linux_dsm_epyc7002/kernel/bpf/btf.c
Alexei Starovoitov be8704ff07 bpf: Introduce dynamic program extensions
Introduce dynamic program extensions. The users can load additional BPF
functions and replace global functions in previously loaded BPF programs while
these programs are executing.

Global functions are verified individually by the verifier based on their types only.
Hence the global function in the new program which types match older function can
safely replace that corresponding function.

This new function/program is called 'an extension' of old program. At load time
the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function
to be replaced. The BPF program type is derived from the target program into
extension program. Technically bpf_verifier_ops is copied from target program.
The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops.
The extension program can call the same bpf helper functions as target program.
Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program
types. The verifier allows only one level of replacement. Meaning that the
extension program cannot recursively extend an extension. That also means that
the maximum stack size is increasing from 512 to 1024 bytes and maximum
function nesting level from 8 to 16. The programs don't always consume that
much. The stack usage is determined by the number of on-stack variables used by
the program. The verifier could have enforced 512 limit for combined original
plus extension program, but it makes for difficult user experience. The main
use case for extensions is to provide generic mechanism to plug external
programs into policy program or function call chaining.

BPF trampoline is used to track both fentry/fexit and program extensions
because both are using the same nop slot at the beginning of every BPF
function. Attaching fentry/fexit to a function that was replaced is not
allowed. The opposite is true as well. Replacing a function that currently
being analyzed with fentry/fexit is not allowed. The executable page allocated
by BPF trampoline is not used by program extensions. This inefficiency will be
optimized in future patches.

Function by function verification of global function supports scalars and
pointer to context only. Hence program extensions are supported for such class
of global functions only. In the future the verifier will be extended with
support to pointers to structures, arrays with sizes, etc.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-22 23:04:52 +01:00

4604 lines
116 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2018 Facebook */
#include <uapi/linux/btf.h>
#include <uapi/linux/bpf.h>
#include <uapi/linux/bpf_perf_event.h>
#include <uapi/linux/types.h>
#include <linux/seq_file.h>
#include <linux/compiler.h>
#include <linux/ctype.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/anon_inodes.h>
#include <linux/file.h>
#include <linux/uaccess.h>
#include <linux/kernel.h>
#include <linux/idr.h>
#include <linux/sort.h>
#include <linux/bpf_verifier.h>
#include <linux/btf.h>
#include <linux/skmsg.h>
#include <linux/perf_event.h>
#include <net/sock.h>
/* BTF (BPF Type Format) is the meta data format which describes
* the data types of BPF program/map. Hence, it basically focus
* on the C programming language which the modern BPF is primary
* using.
*
* ELF Section:
* ~~~~~~~~~~~
* The BTF data is stored under the ".BTF" ELF section
*
* struct btf_type:
* ~~~~~~~~~~~~~~~
* Each 'struct btf_type' object describes a C data type.
* Depending on the type it is describing, a 'struct btf_type'
* object may be followed by more data. F.e.
* To describe an array, 'struct btf_type' is followed by
* 'struct btf_array'.
*
* 'struct btf_type' and any extra data following it are
* 4 bytes aligned.
*
* Type section:
* ~~~~~~~~~~~~~
* The BTF type section contains a list of 'struct btf_type' objects.
* Each one describes a C type. Recall from the above section
* that a 'struct btf_type' object could be immediately followed by extra
* data in order to desribe some particular C types.
*
* type_id:
* ~~~~~~~
* Each btf_type object is identified by a type_id. The type_id
* is implicitly implied by the location of the btf_type object in
* the BTF type section. The first one has type_id 1. The second
* one has type_id 2...etc. Hence, an earlier btf_type has
* a smaller type_id.
*
* A btf_type object may refer to another btf_type object by using
* type_id (i.e. the "type" in the "struct btf_type").
*
* NOTE that we cannot assume any reference-order.
* A btf_type object can refer to an earlier btf_type object
* but it can also refer to a later btf_type object.
*
* For example, to describe "const void *". A btf_type
* object describing "const" may refer to another btf_type
* object describing "void *". This type-reference is done
* by specifying type_id:
*
* [1] CONST (anon) type_id=2
* [2] PTR (anon) type_id=0
*
* The above is the btf_verifier debug log:
* - Each line started with "[?]" is a btf_type object
* - [?] is the type_id of the btf_type object.
* - CONST/PTR is the BTF_KIND_XXX
* - "(anon)" is the name of the type. It just
* happens that CONST and PTR has no name.
* - type_id=XXX is the 'u32 type' in btf_type
*
* NOTE: "void" has type_id 0
*
* String section:
* ~~~~~~~~~~~~~~
* The BTF string section contains the names used by the type section.
* Each string is referred by an "offset" from the beginning of the
* string section.
*
* Each string is '\0' terminated.
*
* The first character in the string section must be '\0'
* which is used to mean 'anonymous'. Some btf_type may not
* have a name.
*/
/* BTF verification:
*
* To verify BTF data, two passes are needed.
*
* Pass #1
* ~~~~~~~
* The first pass is to collect all btf_type objects to
* an array: "btf->types".
*
* Depending on the C type that a btf_type is describing,
* a btf_type may be followed by extra data. We don't know
* how many btf_type is there, and more importantly we don't
* know where each btf_type is located in the type section.
*
* Without knowing the location of each type_id, most verifications
* cannot be done. e.g. an earlier btf_type may refer to a later
* btf_type (recall the "const void *" above), so we cannot
* check this type-reference in the first pass.
*
* In the first pass, it still does some verifications (e.g.
* checking the name is a valid offset to the string section).
*
* Pass #2
* ~~~~~~~
* The main focus is to resolve a btf_type that is referring
* to another type.
*
* We have to ensure the referring type:
* 1) does exist in the BTF (i.e. in btf->types[])
* 2) does not cause a loop:
* struct A {
* struct B b;
* };
*
* struct B {
* struct A a;
* };
*
* btf_type_needs_resolve() decides if a btf_type needs
* to be resolved.
*
* The needs_resolve type implements the "resolve()" ops which
* essentially does a DFS and detects backedge.
*
* During resolve (or DFS), different C types have different
* "RESOLVED" conditions.
*
* When resolving a BTF_KIND_STRUCT, we need to resolve all its
* members because a member is always referring to another
* type. A struct's member can be treated as "RESOLVED" if
* it is referring to a BTF_KIND_PTR. Otherwise, the
* following valid C struct would be rejected:
*
* struct A {
* int m;
* struct A *a;
* };
*
* When resolving a BTF_KIND_PTR, it needs to keep resolving if
* it is referring to another BTF_KIND_PTR. Otherwise, we cannot
* detect a pointer loop, e.g.:
* BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
* ^ |
* +-----------------------------------------+
*
*/
#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
#define BITS_ROUNDUP_BYTES(bits) \
(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
#define BTF_INFO_MASK 0x8f00ffff
#define BTF_INT_MASK 0x0fffffff
#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
/* 16MB for 64k structs and each has 16 members and
* a few MB spaces for the string section.
* The hard limit is S32_MAX.
*/
#define BTF_MAX_SIZE (16 * 1024 * 1024)
#define for_each_member_from(i, from, struct_type, member) \
for (i = from, member = btf_type_member(struct_type) + from; \
i < btf_type_vlen(struct_type); \
i++, member++)
#define for_each_vsi(i, struct_type, member) \
for (i = 0, member = btf_type_var_secinfo(struct_type); \
i < btf_type_vlen(struct_type); \
i++, member++)
#define for_each_vsi_from(i, from, struct_type, member) \
for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
i < btf_type_vlen(struct_type); \
i++, member++)
DEFINE_IDR(btf_idr);
DEFINE_SPINLOCK(btf_idr_lock);
struct btf {
void *data;
struct btf_type **types;
u32 *resolved_ids;
u32 *resolved_sizes;
const char *strings;
void *nohdr_data;
struct btf_header hdr;
u32 nr_types;
u32 types_size;
u32 data_size;
refcount_t refcnt;
u32 id;
struct rcu_head rcu;
};
enum verifier_phase {
CHECK_META,
CHECK_TYPE,
};
struct resolve_vertex {
const struct btf_type *t;
u32 type_id;
u16 next_member;
};
enum visit_state {
NOT_VISITED,
VISITED,
RESOLVED,
};
enum resolve_mode {
RESOLVE_TBD, /* To Be Determined */
RESOLVE_PTR, /* Resolving for Pointer */
RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
* or array
*/
};
#define MAX_RESOLVE_DEPTH 32
struct btf_sec_info {
u32 off;
u32 len;
};
struct btf_verifier_env {
struct btf *btf;
u8 *visit_states;
struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
struct bpf_verifier_log log;
u32 log_type_id;
u32 top_stack;
enum verifier_phase phase;
enum resolve_mode resolve_mode;
};
static const char * const btf_kind_str[NR_BTF_KINDS] = {
[BTF_KIND_UNKN] = "UNKNOWN",
[BTF_KIND_INT] = "INT",
[BTF_KIND_PTR] = "PTR",
[BTF_KIND_ARRAY] = "ARRAY",
[BTF_KIND_STRUCT] = "STRUCT",
[BTF_KIND_UNION] = "UNION",
[BTF_KIND_ENUM] = "ENUM",
[BTF_KIND_FWD] = "FWD",
[BTF_KIND_TYPEDEF] = "TYPEDEF",
[BTF_KIND_VOLATILE] = "VOLATILE",
[BTF_KIND_CONST] = "CONST",
[BTF_KIND_RESTRICT] = "RESTRICT",
[BTF_KIND_FUNC] = "FUNC",
[BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
[BTF_KIND_VAR] = "VAR",
[BTF_KIND_DATASEC] = "DATASEC",
};
static const char *btf_type_str(const struct btf_type *t)
{
return btf_kind_str[BTF_INFO_KIND(t->info)];
}
struct btf_kind_operations {
s32 (*check_meta)(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left);
int (*resolve)(struct btf_verifier_env *env,
const struct resolve_vertex *v);
int (*check_member)(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type);
int (*check_kflag_member)(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type);
void (*log_details)(struct btf_verifier_env *env,
const struct btf_type *t);
void (*seq_show)(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offsets,
struct seq_file *m);
};
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
static struct btf_type btf_void;
static int btf_resolve(struct btf_verifier_env *env,
const struct btf_type *t, u32 type_id);
static bool btf_type_is_modifier(const struct btf_type *t)
{
/* Some of them is not strictly a C modifier
* but they are grouped into the same bucket
* for BTF concern:
* A type (t) that refers to another
* type through t->type AND its size cannot
* be determined without following the t->type.
*
* ptr does not fall into this bucket
* because its size is always sizeof(void *).
*/
switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_TYPEDEF:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
return true;
}
return false;
}
bool btf_type_is_void(const struct btf_type *t)
{
return t == &btf_void;
}
static bool btf_type_is_fwd(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
}
static bool btf_type_nosize(const struct btf_type *t)
{
return btf_type_is_void(t) || btf_type_is_fwd(t) ||
btf_type_is_func(t) || btf_type_is_func_proto(t);
}
static bool btf_type_nosize_or_null(const struct btf_type *t)
{
return !t || btf_type_nosize(t);
}
/* union is only a special case of struct:
* all its offsetof(member) == 0
*/
static bool btf_type_is_struct(const struct btf_type *t)
{
u8 kind = BTF_INFO_KIND(t->info);
return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
}
static bool __btf_type_is_struct(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
}
static bool btf_type_is_array(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
}
static bool btf_type_is_var(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
}
static bool btf_type_is_datasec(const struct btf_type *t)
{
return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
}
s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
{
const struct btf_type *t;
const char *tname;
u32 i;
for (i = 1; i <= btf->nr_types; i++) {
t = btf->types[i];
if (BTF_INFO_KIND(t->info) != kind)
continue;
tname = btf_name_by_offset(btf, t->name_off);
if (!strcmp(tname, name))
return i;
}
return -ENOENT;
}
const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
u32 id, u32 *res_id)
{
const struct btf_type *t = btf_type_by_id(btf, id);
while (btf_type_is_modifier(t)) {
id = t->type;
t = btf_type_by_id(btf, t->type);
}
if (res_id)
*res_id = id;
return t;
}
const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
u32 id, u32 *res_id)
{
const struct btf_type *t;
t = btf_type_skip_modifiers(btf, id, NULL);
if (!btf_type_is_ptr(t))
return NULL;
return btf_type_skip_modifiers(btf, t->type, res_id);
}
const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
u32 id, u32 *res_id)
{
const struct btf_type *ptype;
ptype = btf_type_resolve_ptr(btf, id, res_id);
if (ptype && btf_type_is_func_proto(ptype))
return ptype;
return NULL;
}
/* Types that act only as a source, not sink or intermediate
* type when resolving.
*/
static bool btf_type_is_resolve_source_only(const struct btf_type *t)
{
return btf_type_is_var(t) ||
btf_type_is_datasec(t);
}
/* What types need to be resolved?
*
* btf_type_is_modifier() is an obvious one.
*
* btf_type_is_struct() because its member refers to
* another type (through member->type).
*
* btf_type_is_var() because the variable refers to
* another type. btf_type_is_datasec() holds multiple
* btf_type_is_var() types that need resolving.
*
* btf_type_is_array() because its element (array->type)
* refers to another type. Array can be thought of a
* special case of struct while array just has the same
* member-type repeated by array->nelems of times.
*/
static bool btf_type_needs_resolve(const struct btf_type *t)
{
return btf_type_is_modifier(t) ||
btf_type_is_ptr(t) ||
btf_type_is_struct(t) ||
btf_type_is_array(t) ||
btf_type_is_var(t) ||
btf_type_is_datasec(t);
}
/* t->size can be used */
static bool btf_type_has_size(const struct btf_type *t)
{
switch (BTF_INFO_KIND(t->info)) {
case BTF_KIND_INT:
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
case BTF_KIND_ENUM:
case BTF_KIND_DATASEC:
return true;
}
return false;
}
static const char *btf_int_encoding_str(u8 encoding)
{
if (encoding == 0)
return "(none)";
else if (encoding == BTF_INT_SIGNED)
return "SIGNED";
else if (encoding == BTF_INT_CHAR)
return "CHAR";
else if (encoding == BTF_INT_BOOL)
return "BOOL";
else
return "UNKN";
}
static u32 btf_type_int(const struct btf_type *t)
{
return *(u32 *)(t + 1);
}
static const struct btf_array *btf_type_array(const struct btf_type *t)
{
return (const struct btf_array *)(t + 1);
}
static const struct btf_enum *btf_type_enum(const struct btf_type *t)
{
return (const struct btf_enum *)(t + 1);
}
static const struct btf_var *btf_type_var(const struct btf_type *t)
{
return (const struct btf_var *)(t + 1);
}
static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
{
return (const struct btf_var_secinfo *)(t + 1);
}
static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
{
return kind_ops[BTF_INFO_KIND(t->info)];
}
static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
{
return BTF_STR_OFFSET_VALID(offset) &&
offset < btf->hdr.str_len;
}
static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
{
if ((first ? !isalpha(c) :
!isalnum(c)) &&
c != '_' &&
((c == '.' && !dot_ok) ||
c != '.'))
return false;
return true;
}
static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
{
/* offset must be valid */
const char *src = &btf->strings[offset];
const char *src_limit;
if (!__btf_name_char_ok(*src, true, dot_ok))
return false;
/* set a limit on identifier length */
src_limit = src + KSYM_NAME_LEN;
src++;
while (*src && src < src_limit) {
if (!__btf_name_char_ok(*src, false, dot_ok))
return false;
src++;
}
return !*src;
}
/* Only C-style identifier is permitted. This can be relaxed if
* necessary.
*/
static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
{
return __btf_name_valid(btf, offset, false);
}
static bool btf_name_valid_section(const struct btf *btf, u32 offset)
{
return __btf_name_valid(btf, offset, true);
}
static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
{
if (!offset)
return "(anon)";
else if (offset < btf->hdr.str_len)
return &btf->strings[offset];
else
return "(invalid-name-offset)";
}
const char *btf_name_by_offset(const struct btf *btf, u32 offset)
{
if (offset < btf->hdr.str_len)
return &btf->strings[offset];
return NULL;
}
const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
{
if (type_id > btf->nr_types)
return NULL;
return btf->types[type_id];
}
/*
* Regular int is not a bit field and it must be either
* u8/u16/u32/u64 or __int128.
*/
static bool btf_type_int_is_regular(const struct btf_type *t)
{
u8 nr_bits, nr_bytes;
u32 int_data;
int_data = btf_type_int(t);
nr_bits = BTF_INT_BITS(int_data);
nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
if (BITS_PER_BYTE_MASKED(nr_bits) ||
BTF_INT_OFFSET(int_data) ||
(nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
nr_bytes != (2 * sizeof(u64)))) {
return false;
}
return true;
}
/*
* Check that given struct member is a regular int with expected
* offset and size.
*/
bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
const struct btf_member *m,
u32 expected_offset, u32 expected_size)
{
const struct btf_type *t;
u32 id, int_data;
u8 nr_bits;
id = m->type;
t = btf_type_id_size(btf, &id, NULL);
if (!t || !btf_type_is_int(t))
return false;
int_data = btf_type_int(t);
nr_bits = BTF_INT_BITS(int_data);
if (btf_type_kflag(s)) {
u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
/* if kflag set, int should be a regular int and
* bit offset should be at byte boundary.
*/
return !bitfield_size &&
BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
}
if (BTF_INT_OFFSET(int_data) ||
BITS_PER_BYTE_MASKED(m->offset) ||
BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
BITS_PER_BYTE_MASKED(nr_bits) ||
BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
return false;
return true;
}
__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
const struct btf_type *t,
bool log_details,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
u8 kind = BTF_INFO_KIND(t->info);
struct btf *btf = env->btf;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
/* btf verifier prints all types it is processing via
* btf_verifier_log_type(..., fmt = NULL).
* Skip those prints for in-kernel BTF verification.
*/
if (log->level == BPF_LOG_KERNEL && !fmt)
return;
__btf_verifier_log(log, "[%u] %s %s%s",
env->log_type_id,
btf_kind_str[kind],
__btf_name_by_offset(btf, t->name_off),
log_details ? " " : "");
if (log_details)
btf_type_ops(t)->log_details(env, t);
if (fmt && *fmt) {
__btf_verifier_log(log, " ");
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__btf_verifier_log(log, "\n");
}
#define btf_verifier_log_type(env, t, ...) \
__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
#define btf_verifier_log_basic(env, t, ...) \
__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
__printf(4, 5)
static void btf_verifier_log_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
struct btf *btf = env->btf;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
if (log->level == BPF_LOG_KERNEL && !fmt)
return;
/* The CHECK_META phase already did a btf dump.
*
* If member is logged again, it must hit an error in
* parsing this member. It is useful to print out which
* struct this member belongs to.
*/
if (env->phase != CHECK_META)
btf_verifier_log_type(env, struct_type, NULL);
if (btf_type_kflag(struct_type))
__btf_verifier_log(log,
"\t%s type_id=%u bitfield_size=%u bits_offset=%u",
__btf_name_by_offset(btf, member->name_off),
member->type,
BTF_MEMBER_BITFIELD_SIZE(member->offset),
BTF_MEMBER_BIT_OFFSET(member->offset));
else
__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
__btf_name_by_offset(btf, member->name_off),
member->type, member->offset);
if (fmt && *fmt) {
__btf_verifier_log(log, " ");
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__btf_verifier_log(log, "\n");
}
__printf(4, 5)
static void btf_verifier_log_vsi(struct btf_verifier_env *env,
const struct btf_type *datasec_type,
const struct btf_var_secinfo *vsi,
const char *fmt, ...)
{
struct bpf_verifier_log *log = &env->log;
va_list args;
if (!bpf_verifier_log_needed(log))
return;
if (log->level == BPF_LOG_KERNEL && !fmt)
return;
if (env->phase != CHECK_META)
btf_verifier_log_type(env, datasec_type, NULL);
__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
vsi->type, vsi->offset, vsi->size);
if (fmt && *fmt) {
__btf_verifier_log(log, " ");
va_start(args, fmt);
bpf_verifier_vlog(log, fmt, args);
va_end(args);
}
__btf_verifier_log(log, "\n");
}
static void btf_verifier_log_hdr(struct btf_verifier_env *env,
u32 btf_data_size)
{
struct bpf_verifier_log *log = &env->log;
const struct btf *btf = env->btf;
const struct btf_header *hdr;
if (!bpf_verifier_log_needed(log))
return;
if (log->level == BPF_LOG_KERNEL)
return;
hdr = &btf->hdr;
__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
__btf_verifier_log(log, "version: %u\n", hdr->version);
__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
}
static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
{
struct btf *btf = env->btf;
/* < 2 because +1 for btf_void which is always in btf->types[0].
* btf_void is not accounted in btf->nr_types because btf_void
* does not come from the BTF file.
*/
if (btf->types_size - btf->nr_types < 2) {
/* Expand 'types' array */
struct btf_type **new_types;
u32 expand_by, new_size;
if (btf->types_size == BTF_MAX_TYPE) {
btf_verifier_log(env, "Exceeded max num of types");
return -E2BIG;
}
expand_by = max_t(u32, btf->types_size >> 2, 16);
new_size = min_t(u32, BTF_MAX_TYPE,
btf->types_size + expand_by);
new_types = kvcalloc(new_size, sizeof(*new_types),
GFP_KERNEL | __GFP_NOWARN);
if (!new_types)
return -ENOMEM;
if (btf->nr_types == 0)
new_types[0] = &btf_void;
else
memcpy(new_types, btf->types,
sizeof(*btf->types) * (btf->nr_types + 1));
kvfree(btf->types);
btf->types = new_types;
btf->types_size = new_size;
}
btf->types[++(btf->nr_types)] = t;
return 0;
}
static int btf_alloc_id(struct btf *btf)
{
int id;
idr_preload(GFP_KERNEL);
spin_lock_bh(&btf_idr_lock);
id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
if (id > 0)
btf->id = id;
spin_unlock_bh(&btf_idr_lock);
idr_preload_end();
if (WARN_ON_ONCE(!id))
return -ENOSPC;
return id > 0 ? 0 : id;
}
static void btf_free_id(struct btf *btf)
{
unsigned long flags;
/*
* In map-in-map, calling map_delete_elem() on outer
* map will call bpf_map_put on the inner map.
* It will then eventually call btf_free_id()
* on the inner map. Some of the map_delete_elem()
* implementation may have irq disabled, so
* we need to use the _irqsave() version instead
* of the _bh() version.
*/
spin_lock_irqsave(&btf_idr_lock, flags);
idr_remove(&btf_idr, btf->id);
spin_unlock_irqrestore(&btf_idr_lock, flags);
}
static void btf_free(struct btf *btf)
{
kvfree(btf->types);
kvfree(btf->resolved_sizes);
kvfree(btf->resolved_ids);
kvfree(btf->data);
kfree(btf);
}
static void btf_free_rcu(struct rcu_head *rcu)
{
struct btf *btf = container_of(rcu, struct btf, rcu);
btf_free(btf);
}
void btf_put(struct btf *btf)
{
if (btf && refcount_dec_and_test(&btf->refcnt)) {
btf_free_id(btf);
call_rcu(&btf->rcu, btf_free_rcu);
}
}
static int env_resolve_init(struct btf_verifier_env *env)
{
struct btf *btf = env->btf;
u32 nr_types = btf->nr_types;
u32 *resolved_sizes = NULL;
u32 *resolved_ids = NULL;
u8 *visit_states = NULL;
/* +1 for btf_void */
resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
GFP_KERNEL | __GFP_NOWARN);
if (!resolved_sizes)
goto nomem;
resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
GFP_KERNEL | __GFP_NOWARN);
if (!resolved_ids)
goto nomem;
visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
GFP_KERNEL | __GFP_NOWARN);
if (!visit_states)
goto nomem;
btf->resolved_sizes = resolved_sizes;
btf->resolved_ids = resolved_ids;
env->visit_states = visit_states;
return 0;
nomem:
kvfree(resolved_sizes);
kvfree(resolved_ids);
kvfree(visit_states);
return -ENOMEM;
}
static void btf_verifier_env_free(struct btf_verifier_env *env)
{
kvfree(env->visit_states);
kfree(env);
}
static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
const struct btf_type *next_type)
{
switch (env->resolve_mode) {
case RESOLVE_TBD:
/* int, enum or void is a sink */
return !btf_type_needs_resolve(next_type);
case RESOLVE_PTR:
/* int, enum, void, struct, array, func or func_proto is a sink
* for ptr
*/
return !btf_type_is_modifier(next_type) &&
!btf_type_is_ptr(next_type);
case RESOLVE_STRUCT_OR_ARRAY:
/* int, enum, void, ptr, func or func_proto is a sink
* for struct and array
*/
return !btf_type_is_modifier(next_type) &&
!btf_type_is_array(next_type) &&
!btf_type_is_struct(next_type);
default:
BUG();
}
}
static bool env_type_is_resolved(const struct btf_verifier_env *env,
u32 type_id)
{
return env->visit_states[type_id] == RESOLVED;
}
static int env_stack_push(struct btf_verifier_env *env,
const struct btf_type *t, u32 type_id)
{
struct resolve_vertex *v;
if (env->top_stack == MAX_RESOLVE_DEPTH)
return -E2BIG;
if (env->visit_states[type_id] != NOT_VISITED)
return -EEXIST;
env->visit_states[type_id] = VISITED;
v = &env->stack[env->top_stack++];
v->t = t;
v->type_id = type_id;
v->next_member = 0;
if (env->resolve_mode == RESOLVE_TBD) {
if (btf_type_is_ptr(t))
env->resolve_mode = RESOLVE_PTR;
else if (btf_type_is_struct(t) || btf_type_is_array(t))
env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
}
return 0;
}
static void env_stack_set_next_member(struct btf_verifier_env *env,
u16 next_member)
{
env->stack[env->top_stack - 1].next_member = next_member;
}
static void env_stack_pop_resolved(struct btf_verifier_env *env,
u32 resolved_type_id,
u32 resolved_size)
{
u32 type_id = env->stack[--(env->top_stack)].type_id;
struct btf *btf = env->btf;
btf->resolved_sizes[type_id] = resolved_size;
btf->resolved_ids[type_id] = resolved_type_id;
env->visit_states[type_id] = RESOLVED;
}
static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
{
return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
}
/* Resolve the size of a passed-in "type"
*
* type: is an array (e.g. u32 array[x][y])
* return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
* *type_size: (x * y * sizeof(u32)). Hence, *type_size always
* corresponds to the return type.
* *elem_type: u32
* *total_nelems: (x * y). Hence, individual elem size is
* (*type_size / *total_nelems)
*
* type: is not an array (e.g. const struct X)
* return type: type "struct X"
* *type_size: sizeof(struct X)
* *elem_type: same as return type ("struct X")
* *total_nelems: 1
*/
const struct btf_type *
btf_resolve_size(const struct btf *btf, const struct btf_type *type,
u32 *type_size, const struct btf_type **elem_type,
u32 *total_nelems)
{
const struct btf_type *array_type = NULL;
const struct btf_array *array;
u32 i, size, nelems = 1;
for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
switch (BTF_INFO_KIND(type->info)) {
/* type->size can be used */
case BTF_KIND_INT:
case BTF_KIND_STRUCT:
case BTF_KIND_UNION:
case BTF_KIND_ENUM:
size = type->size;
goto resolved;
case BTF_KIND_PTR:
size = sizeof(void *);
goto resolved;
/* Modifiers */
case BTF_KIND_TYPEDEF:
case BTF_KIND_VOLATILE:
case BTF_KIND_CONST:
case BTF_KIND_RESTRICT:
type = btf_type_by_id(btf, type->type);
break;
case BTF_KIND_ARRAY:
if (!array_type)
array_type = type;
array = btf_type_array(type);
if (nelems && array->nelems > U32_MAX / nelems)
return ERR_PTR(-EINVAL);
nelems *= array->nelems;
type = btf_type_by_id(btf, array->type);
break;
/* type without size */
default:
return ERR_PTR(-EINVAL);
}
}
return ERR_PTR(-EINVAL);
resolved:
if (nelems && size > U32_MAX / nelems)
return ERR_PTR(-EINVAL);
*type_size = nelems * size;
if (total_nelems)
*total_nelems = nelems;
if (elem_type)
*elem_type = type;
return array_type ? : type;
}
/* The input param "type_id" must point to a needs_resolve type */
static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
u32 *type_id)
{
*type_id = btf->resolved_ids[*type_id];
return btf_type_by_id(btf, *type_id);
}
const struct btf_type *btf_type_id_size(const struct btf *btf,
u32 *type_id, u32 *ret_size)
{
const struct btf_type *size_type;
u32 size_type_id = *type_id;
u32 size = 0;
size_type = btf_type_by_id(btf, size_type_id);
if (btf_type_nosize_or_null(size_type))
return NULL;
if (btf_type_has_size(size_type)) {
size = size_type->size;
} else if (btf_type_is_array(size_type)) {
size = btf->resolved_sizes[size_type_id];
} else if (btf_type_is_ptr(size_type)) {
size = sizeof(void *);
} else {
if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
!btf_type_is_var(size_type)))
return NULL;
size_type_id = btf->resolved_ids[size_type_id];
size_type = btf_type_by_id(btf, size_type_id);
if (btf_type_nosize_or_null(size_type))
return NULL;
else if (btf_type_has_size(size_type))
size = size_type->size;
else if (btf_type_is_array(size_type))
size = btf->resolved_sizes[size_type_id];
else if (btf_type_is_ptr(size_type))
size = sizeof(void *);
else
return NULL;
}
*type_id = size_type_id;
if (ret_size)
*ret_size = size;
return size_type;
}
static int btf_df_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
btf_verifier_log_basic(env, struct_type,
"Unsupported check_member");
return -EINVAL;
}
static int btf_df_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
btf_verifier_log_basic(env, struct_type,
"Unsupported check_kflag_member");
return -EINVAL;
}
/* Used for ptr, array and struct/union type members.
* int, enum and modifier types have their specific callback functions.
*/
static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member bitfield_size");
return -EINVAL;
}
/* bitfield size is 0, so member->offset represents bit offset only.
* It is safe to call non kflag check_member variants.
*/
return btf_type_ops(member_type)->check_member(env, struct_type,
member,
member_type);
}
static int btf_df_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
btf_verifier_log_basic(env, v->t, "Unsupported resolve");
return -EINVAL;
}
static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offsets,
struct seq_file *m)
{
seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
}
static int btf_int_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 int_data = btf_type_int(member_type);
u32 struct_bits_off = member->offset;
u32 struct_size = struct_type->size;
u32 nr_copy_bits;
u32 bytes_offset;
if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
btf_verifier_log_member(env, struct_type, member,
"bits_offset exceeds U32_MAX");
return -EINVAL;
}
struct_bits_off += BTF_INT_OFFSET(int_data);
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
nr_copy_bits = BTF_INT_BITS(int_data) +
BITS_PER_BYTE_MASKED(struct_bits_off);
if (nr_copy_bits > BITS_PER_U128) {
btf_verifier_log_member(env, struct_type, member,
"nr_copy_bits exceeds 128");
return -EINVAL;
}
if (struct_size < bytes_offset ||
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static int btf_int_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
u32 int_data = btf_type_int(member_type);
u32 struct_size = struct_type->size;
u32 nr_copy_bits;
/* a regular int type is required for the kflag int member */
if (!btf_type_int_is_regular(member_type)) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member base type");
return -EINVAL;
}
/* check sanity of bitfield size */
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
nr_int_data_bits = BTF_INT_BITS(int_data);
if (!nr_bits) {
/* Not a bitfield member, member offset must be at byte
* boundary.
*/
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member offset");
return -EINVAL;
}
nr_bits = nr_int_data_bits;
} else if (nr_bits > nr_int_data_bits) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member bitfield_size");
return -EINVAL;
}
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
if (nr_copy_bits > BITS_PER_U128) {
btf_verifier_log_member(env, struct_type, member,
"nr_copy_bits exceeds 128");
return -EINVAL;
}
if (struct_size < bytes_offset ||
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_int_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
u32 int_data, nr_bits, meta_needed = sizeof(int_data);
u16 encoding;
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
int_data = btf_type_int(t);
if (int_data & ~BTF_INT_MASK) {
btf_verifier_log_basic(env, t, "Invalid int_data:%x",
int_data);
return -EINVAL;
}
nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
if (nr_bits > BITS_PER_U128) {
btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
BITS_PER_U128);
return -EINVAL;
}
if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
return -EINVAL;
}
/*
* Only one of the encoding bits is allowed and it
* should be sufficient for the pretty print purpose (i.e. decoding).
* Multiple bits can be allowed later if it is found
* to be insufficient.
*/
encoding = BTF_INT_ENCODING(int_data);
if (encoding &&
encoding != BTF_INT_SIGNED &&
encoding != BTF_INT_CHAR &&
encoding != BTF_INT_BOOL) {
btf_verifier_log_type(env, t, "Unsupported encoding");
return -ENOTSUPP;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static void btf_int_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
int int_data = btf_type_int(t);
btf_verifier_log(env,
"size=%u bits_offset=%u nr_bits=%u encoding=%s",
t->size, BTF_INT_OFFSET(int_data),
BTF_INT_BITS(int_data),
btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
}
static void btf_int128_print(struct seq_file *m, void *data)
{
/* data points to a __int128 number.
* Suppose
* int128_num = *(__int128 *)data;
* The below formulas shows what upper_num and lower_num represents:
* upper_num = int128_num >> 64;
* lower_num = int128_num & 0xffffffffFFFFFFFFULL;
*/
u64 upper_num, lower_num;
#ifdef __BIG_ENDIAN_BITFIELD
upper_num = *(u64 *)data;
lower_num = *(u64 *)(data + 8);
#else
upper_num = *(u64 *)(data + 8);
lower_num = *(u64 *)data;
#endif
if (upper_num == 0)
seq_printf(m, "0x%llx", lower_num);
else
seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
}
static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
u16 right_shift_bits)
{
u64 upper_num, lower_num;
#ifdef __BIG_ENDIAN_BITFIELD
upper_num = print_num[0];
lower_num = print_num[1];
#else
upper_num = print_num[1];
lower_num = print_num[0];
#endif
/* shake out un-needed bits by shift/or operations */
if (left_shift_bits >= 64) {
upper_num = lower_num << (left_shift_bits - 64);
lower_num = 0;
} else {
upper_num = (upper_num << left_shift_bits) |
(lower_num >> (64 - left_shift_bits));
lower_num = lower_num << left_shift_bits;
}
if (right_shift_bits >= 64) {
lower_num = upper_num >> (right_shift_bits - 64);
upper_num = 0;
} else {
lower_num = (lower_num >> right_shift_bits) |
(upper_num << (64 - right_shift_bits));
upper_num = upper_num >> right_shift_bits;
}
#ifdef __BIG_ENDIAN_BITFIELD
print_num[0] = upper_num;
print_num[1] = lower_num;
#else
print_num[0] = lower_num;
print_num[1] = upper_num;
#endif
}
static void btf_bitfield_seq_show(void *data, u8 bits_offset,
u8 nr_bits, struct seq_file *m)
{
u16 left_shift_bits, right_shift_bits;
u8 nr_copy_bytes;
u8 nr_copy_bits;
u64 print_num[2] = {};
nr_copy_bits = nr_bits + bits_offset;
nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
memcpy(print_num, data, nr_copy_bytes);
#ifdef __BIG_ENDIAN_BITFIELD
left_shift_bits = bits_offset;
#else
left_shift_bits = BITS_PER_U128 - nr_copy_bits;
#endif
right_shift_bits = BITS_PER_U128 - nr_bits;
btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
btf_int128_print(m, print_num);
}
static void btf_int_bits_seq_show(const struct btf *btf,
const struct btf_type *t,
void *data, u8 bits_offset,
struct seq_file *m)
{
u32 int_data = btf_type_int(t);
u8 nr_bits = BTF_INT_BITS(int_data);
u8 total_bits_offset;
/*
* bits_offset is at most 7.
* BTF_INT_OFFSET() cannot exceed 128 bits.
*/
total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
}
static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct seq_file *m)
{
u32 int_data = btf_type_int(t);
u8 encoding = BTF_INT_ENCODING(int_data);
bool sign = encoding & BTF_INT_SIGNED;
u8 nr_bits = BTF_INT_BITS(int_data);
if (bits_offset || BTF_INT_OFFSET(int_data) ||
BITS_PER_BYTE_MASKED(nr_bits)) {
btf_int_bits_seq_show(btf, t, data, bits_offset, m);
return;
}
switch (nr_bits) {
case 128:
btf_int128_print(m, data);
break;
case 64:
if (sign)
seq_printf(m, "%lld", *(s64 *)data);
else
seq_printf(m, "%llu", *(u64 *)data);
break;
case 32:
if (sign)
seq_printf(m, "%d", *(s32 *)data);
else
seq_printf(m, "%u", *(u32 *)data);
break;
case 16:
if (sign)
seq_printf(m, "%d", *(s16 *)data);
else
seq_printf(m, "%u", *(u16 *)data);
break;
case 8:
if (sign)
seq_printf(m, "%d", *(s8 *)data);
else
seq_printf(m, "%u", *(u8 *)data);
break;
default:
btf_int_bits_seq_show(btf, t, data, bits_offset, m);
}
}
static const struct btf_kind_operations int_ops = {
.check_meta = btf_int_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_int_check_member,
.check_kflag_member = btf_int_check_kflag_member,
.log_details = btf_int_log,
.seq_show = btf_int_seq_show,
};
static int btf_modifier_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
const struct btf_type *resolved_type;
u32 resolved_type_id = member->type;
struct btf_member resolved_member;
struct btf *btf = env->btf;
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
if (!resolved_type) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member");
return -EINVAL;
}
resolved_member = *member;
resolved_member.type = resolved_type_id;
return btf_type_ops(resolved_type)->check_member(env, struct_type,
&resolved_member,
resolved_type);
}
static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
const struct btf_type *resolved_type;
u32 resolved_type_id = member->type;
struct btf_member resolved_member;
struct btf *btf = env->btf;
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
if (!resolved_type) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member");
return -EINVAL;
}
resolved_member = *member;
resolved_member.type = resolved_type_id;
return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
&resolved_member,
resolved_type);
}
static int btf_ptr_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_size, struct_bits_off, bytes_offset;
struct_size = struct_type->size;
struct_bits_off = member->offset;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
if (struct_size - bytes_offset < sizeof(void *)) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static int btf_ref_type_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (!BTF_TYPE_ID_VALID(t->type)) {
btf_verifier_log_type(env, t, "Invalid type_id");
return -EINVAL;
}
/* typedef type must have a valid name, and other ref types,
* volatile, const, restrict, should have a null name.
*/
if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
if (!t->name_off ||
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
} else {
if (t->name_off) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
}
btf_verifier_log_type(env, t, NULL);
return 0;
}
static int btf_modifier_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_type *t = v->t;
const struct btf_type *next_type;
u32 next_type_id = t->type;
struct btf *btf = env->btf;
next_type = btf_type_by_id(btf, next_type_id);
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, next_type) &&
!env_type_is_resolved(env, next_type_id))
return env_stack_push(env, next_type, next_type_id);
/* Figure out the resolved next_type_id with size.
* They will be stored in the current modifier's
* resolved_ids and resolved_sizes such that it can
* save us a few type-following when we use it later (e.g. in
* pretty print).
*/
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
if (env_type_is_resolved(env, next_type_id))
next_type = btf_type_id_resolve(btf, &next_type_id);
/* "typedef void new_void", "const void"...etc */
if (!btf_type_is_void(next_type) &&
!btf_type_is_fwd(next_type) &&
!btf_type_is_func_proto(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
}
env_stack_pop_resolved(env, next_type_id, 0);
return 0;
}
static int btf_var_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_type *next_type;
const struct btf_type *t = v->t;
u32 next_type_id = t->type;
struct btf *btf = env->btf;
next_type = btf_type_by_id(btf, next_type_id);
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, next_type) &&
!env_type_is_resolved(env, next_type_id))
return env_stack_push(env, next_type, next_type_id);
if (btf_type_is_modifier(next_type)) {
const struct btf_type *resolved_type;
u32 resolved_type_id;
resolved_type_id = next_type_id;
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
if (btf_type_is_ptr(resolved_type) &&
!env_type_is_resolve_sink(env, resolved_type) &&
!env_type_is_resolved(env, resolved_type_id))
return env_stack_push(env, resolved_type,
resolved_type_id);
}
/* We must resolve to something concrete at this point, no
* forward types or similar that would resolve to size of
* zero is allowed.
*/
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
env_stack_pop_resolved(env, next_type_id, 0);
return 0;
}
static int btf_ptr_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_type *next_type;
const struct btf_type *t = v->t;
u32 next_type_id = t->type;
struct btf *btf = env->btf;
next_type = btf_type_by_id(btf, next_type_id);
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, next_type) &&
!env_type_is_resolved(env, next_type_id))
return env_stack_push(env, next_type, next_type_id);
/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
* the modifier may have stopped resolving when it was resolved
* to a ptr (last-resolved-ptr).
*
* We now need to continue from the last-resolved-ptr to
* ensure the last-resolved-ptr will not referring back to
* the currenct ptr (t).
*/
if (btf_type_is_modifier(next_type)) {
const struct btf_type *resolved_type;
u32 resolved_type_id;
resolved_type_id = next_type_id;
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
if (btf_type_is_ptr(resolved_type) &&
!env_type_is_resolve_sink(env, resolved_type) &&
!env_type_is_resolved(env, resolved_type_id))
return env_stack_push(env, resolved_type,
resolved_type_id);
}
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
if (env_type_is_resolved(env, next_type_id))
next_type = btf_type_id_resolve(btf, &next_type_id);
if (!btf_type_is_void(next_type) &&
!btf_type_is_fwd(next_type) &&
!btf_type_is_func_proto(next_type)) {
btf_verifier_log_type(env, v->t, "Invalid type_id");
return -EINVAL;
}
}
env_stack_pop_resolved(env, next_type_id, 0);
return 0;
}
static void btf_modifier_seq_show(const struct btf *btf,
const struct btf_type *t,
u32 type_id, void *data,
u8 bits_offset, struct seq_file *m)
{
if (btf->resolved_ids)
t = btf_type_id_resolve(btf, &type_id);
else
t = btf_type_skip_modifiers(btf, type_id, NULL);
btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
}
static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct seq_file *m)
{
t = btf_type_id_resolve(btf, &type_id);
btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
}
static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct seq_file *m)
{
/* It is a hashed value */
seq_printf(m, "%p", *(void **)data);
}
static void btf_ref_type_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "type_id=%u", t->type);
}
static struct btf_kind_operations modifier_ops = {
.check_meta = btf_ref_type_check_meta,
.resolve = btf_modifier_resolve,
.check_member = btf_modifier_check_member,
.check_kflag_member = btf_modifier_check_kflag_member,
.log_details = btf_ref_type_log,
.seq_show = btf_modifier_seq_show,
};
static struct btf_kind_operations ptr_ops = {
.check_meta = btf_ref_type_check_meta,
.resolve = btf_ptr_resolve,
.check_member = btf_ptr_check_member,
.check_kflag_member = btf_generic_check_kflag_member,
.log_details = btf_ref_type_log,
.seq_show = btf_ptr_seq_show,
};
static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (t->type) {
btf_verifier_log_type(env, t, "type != 0");
return -EINVAL;
}
/* fwd type must have a valid name */
if (!t->name_off ||
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return 0;
}
static void btf_fwd_type_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
}
static struct btf_kind_operations fwd_ops = {
.check_meta = btf_fwd_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_df_check_member,
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_fwd_type_log,
.seq_show = btf_df_seq_show,
};
static int btf_array_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off = member->offset;
u32 struct_size, bytes_offset;
u32 array_type_id, array_size;
struct btf *btf = env->btf;
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
array_type_id = member->type;
btf_type_id_size(btf, &array_type_id, &array_size);
struct_size = struct_type->size;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (struct_size - bytes_offset < array_size) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_array_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_array *array = btf_type_array(t);
u32 meta_needed = sizeof(*array);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
/* array type should not have a name */
if (t->name_off) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (t->size) {
btf_verifier_log_type(env, t, "size != 0");
return -EINVAL;
}
/* Array elem type and index type cannot be in type void,
* so !array->type and !array->index_type are not allowed.
*/
if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
btf_verifier_log_type(env, t, "Invalid elem");
return -EINVAL;
}
if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
btf_verifier_log_type(env, t, "Invalid index");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static int btf_array_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_array *array = btf_type_array(v->t);
const struct btf_type *elem_type, *index_type;
u32 elem_type_id, index_type_id;
struct btf *btf = env->btf;
u32 elem_size;
/* Check array->index_type */
index_type_id = array->index_type;
index_type = btf_type_by_id(btf, index_type_id);
if (btf_type_nosize_or_null(index_type) ||
btf_type_is_resolve_source_only(index_type)) {
btf_verifier_log_type(env, v->t, "Invalid index");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, index_type) &&
!env_type_is_resolved(env, index_type_id))
return env_stack_push(env, index_type, index_type_id);
index_type = btf_type_id_size(btf, &index_type_id, NULL);
if (!index_type || !btf_type_is_int(index_type) ||
!btf_type_int_is_regular(index_type)) {
btf_verifier_log_type(env, v->t, "Invalid index");
return -EINVAL;
}
/* Check array->type */
elem_type_id = array->type;
elem_type = btf_type_by_id(btf, elem_type_id);
if (btf_type_nosize_or_null(elem_type) ||
btf_type_is_resolve_source_only(elem_type)) {
btf_verifier_log_type(env, v->t,
"Invalid elem");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, elem_type) &&
!env_type_is_resolved(env, elem_type_id))
return env_stack_push(env, elem_type, elem_type_id);
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
if (!elem_type) {
btf_verifier_log_type(env, v->t, "Invalid elem");
return -EINVAL;
}
if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
btf_verifier_log_type(env, v->t, "Invalid array of int");
return -EINVAL;
}
if (array->nelems && elem_size > U32_MAX / array->nelems) {
btf_verifier_log_type(env, v->t,
"Array size overflows U32_MAX");
return -EINVAL;
}
env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
return 0;
}
static void btf_array_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_array *array = btf_type_array(t);
btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
array->type, array->index_type, array->nelems);
}
static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct seq_file *m)
{
const struct btf_array *array = btf_type_array(t);
const struct btf_kind_operations *elem_ops;
const struct btf_type *elem_type;
u32 i, elem_size, elem_type_id;
elem_type_id = array->type;
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
elem_ops = btf_type_ops(elem_type);
seq_puts(m, "[");
for (i = 0; i < array->nelems; i++) {
if (i)
seq_puts(m, ",");
elem_ops->seq_show(btf, elem_type, elem_type_id, data,
bits_offset, m);
data += elem_size;
}
seq_puts(m, "]");
}
static struct btf_kind_operations array_ops = {
.check_meta = btf_array_check_meta,
.resolve = btf_array_resolve,
.check_member = btf_array_check_member,
.check_kflag_member = btf_generic_check_kflag_member,
.log_details = btf_array_log,
.seq_show = btf_array_seq_show,
};
static int btf_struct_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off = member->offset;
u32 struct_size, bytes_offset;
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
struct_size = struct_type->size;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (struct_size - bytes_offset < member_type->size) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_struct_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
const struct btf_member *member;
u32 meta_needed, last_offset;
struct btf *btf = env->btf;
u32 struct_size = t->size;
u32 offset;
u16 i;
meta_needed = btf_type_vlen(t) * sizeof(*member);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
/* struct type either no name or a valid one */
if (t->name_off &&
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
last_offset = 0;
for_each_member(i, t, member) {
if (!btf_name_offset_valid(btf, member->name_off)) {
btf_verifier_log_member(env, t, member,
"Invalid member name_offset:%u",
member->name_off);
return -EINVAL;
}
/* struct member either no name or a valid one */
if (member->name_off &&
!btf_name_valid_identifier(btf, member->name_off)) {
btf_verifier_log_member(env, t, member, "Invalid name");
return -EINVAL;
}
/* A member cannot be in type void */
if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
btf_verifier_log_member(env, t, member,
"Invalid type_id");
return -EINVAL;
}
offset = btf_member_bit_offset(t, member);
if (is_union && offset) {
btf_verifier_log_member(env, t, member,
"Invalid member bits_offset");
return -EINVAL;
}
/*
* ">" instead of ">=" because the last member could be
* "char a[0];"
*/
if (last_offset > offset) {
btf_verifier_log_member(env, t, member,
"Invalid member bits_offset");
return -EINVAL;
}
if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
btf_verifier_log_member(env, t, member,
"Member bits_offset exceeds its struct size");
return -EINVAL;
}
btf_verifier_log_member(env, t, member, NULL);
last_offset = offset;
}
return meta_needed;
}
static int btf_struct_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_member *member;
int err;
u16 i;
/* Before continue resolving the next_member,
* ensure the last member is indeed resolved to a
* type with size info.
*/
if (v->next_member) {
const struct btf_type *last_member_type;
const struct btf_member *last_member;
u16 last_member_type_id;
last_member = btf_type_member(v->t) + v->next_member - 1;
last_member_type_id = last_member->type;
if (WARN_ON_ONCE(!env_type_is_resolved(env,
last_member_type_id)))
return -EINVAL;
last_member_type = btf_type_by_id(env->btf,
last_member_type_id);
if (btf_type_kflag(v->t))
err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
last_member,
last_member_type);
else
err = btf_type_ops(last_member_type)->check_member(env, v->t,
last_member,
last_member_type);
if (err)
return err;
}
for_each_member_from(i, v->next_member, v->t, member) {
u32 member_type_id = member->type;
const struct btf_type *member_type = btf_type_by_id(env->btf,
member_type_id);
if (btf_type_nosize_or_null(member_type) ||
btf_type_is_resolve_source_only(member_type)) {
btf_verifier_log_member(env, v->t, member,
"Invalid member");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, member_type) &&
!env_type_is_resolved(env, member_type_id)) {
env_stack_set_next_member(env, i + 1);
return env_stack_push(env, member_type, member_type_id);
}
if (btf_type_kflag(v->t))
err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
member,
member_type);
else
err = btf_type_ops(member_type)->check_member(env, v->t,
member,
member_type);
if (err)
return err;
}
env_stack_pop_resolved(env, 0, 0);
return 0;
}
static void btf_struct_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
}
/* find 'struct bpf_spin_lock' in map value.
* return >= 0 offset if found
* and < 0 in case of error
*/
int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
{
const struct btf_member *member;
u32 i, off = -ENOENT;
if (!__btf_type_is_struct(t))
return -EINVAL;
for_each_member(i, t, member) {
const struct btf_type *member_type = btf_type_by_id(btf,
member->type);
if (!__btf_type_is_struct(member_type))
continue;
if (member_type->size != sizeof(struct bpf_spin_lock))
continue;
if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
"bpf_spin_lock"))
continue;
if (off != -ENOENT)
/* only one 'struct bpf_spin_lock' is allowed */
return -E2BIG;
off = btf_member_bit_offset(t, member);
if (off % 8)
/* valid C code cannot generate such BTF */
return -EINVAL;
off /= 8;
if (off % __alignof__(struct bpf_spin_lock))
/* valid struct bpf_spin_lock will be 4 byte aligned */
return -EINVAL;
}
return off;
}
static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct seq_file *m)
{
const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
const struct btf_member *member;
u32 i;
seq_puts(m, "{");
for_each_member(i, t, member) {
const struct btf_type *member_type = btf_type_by_id(btf,
member->type);
const struct btf_kind_operations *ops;
u32 member_offset, bitfield_size;
u32 bytes_offset;
u8 bits8_offset;
if (i)
seq_puts(m, seq);
member_offset = btf_member_bit_offset(t, member);
bitfield_size = btf_member_bitfield_size(t, member);
bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
if (bitfield_size) {
btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
bitfield_size, m);
} else {
ops = btf_type_ops(member_type);
ops->seq_show(btf, member_type, member->type,
data + bytes_offset, bits8_offset, m);
}
}
seq_puts(m, "}");
}
static struct btf_kind_operations struct_ops = {
.check_meta = btf_struct_check_meta,
.resolve = btf_struct_resolve,
.check_member = btf_struct_check_member,
.check_kflag_member = btf_generic_check_kflag_member,
.log_details = btf_struct_log,
.seq_show = btf_struct_seq_show,
};
static int btf_enum_check_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off = member->offset;
u32 struct_size, bytes_offset;
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
struct_size = struct_type->size;
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
if (struct_size - bytes_offset < sizeof(int)) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
const struct btf_type *struct_type,
const struct btf_member *member,
const struct btf_type *member_type)
{
u32 struct_bits_off, nr_bits, bytes_end, struct_size;
u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
if (!nr_bits) {
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
btf_verifier_log_member(env, struct_type, member,
"Member is not byte aligned");
return -EINVAL;
}
nr_bits = int_bitsize;
} else if (nr_bits > int_bitsize) {
btf_verifier_log_member(env, struct_type, member,
"Invalid member bitfield_size");
return -EINVAL;
}
struct_size = struct_type->size;
bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
if (struct_size < bytes_end) {
btf_verifier_log_member(env, struct_type, member,
"Member exceeds struct_size");
return -EINVAL;
}
return 0;
}
static s32 btf_enum_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_enum *enums = btf_type_enum(t);
struct btf *btf = env->btf;
u16 i, nr_enums;
u32 meta_needed;
nr_enums = btf_type_vlen(t);
meta_needed = nr_enums * sizeof(*enums);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (t->size > 8 || !is_power_of_2(t->size)) {
btf_verifier_log_type(env, t, "Unexpected size");
return -EINVAL;
}
/* enum type either no name or a valid one */
if (t->name_off &&
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
for (i = 0; i < nr_enums; i++) {
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
btf_verifier_log(env, "\tInvalid name_offset:%u",
enums[i].name_off);
return -EINVAL;
}
/* enum member must have a valid name */
if (!enums[i].name_off ||
!btf_name_valid_identifier(btf, enums[i].name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
if (env->log.level == BPF_LOG_KERNEL)
continue;
btf_verifier_log(env, "\t%s val=%d\n",
__btf_name_by_offset(btf, enums[i].name_off),
enums[i].val);
}
return meta_needed;
}
static void btf_enum_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
}
static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
u32 type_id, void *data, u8 bits_offset,
struct seq_file *m)
{
const struct btf_enum *enums = btf_type_enum(t);
u32 i, nr_enums = btf_type_vlen(t);
int v = *(int *)data;
for (i = 0; i < nr_enums; i++) {
if (v == enums[i].val) {
seq_printf(m, "%s",
__btf_name_by_offset(btf,
enums[i].name_off));
return;
}
}
seq_printf(m, "%d", v);
}
static struct btf_kind_operations enum_ops = {
.check_meta = btf_enum_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_enum_check_member,
.check_kflag_member = btf_enum_check_kflag_member,
.log_details = btf_enum_log,
.seq_show = btf_enum_seq_show,
};
static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (t->name_off) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static void btf_func_proto_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_param *args = (const struct btf_param *)(t + 1);
u16 nr_args = btf_type_vlen(t), i;
btf_verifier_log(env, "return=%u args=(", t->type);
if (!nr_args) {
btf_verifier_log(env, "void");
goto done;
}
if (nr_args == 1 && !args[0].type) {
/* Only one vararg */
btf_verifier_log(env, "vararg");
goto done;
}
btf_verifier_log(env, "%u %s", args[0].type,
__btf_name_by_offset(env->btf,
args[0].name_off));
for (i = 1; i < nr_args - 1; i++)
btf_verifier_log(env, ", %u %s", args[i].type,
__btf_name_by_offset(env->btf,
args[i].name_off));
if (nr_args > 1) {
const struct btf_param *last_arg = &args[nr_args - 1];
if (last_arg->type)
btf_verifier_log(env, ", %u %s", last_arg->type,
__btf_name_by_offset(env->btf,
last_arg->name_off));
else
btf_verifier_log(env, ", vararg");
}
done:
btf_verifier_log(env, ")");
}
static struct btf_kind_operations func_proto_ops = {
.check_meta = btf_func_proto_check_meta,
.resolve = btf_df_resolve,
/*
* BTF_KIND_FUNC_PROTO cannot be directly referred by
* a struct's member.
*
* It should be a funciton pointer instead.
* (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
*
* Hence, there is no btf_func_check_member().
*/
.check_member = btf_df_check_member,
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_func_proto_log,
.seq_show = btf_df_seq_show,
};
static s32 btf_func_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
if (!t->name_off ||
!btf_name_valid_identifier(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
btf_verifier_log_type(env, t, "Invalid func linkage");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return 0;
}
static struct btf_kind_operations func_ops = {
.check_meta = btf_func_check_meta,
.resolve = btf_df_resolve,
.check_member = btf_df_check_member,
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_ref_type_log,
.seq_show = btf_df_seq_show,
};
static s32 btf_var_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_var *var;
u32 meta_needed = sizeof(*var);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen != 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (!t->name_off ||
!__btf_name_valid(env->btf, t->name_off, true)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
/* A var cannot be in type void */
if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
btf_verifier_log_type(env, t, "Invalid type_id");
return -EINVAL;
}
var = btf_type_var(t);
if (var->linkage != BTF_VAR_STATIC &&
var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
btf_verifier_log_type(env, t, "Linkage not supported");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
return meta_needed;
}
static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
{
const struct btf_var *var = btf_type_var(t);
btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
}
static const struct btf_kind_operations var_ops = {
.check_meta = btf_var_check_meta,
.resolve = btf_var_resolve,
.check_member = btf_df_check_member,
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_var_log,
.seq_show = btf_var_seq_show,
};
static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
const struct btf_var_secinfo *vsi;
u64 last_vsi_end_off = 0, sum = 0;
u32 i, meta_needed;
meta_needed = btf_type_vlen(t) * sizeof(*vsi);
if (meta_left < meta_needed) {
btf_verifier_log_basic(env, t,
"meta_left:%u meta_needed:%u",
meta_left, meta_needed);
return -EINVAL;
}
if (!btf_type_vlen(t)) {
btf_verifier_log_type(env, t, "vlen == 0");
return -EINVAL;
}
if (!t->size) {
btf_verifier_log_type(env, t, "size == 0");
return -EINVAL;
}
if (btf_type_kflag(t)) {
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
return -EINVAL;
}
if (!t->name_off ||
!btf_name_valid_section(env->btf, t->name_off)) {
btf_verifier_log_type(env, t, "Invalid name");
return -EINVAL;
}
btf_verifier_log_type(env, t, NULL);
for_each_vsi(i, t, vsi) {
/* A var cannot be in type void */
if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid type_id");
return -EINVAL;
}
if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid offset");
return -EINVAL;
}
if (!vsi->size || vsi->size > t->size) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid size");
return -EINVAL;
}
last_vsi_end_off = vsi->offset + vsi->size;
if (last_vsi_end_off > t->size) {
btf_verifier_log_vsi(env, t, vsi,
"Invalid offset+size");
return -EINVAL;
}
btf_verifier_log_vsi(env, t, vsi, NULL);
sum += vsi->size;
}
if (t->size < sum) {
btf_verifier_log_type(env, t, "Invalid btf_info size");
return -EINVAL;
}
return meta_needed;
}
static int btf_datasec_resolve(struct btf_verifier_env *env,
const struct resolve_vertex *v)
{
const struct btf_var_secinfo *vsi;
struct btf *btf = env->btf;
u16 i;
for_each_vsi_from(i, v->next_member, v->t, vsi) {
u32 var_type_id = vsi->type, type_id, type_size = 0;
const struct btf_type *var_type = btf_type_by_id(env->btf,
var_type_id);
if (!var_type || !btf_type_is_var(var_type)) {
btf_verifier_log_vsi(env, v->t, vsi,
"Not a VAR kind member");
return -EINVAL;
}
if (!env_type_is_resolve_sink(env, var_type) &&
!env_type_is_resolved(env, var_type_id)) {
env_stack_set_next_member(env, i + 1);
return env_stack_push(env, var_type, var_type_id);
}
type_id = var_type->type;
if (!btf_type_id_size(btf, &type_id, &type_size)) {
btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
return -EINVAL;
}
if (vsi->size < type_size) {
btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
return -EINVAL;
}
}
env_stack_pop_resolved(env, 0, 0);
return 0;
}
static void btf_datasec_log(struct btf_verifier_env *env,
const struct btf_type *t)
{
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
}
static void btf_datasec_seq_show(const struct btf *btf,
const struct btf_type *t, u32 type_id,
void *data, u8 bits_offset,
struct seq_file *m)
{
const struct btf_var_secinfo *vsi;
const struct btf_type *var;
u32 i;
seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
for_each_vsi(i, t, vsi) {
var = btf_type_by_id(btf, vsi->type);
if (i)
seq_puts(m, ",");
btf_type_ops(var)->seq_show(btf, var, vsi->type,
data + vsi->offset, bits_offset, m);
}
seq_puts(m, "}");
}
static const struct btf_kind_operations datasec_ops = {
.check_meta = btf_datasec_check_meta,
.resolve = btf_datasec_resolve,
.check_member = btf_df_check_member,
.check_kflag_member = btf_df_check_kflag_member,
.log_details = btf_datasec_log,
.seq_show = btf_datasec_seq_show,
};
static int btf_func_proto_check(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_type *ret_type;
const struct btf_param *args;
const struct btf *btf;
u16 nr_args, i;
int err;
btf = env->btf;
args = (const struct btf_param *)(t + 1);
nr_args = btf_type_vlen(t);
/* Check func return type which could be "void" (t->type == 0) */
if (t->type) {
u32 ret_type_id = t->type;
ret_type = btf_type_by_id(btf, ret_type_id);
if (!ret_type) {
btf_verifier_log_type(env, t, "Invalid return type");
return -EINVAL;
}
if (btf_type_needs_resolve(ret_type) &&
!env_type_is_resolved(env, ret_type_id)) {
err = btf_resolve(env, ret_type, ret_type_id);
if (err)
return err;
}
/* Ensure the return type is a type that has a size */
if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
btf_verifier_log_type(env, t, "Invalid return type");
return -EINVAL;
}
}
if (!nr_args)
return 0;
/* Last func arg type_id could be 0 if it is a vararg */
if (!args[nr_args - 1].type) {
if (args[nr_args - 1].name_off) {
btf_verifier_log_type(env, t, "Invalid arg#%u",
nr_args);
return -EINVAL;
}
nr_args--;
}
err = 0;
for (i = 0; i < nr_args; i++) {
const struct btf_type *arg_type;
u32 arg_type_id;
arg_type_id = args[i].type;
arg_type = btf_type_by_id(btf, arg_type_id);
if (!arg_type) {
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
err = -EINVAL;
break;
}
if (args[i].name_off &&
(!btf_name_offset_valid(btf, args[i].name_off) ||
!btf_name_valid_identifier(btf, args[i].name_off))) {
btf_verifier_log_type(env, t,
"Invalid arg#%u", i + 1);
err = -EINVAL;
break;
}
if (btf_type_needs_resolve(arg_type) &&
!env_type_is_resolved(env, arg_type_id)) {
err = btf_resolve(env, arg_type, arg_type_id);
if (err)
break;
}
if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
err = -EINVAL;
break;
}
}
return err;
}
static int btf_func_check(struct btf_verifier_env *env,
const struct btf_type *t)
{
const struct btf_type *proto_type;
const struct btf_param *args;
const struct btf *btf;
u16 nr_args, i;
btf = env->btf;
proto_type = btf_type_by_id(btf, t->type);
if (!proto_type || !btf_type_is_func_proto(proto_type)) {
btf_verifier_log_type(env, t, "Invalid type_id");
return -EINVAL;
}
args = (const struct btf_param *)(proto_type + 1);
nr_args = btf_type_vlen(proto_type);
for (i = 0; i < nr_args; i++) {
if (!args[i].name_off && args[i].type) {
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
return -EINVAL;
}
}
return 0;
}
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
[BTF_KIND_INT] = &int_ops,
[BTF_KIND_PTR] = &ptr_ops,
[BTF_KIND_ARRAY] = &array_ops,
[BTF_KIND_STRUCT] = &struct_ops,
[BTF_KIND_UNION] = &struct_ops,
[BTF_KIND_ENUM] = &enum_ops,
[BTF_KIND_FWD] = &fwd_ops,
[BTF_KIND_TYPEDEF] = &modifier_ops,
[BTF_KIND_VOLATILE] = &modifier_ops,
[BTF_KIND_CONST] = &modifier_ops,
[BTF_KIND_RESTRICT] = &modifier_ops,
[BTF_KIND_FUNC] = &func_ops,
[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
[BTF_KIND_VAR] = &var_ops,
[BTF_KIND_DATASEC] = &datasec_ops,
};
static s32 btf_check_meta(struct btf_verifier_env *env,
const struct btf_type *t,
u32 meta_left)
{
u32 saved_meta_left = meta_left;
s32 var_meta_size;
if (meta_left < sizeof(*t)) {
btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
env->log_type_id, meta_left, sizeof(*t));
return -EINVAL;
}
meta_left -= sizeof(*t);
if (t->info & ~BTF_INFO_MASK) {
btf_verifier_log(env, "[%u] Invalid btf_info:%x",
env->log_type_id, t->info);
return -EINVAL;
}
if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
btf_verifier_log(env, "[%u] Invalid kind:%u",
env->log_type_id, BTF_INFO_KIND(t->info));
return -EINVAL;
}
if (!btf_name_offset_valid(env->btf, t->name_off)) {
btf_verifier_log(env, "[%u] Invalid name_offset:%u",
env->log_type_id, t->name_off);
return -EINVAL;
}
var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
if (var_meta_size < 0)
return var_meta_size;
meta_left -= var_meta_size;
return saved_meta_left - meta_left;
}
static int btf_check_all_metas(struct btf_verifier_env *env)
{
struct btf *btf = env->btf;
struct btf_header *hdr;
void *cur, *end;
hdr = &btf->hdr;
cur = btf->nohdr_data + hdr->type_off;
end = cur + hdr->type_len;
env->log_type_id = 1;
while (cur < end) {
struct btf_type *t = cur;
s32 meta_size;
meta_size = btf_check_meta(env, t, end - cur);
if (meta_size < 0)
return meta_size;
btf_add_type(env, t);
cur += meta_size;
env->log_type_id++;
}
return 0;
}
static bool btf_resolve_valid(struct btf_verifier_env *env,
const struct btf_type *t,
u32 type_id)
{
struct btf *btf = env->btf;
if (!env_type_is_resolved(env, type_id))
return false;
if (btf_type_is_struct(t) || btf_type_is_datasec(t))
return !btf->resolved_ids[type_id] &&
!btf->resolved_sizes[type_id];
if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
btf_type_is_var(t)) {
t = btf_type_id_resolve(btf, &type_id);
return t &&
!btf_type_is_modifier(t) &&
!btf_type_is_var(t) &&
!btf_type_is_datasec(t);
}
if (btf_type_is_array(t)) {
const struct btf_array *array = btf_type_array(t);
const struct btf_type *elem_type;
u32 elem_type_id = array->type;
u32 elem_size;
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
return elem_type && !btf_type_is_modifier(elem_type) &&
(array->nelems * elem_size ==
btf->resolved_sizes[type_id]);
}
return false;
}
static int btf_resolve(struct btf_verifier_env *env,
const struct btf_type *t, u32 type_id)
{
u32 save_log_type_id = env->log_type_id;
const struct resolve_vertex *v;
int err = 0;
env->resolve_mode = RESOLVE_TBD;
env_stack_push(env, t, type_id);
while (!err && (v = env_stack_peak(env))) {
env->log_type_id = v->type_id;
err = btf_type_ops(v->t)->resolve(env, v);
}
env->log_type_id = type_id;
if (err == -E2BIG) {
btf_verifier_log_type(env, t,
"Exceeded max resolving depth:%u",
MAX_RESOLVE_DEPTH);
} else if (err == -EEXIST) {
btf_verifier_log_type(env, t, "Loop detected");
}
/* Final sanity check */
if (!err && !btf_resolve_valid(env, t, type_id)) {
btf_verifier_log_type(env, t, "Invalid resolve state");
err = -EINVAL;
}
env->log_type_id = save_log_type_id;
return err;
}
static int btf_check_all_types(struct btf_verifier_env *env)
{
struct btf *btf = env->btf;
u32 type_id;
int err;
err = env_resolve_init(env);
if (err)
return err;
env->phase++;
for (type_id = 1; type_id <= btf->nr_types; type_id++) {
const struct btf_type *t = btf_type_by_id(btf, type_id);
env->log_type_id = type_id;
if (btf_type_needs_resolve(t) &&
!env_type_is_resolved(env, type_id)) {
err = btf_resolve(env, t, type_id);
if (err)
return err;
}
if (btf_type_is_func_proto(t)) {
err = btf_func_proto_check(env, t);
if (err)
return err;
}
if (btf_type_is_func(t)) {
err = btf_func_check(env, t);
if (err)
return err;
}
}
return 0;
}
static int btf_parse_type_sec(struct btf_verifier_env *env)
{
const struct btf_header *hdr = &env->btf->hdr;
int err;
/* Type section must align to 4 bytes */
if (hdr->type_off & (sizeof(u32) - 1)) {
btf_verifier_log(env, "Unaligned type_off");
return -EINVAL;
}
if (!hdr->type_len) {
btf_verifier_log(env, "No type found");
return -EINVAL;
}
err = btf_check_all_metas(env);
if (err)
return err;
return btf_check_all_types(env);
}
static int btf_parse_str_sec(struct btf_verifier_env *env)
{
const struct btf_header *hdr;
struct btf *btf = env->btf;
const char *start, *end;
hdr = &btf->hdr;
start = btf->nohdr_data + hdr->str_off;
end = start + hdr->str_len;
if (end != btf->data + btf->data_size) {
btf_verifier_log(env, "String section is not at the end");
return -EINVAL;
}
if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
start[0] || end[-1]) {
btf_verifier_log(env, "Invalid string section");
return -EINVAL;
}
btf->strings = start;
return 0;
}
static const size_t btf_sec_info_offset[] = {
offsetof(struct btf_header, type_off),
offsetof(struct btf_header, str_off),
};
static int btf_sec_info_cmp(const void *a, const void *b)
{
const struct btf_sec_info *x = a;
const struct btf_sec_info *y = b;
return (int)(x->off - y->off) ? : (int)(x->len - y->len);
}
static int btf_check_sec_info(struct btf_verifier_env *env,
u32 btf_data_size)
{
struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
u32 total, expected_total, i;
const struct btf_header *hdr;
const struct btf *btf;
btf = env->btf;
hdr = &btf->hdr;
/* Populate the secs from hdr */
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
secs[i] = *(struct btf_sec_info *)((void *)hdr +
btf_sec_info_offset[i]);
sort(secs, ARRAY_SIZE(btf_sec_info_offset),
sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
/* Check for gaps and overlap among sections */
total = 0;
expected_total = btf_data_size - hdr->hdr_len;
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
if (expected_total < secs[i].off) {
btf_verifier_log(env, "Invalid section offset");
return -EINVAL;
}
if (total < secs[i].off) {
/* gap */
btf_verifier_log(env, "Unsupported section found");
return -EINVAL;
}
if (total > secs[i].off) {
btf_verifier_log(env, "Section overlap found");
return -EINVAL;
}
if (expected_total - total < secs[i].len) {
btf_verifier_log(env,
"Total section length too long");
return -EINVAL;
}
total += secs[i].len;
}
/* There is data other than hdr and known sections */
if (expected_total != total) {
btf_verifier_log(env, "Unsupported section found");
return -EINVAL;
}
return 0;
}
static int btf_parse_hdr(struct btf_verifier_env *env)
{
u32 hdr_len, hdr_copy, btf_data_size;
const struct btf_header *hdr;
struct btf *btf;
int err;
btf = env->btf;
btf_data_size = btf->data_size;
if (btf_data_size <
offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
btf_verifier_log(env, "hdr_len not found");
return -EINVAL;
}
hdr = btf->data;
hdr_len = hdr->hdr_len;
if (btf_data_size < hdr_len) {
btf_verifier_log(env, "btf_header not found");
return -EINVAL;
}
/* Ensure the unsupported header fields are zero */
if (hdr_len > sizeof(btf->hdr)) {
u8 *expected_zero = btf->data + sizeof(btf->hdr);
u8 *end = btf->data + hdr_len;
for (; expected_zero < end; expected_zero++) {
if (*expected_zero) {
btf_verifier_log(env, "Unsupported btf_header");
return -E2BIG;
}
}
}
hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
memcpy(&btf->hdr, btf->data, hdr_copy);
hdr = &btf->hdr;
btf_verifier_log_hdr(env, btf_data_size);
if (hdr->magic != BTF_MAGIC) {
btf_verifier_log(env, "Invalid magic");
return -EINVAL;
}
if (hdr->version != BTF_VERSION) {
btf_verifier_log(env, "Unsupported version");
return -ENOTSUPP;
}
if (hdr->flags) {
btf_verifier_log(env, "Unsupported flags");
return -ENOTSUPP;
}
if (btf_data_size == hdr->hdr_len) {
btf_verifier_log(env, "No data");
return -EINVAL;
}
err = btf_check_sec_info(env, btf_data_size);
if (err)
return err;
return 0;
}
static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
u32 log_level, char __user *log_ubuf, u32 log_size)
{
struct btf_verifier_env *env = NULL;
struct bpf_verifier_log *log;
struct btf *btf = NULL;
u8 *data;
int err;
if (btf_data_size > BTF_MAX_SIZE)
return ERR_PTR(-E2BIG);
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
if (!env)
return ERR_PTR(-ENOMEM);
log = &env->log;
if (log_level || log_ubuf || log_size) {
/* user requested verbose verifier output
* and supplied buffer to store the verification trace
*/
log->level = log_level;
log->ubuf = log_ubuf;
log->len_total = log_size;
/* log attributes have to be sane */
if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
!log->level || !log->ubuf) {
err = -EINVAL;
goto errout;
}
}
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
if (!btf) {
err = -ENOMEM;
goto errout;
}
env->btf = btf;
data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
if (!data) {
err = -ENOMEM;
goto errout;
}
btf->data = data;
btf->data_size = btf_data_size;
if (copy_from_user(data, btf_data, btf_data_size)) {
err = -EFAULT;
goto errout;
}
err = btf_parse_hdr(env);
if (err)
goto errout;
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
err = btf_parse_str_sec(env);
if (err)
goto errout;
err = btf_parse_type_sec(env);
if (err)
goto errout;
if (log->level && bpf_verifier_log_full(log)) {
err = -ENOSPC;
goto errout;
}
btf_verifier_env_free(env);
refcount_set(&btf->refcnt, 1);
return btf;
errout:
btf_verifier_env_free(env);
if (btf)
btf_free(btf);
return ERR_PTR(err);
}
extern char __weak _binary__btf_vmlinux_bin_start[];
extern char __weak _binary__btf_vmlinux_bin_end[];
extern struct btf *btf_vmlinux;
#define BPF_MAP_TYPE(_id, _ops)
static union {
struct bpf_ctx_convert {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
prog_ctx_type _id##_prog; \
kern_ctx_type _id##_kern;
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
} *__t;
/* 't' is written once under lock. Read many times. */
const struct btf_type *t;
} bpf_ctx_convert;
enum {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
__ctx_convert##_id,
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
__ctx_convert_unused, /* to avoid empty enum in extreme .config */
};
static u8 bpf_ctx_convert_map[] = {
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
[_id] = __ctx_convert##_id,
#include <linux/bpf_types.h>
#undef BPF_PROG_TYPE
0, /* avoid empty array */
};
#undef BPF_MAP_TYPE
static const struct btf_member *
btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
const struct btf_type *t, enum bpf_prog_type prog_type,
int arg)
{
const struct btf_type *conv_struct;
const struct btf_type *ctx_struct;
const struct btf_member *ctx_type;
const char *tname, *ctx_tname;
conv_struct = bpf_ctx_convert.t;
if (!conv_struct) {
bpf_log(log, "btf_vmlinux is malformed\n");
return NULL;
}
t = btf_type_by_id(btf, t->type);
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_struct(t)) {
/* Only pointer to struct is supported for now.
* That means that BPF_PROG_TYPE_TRACEPOINT with BTF
* is not supported yet.
* BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
*/
if (log->level & BPF_LOG_LEVEL)
bpf_log(log, "arg#%d type is not a struct\n", arg);
return NULL;
}
tname = btf_name_by_offset(btf, t->name_off);
if (!tname) {
bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
return NULL;
}
/* prog_type is valid bpf program type. No need for bounds check. */
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
* Like 'struct __sk_buff'
*/
ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
if (!ctx_struct)
/* should not happen */
return NULL;
ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
if (!ctx_tname) {
/* should not happen */
bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
return NULL;
}
/* only compare that prog's ctx type name is the same as
* kernel expects. No need to compare field by field.
* It's ok for bpf prog to do:
* struct __sk_buff {};
* int socket_filter_bpf_prog(struct __sk_buff *skb)
* { // no fields of skb are ever used }
*/
if (strcmp(ctx_tname, tname))
return NULL;
return ctx_type;
}
static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
struct btf *btf,
const struct btf_type *t,
enum bpf_prog_type prog_type,
int arg)
{
const struct btf_member *prog_ctx_type, *kern_ctx_type;
prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
if (!prog_ctx_type)
return -ENOENT;
kern_ctx_type = prog_ctx_type + 1;
return kern_ctx_type->type;
}
struct btf *btf_parse_vmlinux(void)
{
struct btf_verifier_env *env = NULL;
struct bpf_verifier_log *log;
struct btf *btf = NULL;
int err, i;
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
if (!env)
return ERR_PTR(-ENOMEM);
log = &env->log;
log->level = BPF_LOG_KERNEL;
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
if (!btf) {
err = -ENOMEM;
goto errout;
}
env->btf = btf;
btf->data = _binary__btf_vmlinux_bin_start;
btf->data_size = _binary__btf_vmlinux_bin_end -
_binary__btf_vmlinux_bin_start;
err = btf_parse_hdr(env);
if (err)
goto errout;
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
err = btf_parse_str_sec(env);
if (err)
goto errout;
err = btf_check_all_metas(env);
if (err)
goto errout;
/* find struct bpf_ctx_convert for type checking later */
for (i = 1; i <= btf->nr_types; i++) {
const struct btf_type *t;
const char *tname;
t = btf_type_by_id(btf, i);
if (!__btf_type_is_struct(t))
continue;
tname = __btf_name_by_offset(btf, t->name_off);
if (!strcmp(tname, "bpf_ctx_convert")) {
/* btf_parse_vmlinux() runs under bpf_verifier_lock */
bpf_ctx_convert.t = t;
break;
}
}
if (i > btf->nr_types) {
err = -ENOENT;
goto errout;
}
bpf_struct_ops_init(btf);
btf_verifier_env_free(env);
refcount_set(&btf->refcnt, 1);
return btf;
errout:
btf_verifier_env_free(env);
if (btf) {
kvfree(btf->types);
kfree(btf);
}
return ERR_PTR(err);
}
struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
{
struct bpf_prog *tgt_prog = prog->aux->linked_prog;
if (tgt_prog) {
return tgt_prog->aux->btf;
} else {
return btf_vmlinux;
}
}
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
const struct bpf_prog *prog,
struct bpf_insn_access_aux *info)
{
const struct btf_type *t = prog->aux->attach_func_proto;
struct bpf_prog *tgt_prog = prog->aux->linked_prog;
struct btf *btf = bpf_prog_get_target_btf(prog);
const char *tname = prog->aux->attach_func_name;
struct bpf_verifier_log *log = info->log;
const struct btf_param *args;
u32 nr_args, arg;
int ret;
if (off % 8) {
bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
tname, off);
return false;
}
arg = off / 8;
args = (const struct btf_param *)(t + 1);
/* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
nr_args = t ? btf_type_vlen(t) : 5;
if (prog->aux->attach_btf_trace) {
/* skip first 'void *__data' argument in btf_trace_##name typedef */
args++;
nr_args--;
}
if (prog->expected_attach_type == BPF_TRACE_FEXIT &&
arg == nr_args) {
if (!t)
/* Default prog with 5 args. 6th arg is retval. */
return true;
/* function return type */
t = btf_type_by_id(btf, t->type);
} else if (arg >= nr_args) {
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
tname, arg + 1);
return false;
} else {
if (!t)
/* Default prog with 5 args */
return true;
t = btf_type_by_id(btf, args[arg].type);
}
/* skip modifiers */
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (btf_type_is_int(t) || btf_type_is_enum(t))
/* accessing a scalar */
return true;
if (!btf_type_is_ptr(t)) {
bpf_log(log,
"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
tname, arg,
__btf_name_by_offset(btf, t->name_off),
btf_kind_str[BTF_INFO_KIND(t->info)]);
return false;
}
if (t->type == 0)
/* This is a pointer to void.
* It is the same as scalar from the verifier safety pov.
* No further pointer walking is allowed.
*/
return true;
/* this is a pointer to another type */
info->reg_type = PTR_TO_BTF_ID;
if (tgt_prog) {
ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg);
if (ret > 0) {
info->btf_id = ret;
return true;
} else {
return false;
}
}
info->btf_id = t->type;
t = btf_type_by_id(btf, t->type);
/* skip modifiers */
while (btf_type_is_modifier(t)) {
info->btf_id = t->type;
t = btf_type_by_id(btf, t->type);
}
if (!btf_type_is_struct(t)) {
bpf_log(log,
"func '%s' arg%d type %s is not a struct\n",
tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
return false;
}
bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
__btf_name_by_offset(btf, t->name_off));
return true;
}
int btf_struct_access(struct bpf_verifier_log *log,
const struct btf_type *t, int off, int size,
enum bpf_access_type atype,
u32 *next_btf_id)
{
u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
const struct btf_type *mtype, *elem_type = NULL;
const struct btf_member *member;
const char *tname, *mname;
again:
tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
if (!btf_type_is_struct(t)) {
bpf_log(log, "Type '%s' is not a struct\n", tname);
return -EINVAL;
}
if (off + size > t->size) {
bpf_log(log, "access beyond struct %s at off %u size %u\n",
tname, off, size);
return -EACCES;
}
for_each_member(i, t, member) {
/* offset of the field in bytes */
moff = btf_member_bit_offset(t, member) / 8;
if (off + size <= moff)
/* won't find anything, field is already too far */
break;
if (btf_member_bitfield_size(t, member)) {
u32 end_bit = btf_member_bit_offset(t, member) +
btf_member_bitfield_size(t, member);
/* off <= moff instead of off == moff because clang
* does not generate a BTF member for anonymous
* bitfield like the ":16" here:
* struct {
* int :16;
* int x:8;
* };
*/
if (off <= moff &&
BITS_ROUNDUP_BYTES(end_bit) <= off + size)
return SCALAR_VALUE;
/* off may be accessing a following member
*
* or
*
* Doing partial access at either end of this
* bitfield. Continue on this case also to
* treat it as not accessing this bitfield
* and eventually error out as field not
* found to keep it simple.
* It could be relaxed if there was a legit
* partial access case later.
*/
continue;
}
/* In case of "off" is pointing to holes of a struct */
if (off < moff)
break;
/* type of the field */
mtype = btf_type_by_id(btf_vmlinux, member->type);
mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
&elem_type, &total_nelems);
if (IS_ERR(mtype)) {
bpf_log(log, "field %s doesn't have size\n", mname);
return -EFAULT;
}
mtrue_end = moff + msize;
if (off >= mtrue_end)
/* no overlap with member, keep iterating */
continue;
if (btf_type_is_array(mtype)) {
u32 elem_idx;
/* btf_resolve_size() above helps to
* linearize a multi-dimensional array.
*
* The logic here is treating an array
* in a struct as the following way:
*
* struct outer {
* struct inner array[2][2];
* };
*
* looks like:
*
* struct outer {
* struct inner array_elem0;
* struct inner array_elem1;
* struct inner array_elem2;
* struct inner array_elem3;
* };
*
* When accessing outer->array[1][0], it moves
* moff to "array_elem2", set mtype to
* "struct inner", and msize also becomes
* sizeof(struct inner). Then most of the
* remaining logic will fall through without
* caring the current member is an array or
* not.
*
* Unlike mtype/msize/moff, mtrue_end does not
* change. The naming difference ("_true") tells
* that it is not always corresponding to
* the current mtype/msize/moff.
* It is the true end of the current
* member (i.e. array in this case). That
* will allow an int array to be accessed like
* a scratch space,
* i.e. allow access beyond the size of
* the array's element as long as it is
* within the mtrue_end boundary.
*/
/* skip empty array */
if (moff == mtrue_end)
continue;
msize /= total_nelems;
elem_idx = (off - moff) / msize;
moff += elem_idx * msize;
mtype = elem_type;
}
/* the 'off' we're looking for is either equal to start
* of this field or inside of this struct
*/
if (btf_type_is_struct(mtype)) {
/* our field must be inside that union or struct */
t = mtype;
/* adjust offset we're looking for */
off -= moff;
goto again;
}
if (btf_type_is_ptr(mtype)) {
const struct btf_type *stype;
if (msize != size || off != moff) {
bpf_log(log,
"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
mname, moff, tname, off, size);
return -EACCES;
}
stype = btf_type_by_id(btf_vmlinux, mtype->type);
/* skip modifiers */
while (btf_type_is_modifier(stype))
stype = btf_type_by_id(btf_vmlinux, stype->type);
if (btf_type_is_struct(stype)) {
*next_btf_id = mtype->type;
return PTR_TO_BTF_ID;
}
}
/* Allow more flexible access within an int as long as
* it is within mtrue_end.
* Since mtrue_end could be the end of an array,
* that also allows using an array of int as a scratch
* space. e.g. skb->cb[].
*/
if (off + size > mtrue_end) {
bpf_log(log,
"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
mname, mtrue_end, tname, off, size);
return -EACCES;
}
return SCALAR_VALUE;
}
bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
return -EINVAL;
}
static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn,
int arg)
{
char fnname[KSYM_SYMBOL_LEN + 4] = "btf_";
const struct btf_param *args;
const struct btf_type *t;
const char *tname, *sym;
u32 btf_id, i;
if (IS_ERR(btf_vmlinux)) {
bpf_log(log, "btf_vmlinux is malformed\n");
return -EINVAL;
}
sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4);
if (!sym) {
bpf_log(log, "kernel doesn't have kallsyms\n");
return -EFAULT;
}
for (i = 1; i <= btf_vmlinux->nr_types; i++) {
t = btf_type_by_id(btf_vmlinux, i);
if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF)
continue;
tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
if (!strcmp(tname, fnname))
break;
}
if (i > btf_vmlinux->nr_types) {
bpf_log(log, "helper %s type is not found\n", fnname);
return -ENOENT;
}
t = btf_type_by_id(btf_vmlinux, t->type);
if (!btf_type_is_ptr(t))
return -EFAULT;
t = btf_type_by_id(btf_vmlinux, t->type);
if (!btf_type_is_func_proto(t))
return -EFAULT;
args = (const struct btf_param *)(t + 1);
if (arg >= btf_type_vlen(t)) {
bpf_log(log, "bpf helper %s doesn't have %d-th argument\n",
fnname, arg);
return -EINVAL;
}
t = btf_type_by_id(btf_vmlinux, args[arg].type);
if (!btf_type_is_ptr(t) || !t->type) {
/* anything but the pointer to struct is a helper config bug */
bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n");
return -EFAULT;
}
btf_id = t->type;
t = btf_type_by_id(btf_vmlinux, t->type);
/* skip modifiers */
while (btf_type_is_modifier(t)) {
btf_id = t->type;
t = btf_type_by_id(btf_vmlinux, t->type);
}
if (!btf_type_is_struct(t)) {
bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n");
return -EFAULT;
}
bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4,
arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off));
return btf_id;
}
int btf_resolve_helper_id(struct bpf_verifier_log *log,
const struct bpf_func_proto *fn, int arg)
{
int *btf_id = &fn->btf_id[arg];
int ret;
if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
return -EINVAL;
ret = READ_ONCE(*btf_id);
if (ret)
return ret;
/* ok to race the search. The result is the same */
ret = __btf_resolve_helper_id(log, fn->func, arg);
if (!ret) {
/* Function argument cannot be type 'void' */
bpf_log(log, "BTF resolution bug\n");
return -EFAULT;
}
WRITE_ONCE(*btf_id, ret);
return ret;
}
static int __get_type_size(struct btf *btf, u32 btf_id,
const struct btf_type **bad_type)
{
const struct btf_type *t;
if (!btf_id)
/* void */
return 0;
t = btf_type_by_id(btf, btf_id);
while (t && btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (!t) {
*bad_type = btf->types[0];
return -EINVAL;
}
if (btf_type_is_ptr(t))
/* kernel size of pointer. Not BPF's size of pointer*/
return sizeof(void *);
if (btf_type_is_int(t) || btf_type_is_enum(t))
return t->size;
*bad_type = t;
return -EINVAL;
}
int btf_distill_func_proto(struct bpf_verifier_log *log,
struct btf *btf,
const struct btf_type *func,
const char *tname,
struct btf_func_model *m)
{
const struct btf_param *args;
const struct btf_type *t;
u32 i, nargs;
int ret;
if (!func) {
/* BTF function prototype doesn't match the verifier types.
* Fall back to 5 u64 args.
*/
for (i = 0; i < 5; i++)
m->arg_size[i] = 8;
m->ret_size = 8;
m->nr_args = 5;
return 0;
}
args = (const struct btf_param *)(func + 1);
nargs = btf_type_vlen(func);
if (nargs >= MAX_BPF_FUNC_ARGS) {
bpf_log(log,
"The function %s has %d arguments. Too many.\n",
tname, nargs);
return -EINVAL;
}
ret = __get_type_size(btf, func->type, &t);
if (ret < 0) {
bpf_log(log,
"The function %s return type %s is unsupported.\n",
tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
return -EINVAL;
}
m->ret_size = ret;
for (i = 0; i < nargs; i++) {
ret = __get_type_size(btf, args[i].type, &t);
if (ret < 0) {
bpf_log(log,
"The function %s arg%d type %s is unsupported.\n",
tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
return -EINVAL;
}
m->arg_size[i] = ret;
}
m->nr_args = nargs;
return 0;
}
/* Compare BTFs of two functions assuming only scalars and pointers to context.
* t1 points to BTF_KIND_FUNC in btf1
* t2 points to BTF_KIND_FUNC in btf2
* Returns:
* EINVAL - function prototype mismatch
* EFAULT - verifier bug
* 0 - 99% match. The last 1% is validated by the verifier.
*/
int btf_check_func_type_match(struct bpf_verifier_log *log,
struct btf *btf1, const struct btf_type *t1,
struct btf *btf2, const struct btf_type *t2)
{
const struct btf_param *args1, *args2;
const char *fn1, *fn2, *s1, *s2;
u32 nargs1, nargs2, i;
fn1 = btf_name_by_offset(btf1, t1->name_off);
fn2 = btf_name_by_offset(btf2, t2->name_off);
if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
bpf_log(log, "%s() is not a global function\n", fn1);
return -EINVAL;
}
if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
bpf_log(log, "%s() is not a global function\n", fn2);
return -EINVAL;
}
t1 = btf_type_by_id(btf1, t1->type);
if (!t1 || !btf_type_is_func_proto(t1))
return -EFAULT;
t2 = btf_type_by_id(btf2, t2->type);
if (!t2 || !btf_type_is_func_proto(t2))
return -EFAULT;
args1 = (const struct btf_param *)(t1 + 1);
nargs1 = btf_type_vlen(t1);
args2 = (const struct btf_param *)(t2 + 1);
nargs2 = btf_type_vlen(t2);
if (nargs1 != nargs2) {
bpf_log(log, "%s() has %d args while %s() has %d args\n",
fn1, nargs1, fn2, nargs2);
return -EINVAL;
}
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
if (t1->info != t2->info) {
bpf_log(log,
"Return type %s of %s() doesn't match type %s of %s()\n",
btf_type_str(t1), fn1,
btf_type_str(t2), fn2);
return -EINVAL;
}
for (i = 0; i < nargs1; i++) {
t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
if (t1->info != t2->info) {
bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
i, fn1, btf_type_str(t1),
fn2, btf_type_str(t2));
return -EINVAL;
}
if (btf_type_has_size(t1) && t1->size != t2->size) {
bpf_log(log,
"arg%d in %s() has size %d while %s() has %d\n",
i, fn1, t1->size,
fn2, t2->size);
return -EINVAL;
}
/* global functions are validated with scalars and pointers
* to context only. And only global functions can be replaced.
* Hence type check only those types.
*/
if (btf_type_is_int(t1) || btf_type_is_enum(t1))
continue;
if (!btf_type_is_ptr(t1)) {
bpf_log(log,
"arg%d in %s() has unrecognized type\n",
i, fn1);
return -EINVAL;
}
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
if (!btf_type_is_struct(t1)) {
bpf_log(log,
"arg%d in %s() is not a pointer to context\n",
i, fn1);
return -EINVAL;
}
if (!btf_type_is_struct(t2)) {
bpf_log(log,
"arg%d in %s() is not a pointer to context\n",
i, fn2);
return -EINVAL;
}
/* This is an optional check to make program writing easier.
* Compare names of structs and report an error to the user.
* btf_prepare_func_args() already checked that t2 struct
* is a context type. btf_prepare_func_args() will check
* later that t1 struct is a context type as well.
*/
s1 = btf_name_by_offset(btf1, t1->name_off);
s2 = btf_name_by_offset(btf2, t2->name_off);
if (strcmp(s1, s2)) {
bpf_log(log,
"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
i, fn1, s1, fn2, s2);
return -EINVAL;
}
}
return 0;
}
/* Compare BTFs of given program with BTF of target program */
int btf_check_type_match(struct bpf_verifier_env *env, struct bpf_prog *prog,
struct btf *btf2, const struct btf_type *t2)
{
struct btf *btf1 = prog->aux->btf;
const struct btf_type *t1;
u32 btf_id = 0;
if (!prog->aux->func_info) {
bpf_log(&env->log, "Program extension requires BTF\n");
return -EINVAL;
}
btf_id = prog->aux->func_info[0].type_id;
if (!btf_id)
return -EFAULT;
t1 = btf_type_by_id(btf1, btf_id);
if (!t1 || !btf_type_is_func(t1))
return -EFAULT;
return btf_check_func_type_match(&env->log, btf1, t1, btf2, t2);
}
/* Compare BTF of a function with given bpf_reg_state.
* Returns:
* EFAULT - there is a verifier bug. Abort verification.
* EINVAL - there is a type mismatch or BTF is not available.
* 0 - BTF matches with what bpf_reg_state expects.
* Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
*/
int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
struct bpf_reg_state *reg)
{
struct bpf_verifier_log *log = &env->log;
struct bpf_prog *prog = env->prog;
struct btf *btf = prog->aux->btf;
const struct btf_param *args;
const struct btf_type *t;
u32 i, nargs, btf_id;
const char *tname;
if (!prog->aux->func_info)
return -EINVAL;
btf_id = prog->aux->func_info[subprog].type_id;
if (!btf_id)
return -EFAULT;
if (prog->aux->func_info_aux[subprog].unreliable)
return -EINVAL;
t = btf_type_by_id(btf, btf_id);
if (!t || !btf_type_is_func(t)) {
/* These checks were already done by the verifier while loading
* struct bpf_func_info
*/
bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
subprog);
return -EFAULT;
}
tname = btf_name_by_offset(btf, t->name_off);
t = btf_type_by_id(btf, t->type);
if (!t || !btf_type_is_func_proto(t)) {
bpf_log(log, "Invalid BTF of func %s\n", tname);
return -EFAULT;
}
args = (const struct btf_param *)(t + 1);
nargs = btf_type_vlen(t);
if (nargs > 5) {
bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
goto out;
}
/* check that BTF function arguments match actual types that the
* verifier sees.
*/
for (i = 0; i < nargs; i++) {
t = btf_type_by_id(btf, args[i].type);
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (btf_type_is_int(t) || btf_type_is_enum(t)) {
if (reg[i + 1].type == SCALAR_VALUE)
continue;
bpf_log(log, "R%d is not a scalar\n", i + 1);
goto out;
}
if (btf_type_is_ptr(t)) {
if (reg[i + 1].type == SCALAR_VALUE) {
bpf_log(log, "R%d is not a pointer\n", i + 1);
goto out;
}
/* If function expects ctx type in BTF check that caller
* is passing PTR_TO_CTX.
*/
if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
if (reg[i + 1].type != PTR_TO_CTX) {
bpf_log(log,
"arg#%d expected pointer to ctx, but got %s\n",
i, btf_kind_str[BTF_INFO_KIND(t->info)]);
goto out;
}
if (check_ctx_reg(env, &reg[i + 1], i + 1))
goto out;
continue;
}
}
bpf_log(log, "Unrecognized arg#%d type %s\n",
i, btf_kind_str[BTF_INFO_KIND(t->info)]);
goto out;
}
return 0;
out:
/* Compiler optimizations can remove arguments from static functions
* or mismatched type can be passed into a global function.
* In such cases mark the function as unreliable from BTF point of view.
*/
prog->aux->func_info_aux[subprog].unreliable = true;
return -EINVAL;
}
/* Convert BTF of a function into bpf_reg_state if possible
* Returns:
* EFAULT - there is a verifier bug. Abort verification.
* EINVAL - cannot convert BTF.
* 0 - Successfully converted BTF into bpf_reg_state
* (either PTR_TO_CTX or SCALAR_VALUE).
*/
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
struct bpf_reg_state *reg)
{
struct bpf_verifier_log *log = &env->log;
struct bpf_prog *prog = env->prog;
enum bpf_prog_type prog_type = prog->type;
struct btf *btf = prog->aux->btf;
const struct btf_param *args;
const struct btf_type *t;
u32 i, nargs, btf_id;
const char *tname;
if (!prog->aux->func_info ||
prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
bpf_log(log, "Verifier bug\n");
return -EFAULT;
}
btf_id = prog->aux->func_info[subprog].type_id;
if (!btf_id) {
bpf_log(log, "Global functions need valid BTF\n");
return -EFAULT;
}
t = btf_type_by_id(btf, btf_id);
if (!t || !btf_type_is_func(t)) {
/* These checks were already done by the verifier while loading
* struct bpf_func_info
*/
bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
subprog);
return -EFAULT;
}
tname = btf_name_by_offset(btf, t->name_off);
if (log->level & BPF_LOG_LEVEL)
bpf_log(log, "Validating %s() func#%d...\n",
tname, subprog);
if (prog->aux->func_info_aux[subprog].unreliable) {
bpf_log(log, "Verifier bug in function %s()\n", tname);
return -EFAULT;
}
if (prog_type == BPF_PROG_TYPE_EXT)
prog_type = prog->aux->linked_prog->type;
t = btf_type_by_id(btf, t->type);
if (!t || !btf_type_is_func_proto(t)) {
bpf_log(log, "Invalid type of function %s()\n", tname);
return -EFAULT;
}
args = (const struct btf_param *)(t + 1);
nargs = btf_type_vlen(t);
if (nargs > 5) {
bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
tname, nargs);
return -EINVAL;
}
/* check that function returns int */
t = btf_type_by_id(btf, t->type);
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
bpf_log(log,
"Global function %s() doesn't return scalar. Only those are supported.\n",
tname);
return -EINVAL;
}
/* Convert BTF function arguments into verifier types.
* Only PTR_TO_CTX and SCALAR are supported atm.
*/
for (i = 0; i < nargs; i++) {
t = btf_type_by_id(btf, args[i].type);
while (btf_type_is_modifier(t))
t = btf_type_by_id(btf, t->type);
if (btf_type_is_int(t) || btf_type_is_enum(t)) {
reg[i + 1].type = SCALAR_VALUE;
continue;
}
if (btf_type_is_ptr(t) &&
btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
reg[i + 1].type = PTR_TO_CTX;
continue;
}
bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
return -EINVAL;
}
return 0;
}
void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
struct seq_file *m)
{
const struct btf_type *t = btf_type_by_id(btf, type_id);
btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
}
#ifdef CONFIG_PROC_FS
static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
{
const struct btf *btf = filp->private_data;
seq_printf(m, "btf_id:\t%u\n", btf->id);
}
#endif
static int btf_release(struct inode *inode, struct file *filp)
{
btf_put(filp->private_data);
return 0;
}
const struct file_operations btf_fops = {
#ifdef CONFIG_PROC_FS
.show_fdinfo = bpf_btf_show_fdinfo,
#endif
.release = btf_release,
};
static int __btf_new_fd(struct btf *btf)
{
return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
}
int btf_new_fd(const union bpf_attr *attr)
{
struct btf *btf;
int ret;
btf = btf_parse(u64_to_user_ptr(attr->btf),
attr->btf_size, attr->btf_log_level,
u64_to_user_ptr(attr->btf_log_buf),
attr->btf_log_size);
if (IS_ERR(btf))
return PTR_ERR(btf);
ret = btf_alloc_id(btf);
if (ret) {
btf_free(btf);
return ret;
}
/*
* The BTF ID is published to the userspace.
* All BTF free must go through call_rcu() from
* now on (i.e. free by calling btf_put()).
*/
ret = __btf_new_fd(btf);
if (ret < 0)
btf_put(btf);
return ret;
}
struct btf *btf_get_by_fd(int fd)
{
struct btf *btf;
struct fd f;
f = fdget(fd);
if (!f.file)
return ERR_PTR(-EBADF);
if (f.file->f_op != &btf_fops) {
fdput(f);
return ERR_PTR(-EINVAL);
}
btf = f.file->private_data;
refcount_inc(&btf->refcnt);
fdput(f);
return btf;
}
int btf_get_info_by_fd(const struct btf *btf,
const union bpf_attr *attr,
union bpf_attr __user *uattr)
{
struct bpf_btf_info __user *uinfo;
struct bpf_btf_info info = {};
u32 info_copy, btf_copy;
void __user *ubtf;
u32 uinfo_len;
uinfo = u64_to_user_ptr(attr->info.info);
uinfo_len = attr->info.info_len;
info_copy = min_t(u32, uinfo_len, sizeof(info));
if (copy_from_user(&info, uinfo, info_copy))
return -EFAULT;
info.id = btf->id;
ubtf = u64_to_user_ptr(info.btf);
btf_copy = min_t(u32, btf->data_size, info.btf_size);
if (copy_to_user(ubtf, btf->data, btf_copy))
return -EFAULT;
info.btf_size = btf->data_size;
if (copy_to_user(uinfo, &info, info_copy) ||
put_user(info_copy, &uattr->info.info_len))
return -EFAULT;
return 0;
}
int btf_get_fd_by_id(u32 id)
{
struct btf *btf;
int fd;
rcu_read_lock();
btf = idr_find(&btf_idr, id);
if (!btf || !refcount_inc_not_zero(&btf->refcnt))
btf = ERR_PTR(-ENOENT);
rcu_read_unlock();
if (IS_ERR(btf))
return PTR_ERR(btf);
fd = __btf_new_fd(btf);
if (fd < 0)
btf_put(btf);
return fd;
}
u32 btf_id(const struct btf *btf)
{
return btf->id;
}