mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 12:16:11 +07:00
bf2c59fce4
In the CPU-offline process, it calls mmdrop() after idle entry and the subsequent call to cpuhp_report_idle_dead(). Once execution passes the call to rcu_report_dead(), RCU is ignoring the CPU, which results in lockdep complaining when mmdrop() uses RCU from either memcg or debugobjects below. Fix it by cleaning up the active_mm state from BP instead. Every arch which has CONFIG_HOTPLUG_CPU should have already called idle_task_exit() from AP. The only exception is parisc because it switches them to &init_mm unconditionally (see smp_boot_one_cpu() and smp_cpu_init()), but the patch will still work there because it calls mmgrab(&init_mm) in smp_cpu_init() and then should call mmdrop(&init_mm) in finish_cpu(). WARNING: suspicious RCU usage ----------------------------- kernel/workqueue.c:710 RCU or wq_pool_mutex should be held! other info that might help us debug this: RCU used illegally from offline CPU! Call Trace: dump_stack+0xf4/0x164 (unreliable) lockdep_rcu_suspicious+0x140/0x164 get_work_pool+0x110/0x150 __queue_work+0x1bc/0xca0 queue_work_on+0x114/0x120 css_release+0x9c/0xc0 percpu_ref_put_many+0x204/0x230 free_pcp_prepare+0x264/0x570 free_unref_page+0x38/0xf0 __mmdrop+0x21c/0x2c0 idle_task_exit+0x170/0x1b0 pnv_smp_cpu_kill_self+0x38/0x2e0 cpu_die+0x48/0x64 arch_cpu_idle_dead+0x30/0x50 do_idle+0x2f4/0x470 cpu_startup_entry+0x38/0x40 start_secondary+0x7a8/0xa80 start_secondary_resume+0x10/0x14 Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Link: https://lkml.kernel.org/r/20200401214033.8448-1-cai@lca.pw
396 lines
12 KiB
C
396 lines
12 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_SCHED_MM_H
|
|
#define _LINUX_SCHED_MM_H
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sync_core.h>
|
|
|
|
/*
|
|
* Routines for handling mm_structs
|
|
*/
|
|
extern struct mm_struct *mm_alloc(void);
|
|
|
|
/**
|
|
* mmgrab() - Pin a &struct mm_struct.
|
|
* @mm: The &struct mm_struct to pin.
|
|
*
|
|
* Make sure that @mm will not get freed even after the owning task
|
|
* exits. This doesn't guarantee that the associated address space
|
|
* will still exist later on and mmget_not_zero() has to be used before
|
|
* accessing it.
|
|
*
|
|
* This is a preferred way to to pin @mm for a longer/unbounded amount
|
|
* of time.
|
|
*
|
|
* Use mmdrop() to release the reference acquired by mmgrab().
|
|
*
|
|
* See also <Documentation/vm/active_mm.rst> for an in-depth explanation
|
|
* of &mm_struct.mm_count vs &mm_struct.mm_users.
|
|
*/
|
|
static inline void mmgrab(struct mm_struct *mm)
|
|
{
|
|
atomic_inc(&mm->mm_count);
|
|
}
|
|
|
|
extern void __mmdrop(struct mm_struct *mm);
|
|
|
|
static inline void mmdrop(struct mm_struct *mm)
|
|
{
|
|
/*
|
|
* The implicit full barrier implied by atomic_dec_and_test() is
|
|
* required by the membarrier system call before returning to
|
|
* user-space, after storing to rq->curr.
|
|
*/
|
|
if (unlikely(atomic_dec_and_test(&mm->mm_count)))
|
|
__mmdrop(mm);
|
|
}
|
|
|
|
void mmdrop(struct mm_struct *mm);
|
|
|
|
/*
|
|
* This has to be called after a get_task_mm()/mmget_not_zero()
|
|
* followed by taking the mmap_sem for writing before modifying the
|
|
* vmas or anything the coredump pretends not to change from under it.
|
|
*
|
|
* It also has to be called when mmgrab() is used in the context of
|
|
* the process, but then the mm_count refcount is transferred outside
|
|
* the context of the process to run down_write() on that pinned mm.
|
|
*
|
|
* NOTE: find_extend_vma() called from GUP context is the only place
|
|
* that can modify the "mm" (notably the vm_start/end) under mmap_sem
|
|
* for reading and outside the context of the process, so it is also
|
|
* the only case that holds the mmap_sem for reading that must call
|
|
* this function. Generally if the mmap_sem is hold for reading
|
|
* there's no need of this check after get_task_mm()/mmget_not_zero().
|
|
*
|
|
* This function can be obsoleted and the check can be removed, after
|
|
* the coredump code will hold the mmap_sem for writing before
|
|
* invoking the ->core_dump methods.
|
|
*/
|
|
static inline bool mmget_still_valid(struct mm_struct *mm)
|
|
{
|
|
return likely(!mm->core_state);
|
|
}
|
|
|
|
/**
|
|
* mmget() - Pin the address space associated with a &struct mm_struct.
|
|
* @mm: The address space to pin.
|
|
*
|
|
* Make sure that the address space of the given &struct mm_struct doesn't
|
|
* go away. This does not protect against parts of the address space being
|
|
* modified or freed, however.
|
|
*
|
|
* Never use this function to pin this address space for an
|
|
* unbounded/indefinite amount of time.
|
|
*
|
|
* Use mmput() to release the reference acquired by mmget().
|
|
*
|
|
* See also <Documentation/vm/active_mm.rst> for an in-depth explanation
|
|
* of &mm_struct.mm_count vs &mm_struct.mm_users.
|
|
*/
|
|
static inline void mmget(struct mm_struct *mm)
|
|
{
|
|
atomic_inc(&mm->mm_users);
|
|
}
|
|
|
|
static inline bool mmget_not_zero(struct mm_struct *mm)
|
|
{
|
|
return atomic_inc_not_zero(&mm->mm_users);
|
|
}
|
|
|
|
/* mmput gets rid of the mappings and all user-space */
|
|
extern void mmput(struct mm_struct *);
|
|
#ifdef CONFIG_MMU
|
|
/* same as above but performs the slow path from the async context. Can
|
|
* be called from the atomic context as well
|
|
*/
|
|
void mmput_async(struct mm_struct *);
|
|
#endif
|
|
|
|
/* Grab a reference to a task's mm, if it is not already going away */
|
|
extern struct mm_struct *get_task_mm(struct task_struct *task);
|
|
/*
|
|
* Grab a reference to a task's mm, if it is not already going away
|
|
* and ptrace_may_access with the mode parameter passed to it
|
|
* succeeds.
|
|
*/
|
|
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
|
|
/* Remove the current tasks stale references to the old mm_struct on exit() */
|
|
extern void exit_mm_release(struct task_struct *, struct mm_struct *);
|
|
/* Remove the current tasks stale references to the old mm_struct on exec() */
|
|
extern void exec_mm_release(struct task_struct *, struct mm_struct *);
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
extern void mm_update_next_owner(struct mm_struct *mm);
|
|
#else
|
|
static inline void mm_update_next_owner(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMCG */
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern void arch_pick_mmap_layout(struct mm_struct *mm,
|
|
struct rlimit *rlim_stack);
|
|
extern unsigned long
|
|
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
|
|
unsigned long, unsigned long);
|
|
extern unsigned long
|
|
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff,
|
|
unsigned long flags);
|
|
#else
|
|
static inline void arch_pick_mmap_layout(struct mm_struct *mm,
|
|
struct rlimit *rlim_stack) {}
|
|
#endif
|
|
|
|
static inline bool in_vfork(struct task_struct *tsk)
|
|
{
|
|
bool ret;
|
|
|
|
/*
|
|
* need RCU to access ->real_parent if CLONE_VM was used along with
|
|
* CLONE_PARENT.
|
|
*
|
|
* We check real_parent->mm == tsk->mm because CLONE_VFORK does not
|
|
* imply CLONE_VM
|
|
*
|
|
* CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
|
|
* ->real_parent is not necessarily the task doing vfork(), so in
|
|
* theory we can't rely on task_lock() if we want to dereference it.
|
|
*
|
|
* And in this case we can't trust the real_parent->mm == tsk->mm
|
|
* check, it can be false negative. But we do not care, if init or
|
|
* another oom-unkillable task does this it should blame itself.
|
|
*/
|
|
rcu_read_lock();
|
|
ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm;
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Applies per-task gfp context to the given allocation flags.
|
|
* PF_MEMALLOC_NOIO implies GFP_NOIO
|
|
* PF_MEMALLOC_NOFS implies GFP_NOFS
|
|
* PF_MEMALLOC_NOCMA implies no allocation from CMA region.
|
|
*/
|
|
static inline gfp_t current_gfp_context(gfp_t flags)
|
|
{
|
|
if (unlikely(current->flags &
|
|
(PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_NOCMA))) {
|
|
/*
|
|
* NOIO implies both NOIO and NOFS and it is a weaker context
|
|
* so always make sure it makes precedence
|
|
*/
|
|
if (current->flags & PF_MEMALLOC_NOIO)
|
|
flags &= ~(__GFP_IO | __GFP_FS);
|
|
else if (current->flags & PF_MEMALLOC_NOFS)
|
|
flags &= ~__GFP_FS;
|
|
#ifdef CONFIG_CMA
|
|
if (current->flags & PF_MEMALLOC_NOCMA)
|
|
flags &= ~__GFP_MOVABLE;
|
|
#endif
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
extern void __fs_reclaim_acquire(void);
|
|
extern void __fs_reclaim_release(void);
|
|
extern void fs_reclaim_acquire(gfp_t gfp_mask);
|
|
extern void fs_reclaim_release(gfp_t gfp_mask);
|
|
#else
|
|
static inline void __fs_reclaim_acquire(void) { }
|
|
static inline void __fs_reclaim_release(void) { }
|
|
static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
|
|
static inline void fs_reclaim_release(gfp_t gfp_mask) { }
|
|
#endif
|
|
|
|
/**
|
|
* memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
|
|
*
|
|
* This functions marks the beginning of the GFP_NOIO allocation scope.
|
|
* All further allocations will implicitly drop __GFP_IO flag and so
|
|
* they are safe for the IO critical section from the allocation recursion
|
|
* point of view. Use memalloc_noio_restore to end the scope with flags
|
|
* returned by this function.
|
|
*
|
|
* This function is safe to be used from any context.
|
|
*/
|
|
static inline unsigned int memalloc_noio_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
|
|
current->flags |= PF_MEMALLOC_NOIO;
|
|
return flags;
|
|
}
|
|
|
|
/**
|
|
* memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
|
|
* @flags: Flags to restore.
|
|
*
|
|
* Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
|
|
* Always make sure that that the given flags is the return value from the
|
|
* pairing memalloc_noio_save call.
|
|
*/
|
|
static inline void memalloc_noio_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
|
|
}
|
|
|
|
/**
|
|
* memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
|
|
*
|
|
* This functions marks the beginning of the GFP_NOFS allocation scope.
|
|
* All further allocations will implicitly drop __GFP_FS flag and so
|
|
* they are safe for the FS critical section from the allocation recursion
|
|
* point of view. Use memalloc_nofs_restore to end the scope with flags
|
|
* returned by this function.
|
|
*
|
|
* This function is safe to be used from any context.
|
|
*/
|
|
static inline unsigned int memalloc_nofs_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
|
|
current->flags |= PF_MEMALLOC_NOFS;
|
|
return flags;
|
|
}
|
|
|
|
/**
|
|
* memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
|
|
* @flags: Flags to restore.
|
|
*
|
|
* Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
|
|
* Always make sure that that the given flags is the return value from the
|
|
* pairing memalloc_nofs_save call.
|
|
*/
|
|
static inline void memalloc_nofs_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
|
|
}
|
|
|
|
static inline unsigned int memalloc_noreclaim_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC;
|
|
current->flags |= PF_MEMALLOC;
|
|
return flags;
|
|
}
|
|
|
|
static inline void memalloc_noreclaim_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC) | flags;
|
|
}
|
|
|
|
#ifdef CONFIG_CMA
|
|
static inline unsigned int memalloc_nocma_save(void)
|
|
{
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOCMA;
|
|
|
|
current->flags |= PF_MEMALLOC_NOCMA;
|
|
return flags;
|
|
}
|
|
|
|
static inline void memalloc_nocma_restore(unsigned int flags)
|
|
{
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOCMA) | flags;
|
|
}
|
|
#else
|
|
static inline unsigned int memalloc_nocma_save(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void memalloc_nocma_restore(unsigned int flags)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
/**
|
|
* memalloc_use_memcg - Starts the remote memcg charging scope.
|
|
* @memcg: memcg to charge.
|
|
*
|
|
* This function marks the beginning of the remote memcg charging scope. All the
|
|
* __GFP_ACCOUNT allocations till the end of the scope will be charged to the
|
|
* given memcg.
|
|
*
|
|
* NOTE: This function is not nesting safe.
|
|
*/
|
|
static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
WARN_ON_ONCE(current->active_memcg);
|
|
current->active_memcg = memcg;
|
|
}
|
|
|
|
/**
|
|
* memalloc_unuse_memcg - Ends the remote memcg charging scope.
|
|
*
|
|
* This function marks the end of the remote memcg charging scope started by
|
|
* memalloc_use_memcg().
|
|
*/
|
|
static inline void memalloc_unuse_memcg(void)
|
|
{
|
|
current->active_memcg = NULL;
|
|
}
|
|
#else
|
|
static inline void memalloc_use_memcg(struct mem_cgroup *memcg)
|
|
{
|
|
}
|
|
|
|
static inline void memalloc_unuse_memcg(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_MEMBARRIER
|
|
enum {
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
|
|
MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
|
|
MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
|
|
};
|
|
|
|
enum {
|
|
MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
|
|
};
|
|
|
|
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
|
|
#include <asm/membarrier.h>
|
|
#endif
|
|
|
|
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
|
|
{
|
|
if (current->mm != mm)
|
|
return;
|
|
if (likely(!(atomic_read(&mm->membarrier_state) &
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
|
|
return;
|
|
sync_core_before_usermode();
|
|
}
|
|
|
|
extern void membarrier_exec_mmap(struct mm_struct *mm);
|
|
|
|
#else
|
|
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
|
|
static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
|
|
struct mm_struct *next,
|
|
struct task_struct *tsk)
|
|
{
|
|
}
|
|
#endif
|
|
static inline void membarrier_exec_mmap(struct mm_struct *mm)
|
|
{
|
|
}
|
|
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#endif /* _LINUX_SCHED_MM_H */
|