin.
*
* Make sure that the address space of the given &struct mm_struct doesn't
* go away. This does not protect against parts of the address space being
* modified or freed, however.
*
* Never use this function to pin this address space for an
* unbounded/indefinite amount of time.
*
* Use mmput() to release the reference acquired by mmget().
*
* See also <Documentation/vm/active_mm.rst> for an in-depth explanation
* of &mm_struct.mm_count vs &mm_struct.mm_users.
*/
static inline void mmget(struct mm_struct *mm)
{
atomic_inc(&mm->mm_users);
}
static inline bool mmget_not_zero(struct mm_struct *mm)
{
return atomic_inc_not_zero(&mm->mm_users);
}
/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
#ifdef CONFIG_MMU
/* same as above but performs the slow path from the async context. Can
* be called from the atomic context as well
*/
void mmput_async(struct mm_struct *);
#endif
/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/*
* Grab a reference to a task's mm, if it is not already going away
* and ptrace_may_access with the mode parameter passed to it
* succeeds.
*/
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
/* Remove the current tasks stale references to the old mm_struct on exit() */
extern void exit_mm_release(struct task_struct *, struct mm_struct *);
/* Remove the current tasks stale references to the old mm_struct on exec() */
extern void exec_mm_release(struct task_struct *, struct mm_struct *);
#ifdef CONFIG_MEMCG
extern void mm_update_next_owner(struct mm_struct *mm);
#else
static inline void mm_update_next_owner(struct mm_struct *mm)
{
}
#endif /* CONFIG_MEMCG */
#ifdef CONFIG_MMU
extern void arch_pick_mmap_layout(struct mm_struct *mm,
struct rlimit *rlim_stack);
extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
#else
static inline void arch_pick_mmap_layout(struct mm_struct *mm,
struct rlimit *rlim_stack) {}
#endif
static inline bool in_vfork(struct task_struct *tsk)
{
bool ret;
/*
* need RCU to access ->real_parent if CLONE_VM was used along with
* CLONE_PARENT.
*
* We check real_parent->mm == tsk->mm because CLONE_VFORK does not
* imply CLONE_VM
*
* CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
* ->real_parent is not necessarily the task doing vfork(), so in
* theory we can't rely on task_lock() if we want to dereference it.
*
* And in this case we can't trust the real_parent->mm == tsk->mm
* check, it can be false negative. But we do not care, if init or
* another oom-unkillable task does this it should blame itself.
*/
rcu_read_lock();
ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
rcu_read_unlock();
return ret;
}
/*
* Applies per-task gfp context to the given allocation flags.
* PF_MEMALLOC_NOIO implies GFP_NOIO
* PF_MEMALLOC_NOFS implies GFP_NOFS
* PF_MEMALLOC_NOCMA implies no allocation from CMA region.
*/
static inline gfp_t current_gfp_context(gfp_t flags)
{
if (unlikely(current->flags &
(PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
/*
* NOIO implies both NOIO and NOFS and it is a weaker context
* so always make sure it makes precedence
*/
if (current->flags & PF_MEMALLOC_NOIO)
flags &= ~(__GFP_IO | __GFP_FS);
else if (current->flags & PF_MEMALLOC_NOFS)
flags &= ~__GFP_FS;
#ifdef CONFIG_CMA
if (current->flags & PF_MEMALLOC_NOCMA)
flags &= ~__GFP_MOVABLE;
#endif
}
return flags;
}
#ifdef CONFIG_LOCKDEP
extern void __fs_reclaim_acquire(void);
extern void __fs_reclaim_release(void);
extern void fs_reclaim_acquire(gfp_t gfp_mask);
extern void fs_reclaim_release(gfp_t gfp_mask);
#else
static inline void __fs_reclaim_acquire(void) { }
static inline void __fs_reclaim_release(void) { }
static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
static inline void fs_reclaim_release(gfp_t gfp_mask) { }
#endif
/**
* memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
*
* This functions marks the beginning of the GFP_NOIO allocation scope.
* All further allocations will implicitly drop __GFP_IO flag and so
* they are safe for the IO critical section from the allocation recursion
* point of view. Use memalloc_noio_restore to end the scope with flags
* returned by this function.
*
* This function is safe to be used from any context.
*/
static inline unsigned int memalloc_noio_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
current->flags |= PF_MEMALLOC_NOIO;
return flags;
}
/**
* memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
* @flags: Flags to restore.
*
* Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
* Always make sure that that the given flags is the return value from the
* pairing memalloc_noio_save call.
*/
static inline void memalloc_noio_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
}
/**
* memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
*
* This functions marks the beginning of the GFP_NOFS allocation scope.
* All further allocations will implicitly drop __GFP_FS flag and so
* they are safe for the FS critical section from the allocation recursion
* point of view. Use memalloc_nofs_restore to end the scope with flags
* returned by this function.
*
* This function is safe to be used from any context.
*/
static inline unsigned int memalloc_nofs_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
current->flags |= PF_MEMALLOC_NOFS;
return flags;
}
/**
* memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
* @flags: Flags to restore.
*
* Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
* Always make sure that that the given flags is the return value from the
* pairing memalloc_nofs_save call.
*/
static inline void memalloc_nofs_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
}
static inline unsigned int memalloc_noreclaim_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC;
current->flags |= PF_MEMALLOC;
return flags;
}
static inline void memalloc_noreclaim_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC) | flags;
}
#ifdef CONFIG_CMA
static inline unsigned int memalloc_nocma_save(void)
{
unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
current->flags |= PF_MEMALLOC_NOCMA;
return flags;
}
static inline void memalloc_nocma_restore(unsigned int flags)
{
current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
}
#else
static inline unsigned int memalloc_nocma_save(void)
{
return 0;
}
static inline void memalloc_nocma_restore(unsigned int flags)
{
}
#endif
#ifdef CONFIG_MEMCG
/**
* memalloc_use_memcg - Starts the remote memcg charging scope.
* @memcg: memcg to charge.
*
* This function marks the beginning of the remote memcg charging scope. All the
* __GFP_ACCOUNT allocations till the end of the scope will be charged to the
* given memcg.
*
* NOTE: This function is not nesting safe.
*/
static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
{
WARN_ON_ONCE(current->active_memcg);
current->active_memcg = memcg;
}
/**
* memalloc_unuse_memcg - Ends the remote memcg charging scope.
*
* This function marks the end of the remote memcg charging scope started by
* memalloc_use_memcg().
*/
static inline void memalloc_unuse_memcg(void)
{
current->active_memcg = NULL;
}
#else
static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
{
}
static inline void memalloc_unuse_memcg(void)
{
}
#endif
#ifdef CONFIG_MEMBARRIER
enum {
MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
};
enum {
MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
};
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
#include <asm/membarrier.h>
#endif
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
{
if (current->mm != mm)
return;
if (likely(!(atomic_read(&mm->membarrier_state) &
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
return;
sync_core_before_usermode();
}
extern void membarrier_exec_mmap(struct mm_struct *mm);
#else
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
struct mm_struct *next,
struct task_struct *tsk)
{
}
#endif
static inline void membarrier_exec_mmap(struct mm_struct *mm)
{
}
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
{
}
#endif
#endif /* _LINUX_SCHED_MM_H */