mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 17:56:32 +07:00
2874c5fd28
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 3029 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
1294 lines
32 KiB
C
1294 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Broadcom Starfighter 2 DSA switch CFP support
|
|
*
|
|
* Copyright (C) 2016, Broadcom
|
|
*/
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/if_ether.h>
|
|
#include <linux/in.h>
|
|
#include <linux/netdevice.h>
|
|
#include <net/dsa.h>
|
|
#include <linux/bitmap.h>
|
|
#include <net/flow_offload.h>
|
|
|
|
#include "bcm_sf2.h"
|
|
#include "bcm_sf2_regs.h"
|
|
|
|
struct cfp_rule {
|
|
int port;
|
|
struct ethtool_rx_flow_spec fs;
|
|
struct list_head next;
|
|
};
|
|
|
|
struct cfp_udf_slice_layout {
|
|
u8 slices[UDFS_PER_SLICE];
|
|
u32 mask_value;
|
|
u32 base_offset;
|
|
};
|
|
|
|
struct cfp_udf_layout {
|
|
struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES];
|
|
};
|
|
|
|
static const u8 zero_slice[UDFS_PER_SLICE] = { };
|
|
|
|
/* UDF slices layout for a TCPv4/UDPv4 specification */
|
|
static const struct cfp_udf_layout udf_tcpip4_layout = {
|
|
.udfs = {
|
|
[1] = {
|
|
.slices = {
|
|
/* End of L2, byte offset 12, src IP[0:15] */
|
|
CFG_UDF_EOL2 | 6,
|
|
/* End of L2, byte offset 14, src IP[16:31] */
|
|
CFG_UDF_EOL2 | 7,
|
|
/* End of L2, byte offset 16, dst IP[0:15] */
|
|
CFG_UDF_EOL2 | 8,
|
|
/* End of L2, byte offset 18, dst IP[16:31] */
|
|
CFG_UDF_EOL2 | 9,
|
|
/* End of L3, byte offset 0, src port */
|
|
CFG_UDF_EOL3 | 0,
|
|
/* End of L3, byte offset 2, dst port */
|
|
CFG_UDF_EOL3 | 1,
|
|
0, 0, 0
|
|
},
|
|
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
.base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET,
|
|
},
|
|
},
|
|
};
|
|
|
|
/* UDF slices layout for a TCPv6/UDPv6 specification */
|
|
static const struct cfp_udf_layout udf_tcpip6_layout = {
|
|
.udfs = {
|
|
[0] = {
|
|
.slices = {
|
|
/* End of L2, byte offset 8, src IP[0:15] */
|
|
CFG_UDF_EOL2 | 4,
|
|
/* End of L2, byte offset 10, src IP[16:31] */
|
|
CFG_UDF_EOL2 | 5,
|
|
/* End of L2, byte offset 12, src IP[32:47] */
|
|
CFG_UDF_EOL2 | 6,
|
|
/* End of L2, byte offset 14, src IP[48:63] */
|
|
CFG_UDF_EOL2 | 7,
|
|
/* End of L2, byte offset 16, src IP[64:79] */
|
|
CFG_UDF_EOL2 | 8,
|
|
/* End of L2, byte offset 18, src IP[80:95] */
|
|
CFG_UDF_EOL2 | 9,
|
|
/* End of L2, byte offset 20, src IP[96:111] */
|
|
CFG_UDF_EOL2 | 10,
|
|
/* End of L2, byte offset 22, src IP[112:127] */
|
|
CFG_UDF_EOL2 | 11,
|
|
/* End of L3, byte offset 0, src port */
|
|
CFG_UDF_EOL3 | 0,
|
|
},
|
|
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
.base_offset = CORE_UDF_0_B_0_8_PORT_0,
|
|
},
|
|
[3] = {
|
|
.slices = {
|
|
/* End of L2, byte offset 24, dst IP[0:15] */
|
|
CFG_UDF_EOL2 | 12,
|
|
/* End of L2, byte offset 26, dst IP[16:31] */
|
|
CFG_UDF_EOL2 | 13,
|
|
/* End of L2, byte offset 28, dst IP[32:47] */
|
|
CFG_UDF_EOL2 | 14,
|
|
/* End of L2, byte offset 30, dst IP[48:63] */
|
|
CFG_UDF_EOL2 | 15,
|
|
/* End of L2, byte offset 32, dst IP[64:79] */
|
|
CFG_UDF_EOL2 | 16,
|
|
/* End of L2, byte offset 34, dst IP[80:95] */
|
|
CFG_UDF_EOL2 | 17,
|
|
/* End of L2, byte offset 36, dst IP[96:111] */
|
|
CFG_UDF_EOL2 | 18,
|
|
/* End of L2, byte offset 38, dst IP[112:127] */
|
|
CFG_UDF_EOL2 | 19,
|
|
/* End of L3, byte offset 2, dst port */
|
|
CFG_UDF_EOL3 | 1,
|
|
},
|
|
.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
|
|
.base_offset = CORE_UDF_0_D_0_11_PORT_0,
|
|
},
|
|
},
|
|
};
|
|
|
|
static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
|
|
{
|
|
unsigned int i, count = 0;
|
|
|
|
for (i = 0; i < UDFS_PER_SLICE; i++) {
|
|
if (layout[i] != 0)
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static inline u32 udf_upper_bits(unsigned int num_udf)
|
|
{
|
|
return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1);
|
|
}
|
|
|
|
static inline u32 udf_lower_bits(unsigned int num_udf)
|
|
{
|
|
return (u8)GENMASK(num_udf - 1, 0);
|
|
}
|
|
|
|
static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l,
|
|
unsigned int start)
|
|
{
|
|
const struct cfp_udf_slice_layout *slice_layout;
|
|
unsigned int slice_idx;
|
|
|
|
for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) {
|
|
slice_layout = &l->udfs[slice_idx];
|
|
if (memcmp(slice_layout->slices, zero_slice,
|
|
sizeof(zero_slice)))
|
|
break;
|
|
}
|
|
|
|
return slice_idx;
|
|
}
|
|
|
|
static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
|
|
const struct cfp_udf_layout *layout,
|
|
unsigned int slice_num)
|
|
{
|
|
u32 offset = layout->udfs[slice_num].base_offset;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < UDFS_PER_SLICE; i++)
|
|
core_writel(priv, layout->udfs[slice_num].slices[i],
|
|
offset + i * 4);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
|
|
reg |= OP_STR_DONE | op;
|
|
core_writel(priv, reg, CORE_CFP_ACC);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
if (!(reg & OP_STR_DONE))
|
|
break;
|
|
|
|
cpu_relax();
|
|
} while (timeout--);
|
|
|
|
if (!timeout)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
|
|
unsigned int addr)
|
|
{
|
|
u32 reg;
|
|
|
|
WARN_ON(addr >= priv->num_cfp_rules);
|
|
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
|
|
reg |= addr << XCESS_ADDR_SHIFT;
|
|
core_writel(priv, reg, CORE_CFP_ACC);
|
|
}
|
|
|
|
static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
|
|
{
|
|
/* Entry #0 is reserved */
|
|
return priv->num_cfp_rules - 1;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv,
|
|
unsigned int rule_index,
|
|
int src_port,
|
|
unsigned int port_num,
|
|
unsigned int queue_num,
|
|
bool fwd_map_change)
|
|
{
|
|
int ret;
|
|
u32 reg;
|
|
|
|
/* Replace ARL derived destination with DST_MAP derived, define
|
|
* which port and queue this should be forwarded to.
|
|
*/
|
|
if (fwd_map_change)
|
|
reg = CHANGE_FWRD_MAP_IB_REP_ARL |
|
|
BIT(port_num + DST_MAP_IB_SHIFT) |
|
|
CHANGE_TC | queue_num << NEW_TC_SHIFT;
|
|
else
|
|
reg = 0;
|
|
|
|
/* Enable looping back to the original port */
|
|
if (src_port == port_num)
|
|
reg |= LOOP_BK_EN;
|
|
|
|
core_writel(priv, reg, CORE_ACT_POL_DATA0);
|
|
|
|
/* Set classification ID that needs to be put in Broadcom tag */
|
|
core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1);
|
|
|
|
core_writel(priv, 0, CORE_ACT_POL_DATA2);
|
|
|
|
/* Configure policer RAM now */
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
|
|
if (ret) {
|
|
pr_err("Policer entry at %d failed\n", rule_index);
|
|
return ret;
|
|
}
|
|
|
|
/* Disable the policer */
|
|
core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);
|
|
|
|
/* Now the rate meter */
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
|
|
if (ret) {
|
|
pr_err("Meter entry at %d failed\n", rule_index);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv,
|
|
struct flow_dissector_key_ipv4_addrs *addrs,
|
|
struct flow_dissector_key_ports *ports,
|
|
unsigned int slice_num,
|
|
bool mask)
|
|
{
|
|
u32 reg, offset;
|
|
|
|
/* C-Tag [31:24]
|
|
* UDF_n_A8 [23:8]
|
|
* UDF_n_A7 [7:0]
|
|
*/
|
|
reg = 0;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(4);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(4);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A7 [31:24]
|
|
* UDF_n_A6 [23:8]
|
|
* UDF_n_A5 [7:0]
|
|
*/
|
|
reg = be16_to_cpu(ports->dst) >> 8;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(3);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(3);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A5 [31:24]
|
|
* UDF_n_A4 [23:8]
|
|
* UDF_n_A3 [7:0]
|
|
*/
|
|
reg = (be16_to_cpu(ports->dst) & 0xff) << 24 |
|
|
(u32)be16_to_cpu(ports->src) << 8 |
|
|
(be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(2);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(2);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A3 [31:24]
|
|
* UDF_n_A2 [23:8]
|
|
* UDF_n_A1 [7:0]
|
|
*/
|
|
reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 |
|
|
(u32)(be32_to_cpu(addrs->dst) >> 16) << 8 |
|
|
(be32_to_cpu(addrs->src) & 0x0000ff00) >> 8;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(1);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(1);
|
|
core_writel(priv, reg, offset);
|
|
|
|
/* UDF_n_A1 [31:24]
|
|
* UDF_n_A0 [23:8]
|
|
* Reserved [7:4]
|
|
* Slice ID [3:2]
|
|
* Slice valid [1:0]
|
|
*/
|
|
reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 |
|
|
(u32)(be32_to_cpu(addrs->src) >> 16) << 8 |
|
|
SLICE_NUM(slice_num) | SLICE_VALID;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(0);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(0);
|
|
core_writel(priv, reg, offset);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port,
|
|
unsigned int port_num,
|
|
unsigned int queue_num,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct ethtool_rx_flow_spec_input input = {};
|
|
const struct cfp_udf_layout *layout;
|
|
unsigned int slice_num, rule_index;
|
|
struct ethtool_rx_flow_rule *flow;
|
|
struct flow_match_ipv4_addrs ipv4;
|
|
struct flow_match_ports ports;
|
|
struct flow_match_ip ip;
|
|
u8 ip_proto, ip_frag;
|
|
u8 num_udf;
|
|
u32 reg;
|
|
int ret;
|
|
|
|
switch (fs->flow_type & ~FLOW_EXT) {
|
|
case TCP_V4_FLOW:
|
|
ip_proto = IPPROTO_TCP;
|
|
break;
|
|
case UDP_V4_FLOW:
|
|
ip_proto = IPPROTO_UDP;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
|
|
|
|
/* Locate the first rule available */
|
|
if (fs->location == RX_CLS_LOC_ANY)
|
|
rule_index = find_first_zero_bit(priv->cfp.used,
|
|
priv->num_cfp_rules);
|
|
else
|
|
rule_index = fs->location;
|
|
|
|
if (rule_index > bcm_sf2_cfp_rule_size(priv))
|
|
return -ENOSPC;
|
|
|
|
input.fs = fs;
|
|
flow = ethtool_rx_flow_rule_create(&input);
|
|
if (IS_ERR(flow))
|
|
return PTR_ERR(flow);
|
|
|
|
flow_rule_match_ipv4_addrs(flow->rule, &ipv4);
|
|
flow_rule_match_ports(flow->rule, &ports);
|
|
flow_rule_match_ip(flow->rule, &ip);
|
|
|
|
layout = &udf_tcpip4_layout;
|
|
/* We only use one UDF slice for now */
|
|
slice_num = bcm_sf2_get_slice_number(layout, 0);
|
|
if (slice_num == UDF_NUM_SLICES) {
|
|
ret = -EINVAL;
|
|
goto out_err_flow_rule;
|
|
}
|
|
|
|
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
|
/* Apply the UDF layout for this filter */
|
|
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
|
/* Apply to all packets received through this port */
|
|
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
|
|
|
|
/* Source port map match */
|
|
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
|
|
|
|
/* S-Tag status [31:30]
|
|
* C-Tag status [29:28]
|
|
* L2 framing [27:26]
|
|
* L3 framing [25:24]
|
|
* IP ToS [23:16]
|
|
* IP proto [15:08]
|
|
* IP Fragm [7]
|
|
* Non 1st frag [6]
|
|
* IP Authen [5]
|
|
* TTL range [4:3]
|
|
* PPPoE session [2]
|
|
* Reserved [1]
|
|
* UDF_Valid[8] [0]
|
|
*/
|
|
core_writel(priv, ip.key->tos << IPTOS_SHIFT |
|
|
ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT |
|
|
udf_upper_bits(num_udf),
|
|
CORE_CFP_DATA_PORT(6));
|
|
|
|
/* Mask with the specific layout for IPv4 packets */
|
|
core_writel(priv, layout->udfs[slice_num].mask_value |
|
|
udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6));
|
|
|
|
/* UDF_Valid[7:0] [31:24]
|
|
* S-Tag [23:8]
|
|
* C-Tag [7:0]
|
|
*/
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
|
|
|
|
/* Mask all but valid UDFs */
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
|
|
|
|
/* Program the match and the mask */
|
|
bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, slice_num, false);
|
|
bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, SLICE_NUM_MASK, true);
|
|
|
|
/* Insert into TCAM now */
|
|
bcm_sf2_cfp_rule_addr_set(priv, rule_index);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret) {
|
|
pr_err("TCAM entry at addr %d failed\n", rule_index);
|
|
goto out_err_flow_rule;
|
|
}
|
|
|
|
/* Insert into Action and policer RAMs now */
|
|
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num,
|
|
queue_num, true);
|
|
if (ret)
|
|
goto out_err_flow_rule;
|
|
|
|
/* Turn on CFP for this rule now */
|
|
reg = core_readl(priv, CORE_CFP_CTL_REG);
|
|
reg |= BIT(port);
|
|
core_writel(priv, reg, CORE_CFP_CTL_REG);
|
|
|
|
/* Flag the rule as being used and return it */
|
|
set_bit(rule_index, priv->cfp.used);
|
|
set_bit(rule_index, priv->cfp.unique);
|
|
fs->location = rule_index;
|
|
|
|
return 0;
|
|
|
|
out_err_flow_rule:
|
|
ethtool_rx_flow_rule_destroy(flow);
|
|
return ret;
|
|
}
|
|
|
|
static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv,
|
|
const __be32 *ip6_addr, const __be16 port,
|
|
unsigned int slice_num,
|
|
bool mask)
|
|
{
|
|
u32 reg, tmp, val, offset;
|
|
|
|
/* C-Tag [31:24]
|
|
* UDF_n_B8 [23:8] (port)
|
|
* UDF_n_B7 (upper) [7:0] (addr[15:8])
|
|
*/
|
|
reg = be32_to_cpu(ip6_addr[3]);
|
|
val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(4);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(4);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B7 (lower) [31:24] (addr[7:0])
|
|
* UDF_n_B6 [23:8] (addr[31:16])
|
|
* UDF_n_B5 (upper) [7:0] (addr[47:40])
|
|
*/
|
|
tmp = be32_to_cpu(ip6_addr[2]);
|
|
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
|
|
((tmp >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(3);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(3);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B5 (lower) [31:24] (addr[39:32])
|
|
* UDF_n_B4 [23:8] (addr[63:48])
|
|
* UDF_n_B3 (upper) [7:0] (addr[79:72])
|
|
*/
|
|
reg = be32_to_cpu(ip6_addr[1]);
|
|
val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
|
|
((reg >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(2);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(2);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B3 (lower) [31:24] (addr[71:64])
|
|
* UDF_n_B2 [23:8] (addr[95:80])
|
|
* UDF_n_B1 (upper) [7:0] (addr[111:104])
|
|
*/
|
|
tmp = be32_to_cpu(ip6_addr[0]);
|
|
val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 |
|
|
((tmp >> 8) & 0xff);
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(1);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(1);
|
|
core_writel(priv, val, offset);
|
|
|
|
/* UDF_n_B1 (lower) [31:24] (addr[103:96])
|
|
* UDF_n_B0 [23:8] (addr[127:112])
|
|
* Reserved [7:4]
|
|
* Slice ID [3:2]
|
|
* Slice valid [1:0]
|
|
*/
|
|
reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 |
|
|
SLICE_NUM(slice_num) | SLICE_VALID;
|
|
if (mask)
|
|
offset = CORE_CFP_MASK_PORT(0);
|
|
else
|
|
offset = CORE_CFP_DATA_PORT(0);
|
|
core_writel(priv, reg, offset);
|
|
}
|
|
|
|
static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv,
|
|
int port, u32 location)
|
|
{
|
|
struct cfp_rule *rule = NULL;
|
|
|
|
list_for_each_entry(rule, &priv->cfp.rules_list, next) {
|
|
if (rule->port == port && rule->fs.location == location)
|
|
break;
|
|
}
|
|
|
|
return rule;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct cfp_rule *rule = NULL;
|
|
size_t fs_size = 0;
|
|
int ret = 1;
|
|
|
|
if (list_empty(&priv->cfp.rules_list))
|
|
return ret;
|
|
|
|
list_for_each_entry(rule, &priv->cfp.rules_list, next) {
|
|
ret = 1;
|
|
if (rule->port != port)
|
|
continue;
|
|
|
|
if (rule->fs.flow_type != fs->flow_type ||
|
|
rule->fs.ring_cookie != fs->ring_cookie ||
|
|
rule->fs.m_ext.data[0] != fs->m_ext.data[0])
|
|
continue;
|
|
|
|
switch (fs->flow_type & ~FLOW_EXT) {
|
|
case TCP_V6_FLOW:
|
|
case UDP_V6_FLOW:
|
|
fs_size = sizeof(struct ethtool_tcpip6_spec);
|
|
break;
|
|
case TCP_V4_FLOW:
|
|
case UDP_V4_FLOW:
|
|
fs_size = sizeof(struct ethtool_tcpip4_spec);
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size);
|
|
ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size);
|
|
if (ret == 0)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port,
|
|
unsigned int port_num,
|
|
unsigned int queue_num,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct ethtool_rx_flow_spec_input input = {};
|
|
unsigned int slice_num, rule_index[2];
|
|
const struct cfp_udf_layout *layout;
|
|
struct ethtool_rx_flow_rule *flow;
|
|
struct flow_match_ipv6_addrs ipv6;
|
|
struct flow_match_ports ports;
|
|
u8 ip_proto, ip_frag;
|
|
int ret = 0;
|
|
u8 num_udf;
|
|
u32 reg;
|
|
|
|
switch (fs->flow_type & ~FLOW_EXT) {
|
|
case TCP_V6_FLOW:
|
|
ip_proto = IPPROTO_TCP;
|
|
break;
|
|
case UDP_V6_FLOW:
|
|
ip_proto = IPPROTO_UDP;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ip_frag = be32_to_cpu(fs->m_ext.data[0]);
|
|
|
|
layout = &udf_tcpip6_layout;
|
|
slice_num = bcm_sf2_get_slice_number(layout, 0);
|
|
if (slice_num == UDF_NUM_SLICES)
|
|
return -EINVAL;
|
|
|
|
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
|
/* Negotiate two indexes, one for the second half which we are chained
|
|
* from, which is what we will return to user-space, and a second one
|
|
* which is used to store its first half. That first half does not
|
|
* allow any choice of placement, so it just needs to find the next
|
|
* available bit. We return the second half as fs->location because
|
|
* that helps with the rule lookup later on since the second half is
|
|
* chained from its first half, we can easily identify IPv6 CFP rules
|
|
* by looking whether they carry a CHAIN_ID.
|
|
*
|
|
* We also want the second half to have a lower rule_index than its
|
|
* first half because the HW search is by incrementing addresses.
|
|
*/
|
|
if (fs->location == RX_CLS_LOC_ANY)
|
|
rule_index[1] = find_first_zero_bit(priv->cfp.used,
|
|
priv->num_cfp_rules);
|
|
else
|
|
rule_index[1] = fs->location;
|
|
if (rule_index[1] > bcm_sf2_cfp_rule_size(priv))
|
|
return -ENOSPC;
|
|
|
|
/* Flag it as used (cleared on error path) such that we can immediately
|
|
* obtain a second one to chain from.
|
|
*/
|
|
set_bit(rule_index[1], priv->cfp.used);
|
|
|
|
rule_index[0] = find_first_zero_bit(priv->cfp.used,
|
|
priv->num_cfp_rules);
|
|
if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) {
|
|
ret = -ENOSPC;
|
|
goto out_err;
|
|
}
|
|
|
|
input.fs = fs;
|
|
flow = ethtool_rx_flow_rule_create(&input);
|
|
if (IS_ERR(flow)) {
|
|
ret = PTR_ERR(flow);
|
|
goto out_err;
|
|
}
|
|
flow_rule_match_ipv6_addrs(flow->rule, &ipv6);
|
|
flow_rule_match_ports(flow->rule, &ports);
|
|
|
|
/* Apply the UDF layout for this filter */
|
|
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
|
/* Apply to all packets received through this port */
|
|
core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));
|
|
|
|
/* Source port map match */
|
|
core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));
|
|
|
|
/* S-Tag status [31:30]
|
|
* C-Tag status [29:28]
|
|
* L2 framing [27:26]
|
|
* L3 framing [25:24]
|
|
* IP ToS [23:16]
|
|
* IP proto [15:08]
|
|
* IP Fragm [7]
|
|
* Non 1st frag [6]
|
|
* IP Authen [5]
|
|
* TTL range [4:3]
|
|
* PPPoE session [2]
|
|
* Reserved [1]
|
|
* UDF_Valid[8] [0]
|
|
*/
|
|
reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT |
|
|
ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf);
|
|
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
|
|
|
|
/* Mask with the specific layout for IPv6 packets including
|
|
* UDF_Valid[8]
|
|
*/
|
|
reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf);
|
|
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
|
|
|
|
/* UDF_Valid[7:0] [31:24]
|
|
* S-Tag [23:8]
|
|
* C-Tag [7:0]
|
|
*/
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_DATA_PORT(5));
|
|
|
|
/* Mask all but valid UDFs */
|
|
core_writel(priv, udf_lower_bits(num_udf) << 24, CORE_CFP_MASK_PORT(5));
|
|
|
|
/* Slice the IPv6 source address and port */
|
|
bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32,
|
|
ports.key->src, slice_num, false);
|
|
bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32,
|
|
ports.mask->src, SLICE_NUM_MASK, true);
|
|
|
|
/* Insert into TCAM now because we need to insert a second rule */
|
|
bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret) {
|
|
pr_err("TCAM entry at addr %d failed\n", rule_index[0]);
|
|
goto out_err_flow_rule;
|
|
}
|
|
|
|
/* Insert into Action and policer RAMs now */
|
|
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num,
|
|
queue_num, false);
|
|
if (ret)
|
|
goto out_err_flow_rule;
|
|
|
|
/* Now deal with the second slice to chain this rule */
|
|
slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1);
|
|
if (slice_num == UDF_NUM_SLICES) {
|
|
ret = -EINVAL;
|
|
goto out_err_flow_rule;
|
|
}
|
|
|
|
num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices);
|
|
|
|
/* Apply the UDF layout for this filter */
|
|
bcm_sf2_cfp_udf_set(priv, layout, slice_num);
|
|
|
|
/* Chained rule, source port match is coming from the rule we are
|
|
* chained from.
|
|
*/
|
|
core_writel(priv, 0, CORE_CFP_DATA_PORT(7));
|
|
core_writel(priv, 0, CORE_CFP_MASK_PORT(7));
|
|
|
|
/*
|
|
* CHAIN ID [31:24] chain to previous slice
|
|
* Reserved [23:20]
|
|
* UDF_Valid[11:8] [19:16]
|
|
* UDF_Valid[7:0] [15:8]
|
|
* UDF_n_D11 [7:0]
|
|
*/
|
|
reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 |
|
|
udf_lower_bits(num_udf) << 8;
|
|
core_writel(priv, reg, CORE_CFP_DATA_PORT(6));
|
|
|
|
/* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */
|
|
reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 |
|
|
udf_lower_bits(num_udf) << 8;
|
|
core_writel(priv, reg, CORE_CFP_MASK_PORT(6));
|
|
|
|
/* Don't care */
|
|
core_writel(priv, 0, CORE_CFP_DATA_PORT(5));
|
|
|
|
/* Mask all */
|
|
core_writel(priv, 0, CORE_CFP_MASK_PORT(5));
|
|
|
|
bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32,
|
|
ports.key->dst, slice_num, false);
|
|
bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32,
|
|
ports.key->dst, SLICE_NUM_MASK, true);
|
|
|
|
/* Insert into TCAM now */
|
|
bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret) {
|
|
pr_err("TCAM entry at addr %d failed\n", rule_index[1]);
|
|
goto out_err_flow_rule;
|
|
}
|
|
|
|
/* Insert into Action and policer RAMs now, set chain ID to
|
|
* the one we are chained to
|
|
*/
|
|
ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num,
|
|
queue_num, true);
|
|
if (ret)
|
|
goto out_err_flow_rule;
|
|
|
|
/* Turn on CFP for this rule now */
|
|
reg = core_readl(priv, CORE_CFP_CTL_REG);
|
|
reg |= BIT(port);
|
|
core_writel(priv, reg, CORE_CFP_CTL_REG);
|
|
|
|
/* Flag the second half rule as being used now, return it as the
|
|
* location, and flag it as unique while dumping rules
|
|
*/
|
|
set_bit(rule_index[0], priv->cfp.used);
|
|
set_bit(rule_index[1], priv->cfp.unique);
|
|
fs->location = rule_index[1];
|
|
|
|
return ret;
|
|
|
|
out_err_flow_rule:
|
|
ethtool_rx_flow_rule_destroy(flow);
|
|
out_err:
|
|
clear_bit(rule_index[1], priv->cfp.used);
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
s8 cpu_port = ds->ports[port].cpu_dp->index;
|
|
__u64 ring_cookie = fs->ring_cookie;
|
|
unsigned int queue_num, port_num;
|
|
int ret;
|
|
|
|
/* This rule is a Wake-on-LAN filter and we must specifically
|
|
* target the CPU port in order for it to be working.
|
|
*/
|
|
if (ring_cookie == RX_CLS_FLOW_WAKE)
|
|
ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES;
|
|
|
|
/* We do not support discarding packets, check that the
|
|
* destination port is enabled and that we are within the
|
|
* number of ports supported by the switch
|
|
*/
|
|
port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES;
|
|
|
|
if (ring_cookie == RX_CLS_FLOW_DISC ||
|
|
!(dsa_is_user_port(ds, port_num) ||
|
|
dsa_is_cpu_port(ds, port_num)) ||
|
|
port_num >= priv->hw_params.num_ports)
|
|
return -EINVAL;
|
|
/*
|
|
* We have a small oddity where Port 6 just does not have a
|
|
* valid bit here (so we substract by one).
|
|
*/
|
|
queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES;
|
|
if (port_num >= 7)
|
|
port_num -= 1;
|
|
|
|
switch (fs->flow_type & ~FLOW_EXT) {
|
|
case TCP_V4_FLOW:
|
|
case UDP_V4_FLOW:
|
|
ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num,
|
|
queue_num, fs);
|
|
break;
|
|
case TCP_V6_FLOW:
|
|
case UDP_V6_FLOW:
|
|
ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num,
|
|
queue_num, fs);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
|
|
struct ethtool_rx_flow_spec *fs)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct cfp_rule *rule = NULL;
|
|
int ret = -EINVAL;
|
|
|
|
/* Check for unsupported extensions */
|
|
if ((fs->flow_type & FLOW_EXT) && (fs->m_ext.vlan_etype ||
|
|
fs->m_ext.data[1]))
|
|
return -EINVAL;
|
|
|
|
if (fs->location != RX_CLS_LOC_ANY && fs->location >= CFP_NUM_RULES)
|
|
return -EINVAL;
|
|
|
|
if (fs->location != RX_CLS_LOC_ANY &&
|
|
test_bit(fs->location, priv->cfp.used))
|
|
return -EBUSY;
|
|
|
|
if (fs->location != RX_CLS_LOC_ANY &&
|
|
fs->location > bcm_sf2_cfp_rule_size(priv))
|
|
return -EINVAL;
|
|
|
|
ret = bcm_sf2_cfp_rule_cmp(priv, port, fs);
|
|
if (ret == 0)
|
|
return -EEXIST;
|
|
|
|
rule = kzalloc(sizeof(*rule), GFP_KERNEL);
|
|
if (!rule)
|
|
return -ENOMEM;
|
|
|
|
ret = bcm_sf2_cfp_rule_insert(ds, port, fs);
|
|
if (ret) {
|
|
kfree(rule);
|
|
return ret;
|
|
}
|
|
|
|
rule->port = port;
|
|
memcpy(&rule->fs, fs, sizeof(*fs));
|
|
list_add_tail(&rule->next, &priv->cfp.rules_list);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port,
|
|
u32 loc, u32 *next_loc)
|
|
{
|
|
int ret;
|
|
u32 reg;
|
|
|
|
/* Indicate which rule we want to read */
|
|
bcm_sf2_cfp_rule_addr_set(priv, loc);
|
|
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check if this is possibly an IPv6 rule that would
|
|
* indicate we need to delete its companion rule
|
|
* as well
|
|
*/
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
|
|
if (next_loc)
|
|
*next_loc = (reg >> 24) & CHAIN_ID_MASK;
|
|
|
|
/* Clear its valid bits */
|
|
reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
|
|
reg &= ~SLICE_VALID;
|
|
core_writel(priv, reg, CORE_CFP_DATA_PORT(0));
|
|
|
|
/* Write back this entry into the TCAM now */
|
|
ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
clear_bit(loc, priv->cfp.used);
|
|
clear_bit(loc, priv->cfp.unique);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port,
|
|
u32 loc)
|
|
{
|
|
u32 next_loc = 0;
|
|
int ret;
|
|
|
|
ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* If this was an IPv6 rule, delete is companion rule too */
|
|
if (next_loc)
|
|
ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc)
|
|
{
|
|
struct cfp_rule *rule;
|
|
int ret;
|
|
|
|
if (loc >= CFP_NUM_RULES)
|
|
return -EINVAL;
|
|
|
|
/* Refuse deleting unused rules, and those that are not unique since
|
|
* that could leave IPv6 rules with one of the chained rule in the
|
|
* table.
|
|
*/
|
|
if (!test_bit(loc, priv->cfp.unique) || loc == 0)
|
|
return -EINVAL;
|
|
|
|
rule = bcm_sf2_cfp_rule_find(priv, port, loc);
|
|
if (!rule)
|
|
return -EINVAL;
|
|
|
|
ret = bcm_sf2_cfp_rule_remove(priv, port, loc);
|
|
|
|
list_del(&rule->next);
|
|
kfree(rule);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sizeof(flow->m_u); i++)
|
|
flow->m_u.hdata[i] ^= 0xff;
|
|
|
|
flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
|
|
flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
|
|
flow->m_ext.data[0] ^= cpu_to_be32(~0);
|
|
flow->m_ext.data[1] ^= cpu_to_be32(~0);
|
|
}
|
|
|
|
static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
|
|
struct ethtool_rxnfc *nfc)
|
|
{
|
|
struct cfp_rule *rule;
|
|
|
|
rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location);
|
|
if (!rule)
|
|
return -EINVAL;
|
|
|
|
memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs));
|
|
|
|
bcm_sf2_invert_masks(&nfc->fs);
|
|
|
|
/* Put the TCAM size here */
|
|
nfc->data = bcm_sf2_cfp_rule_size(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* We implement the search doing a TCAM search operation */
|
|
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
|
|
int port, struct ethtool_rxnfc *nfc,
|
|
u32 *rule_locs)
|
|
{
|
|
unsigned int index = 1, rules_cnt = 0;
|
|
|
|
for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) {
|
|
rule_locs[rules_cnt] = index;
|
|
rules_cnt++;
|
|
}
|
|
|
|
/* Put the TCAM size here */
|
|
nfc->data = bcm_sf2_cfp_rule_size(priv);
|
|
nfc->rule_cnt = rules_cnt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
|
|
struct ethtool_rxnfc *nfc, u32 *rule_locs)
|
|
{
|
|
struct net_device *p = ds->ports[port].cpu_dp->master;
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&priv->cfp.lock);
|
|
|
|
switch (nfc->cmd) {
|
|
case ETHTOOL_GRXCLSRLCNT:
|
|
/* Subtract the default, unusable rule */
|
|
nfc->rule_cnt = bitmap_weight(priv->cfp.unique,
|
|
priv->num_cfp_rules) - 1;
|
|
/* We support specifying rule locations */
|
|
nfc->data |= RX_CLS_LOC_SPECIAL;
|
|
break;
|
|
case ETHTOOL_GRXCLSRULE:
|
|
ret = bcm_sf2_cfp_rule_get(priv, port, nfc);
|
|
break;
|
|
case ETHTOOL_GRXCLSRLALL:
|
|
ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
|
|
break;
|
|
default:
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&priv->cfp.lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Pass up the commands to the attached master network device */
|
|
if (p->ethtool_ops->get_rxnfc) {
|
|
ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs);
|
|
if (ret == -EOPNOTSUPP)
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
|
|
struct ethtool_rxnfc *nfc)
|
|
{
|
|
struct net_device *p = ds->ports[port].cpu_dp->master;
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&priv->cfp.lock);
|
|
|
|
switch (nfc->cmd) {
|
|
case ETHTOOL_SRXCLSRLINS:
|
|
ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
|
|
break;
|
|
|
|
case ETHTOOL_SRXCLSRLDEL:
|
|
ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
|
|
break;
|
|
default:
|
|
ret = -EOPNOTSUPP;
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&priv->cfp.lock);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Pass up the commands to the attached master network device.
|
|
* This can fail, so rollback the operation if we need to.
|
|
*/
|
|
if (p->ethtool_ops->set_rxnfc) {
|
|
ret = p->ethtool_ops->set_rxnfc(p, nfc);
|
|
if (ret && ret != -EOPNOTSUPP) {
|
|
mutex_lock(&priv->cfp.lock);
|
|
bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
|
|
mutex_unlock(&priv->cfp.lock);
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
|
|
{
|
|
unsigned int timeout = 1000;
|
|
u32 reg;
|
|
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
reg |= TCAM_RESET;
|
|
core_writel(priv, reg, CORE_CFP_ACC);
|
|
|
|
do {
|
|
reg = core_readl(priv, CORE_CFP_ACC);
|
|
if (!(reg & TCAM_RESET))
|
|
break;
|
|
|
|
cpu_relax();
|
|
} while (timeout--);
|
|
|
|
if (!timeout)
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bcm_sf2_cfp_exit(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct cfp_rule *rule, *n;
|
|
|
|
if (list_empty(&priv->cfp.rules_list))
|
|
return;
|
|
|
|
list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next)
|
|
bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location);
|
|
}
|
|
|
|
int bcm_sf2_cfp_resume(struct dsa_switch *ds)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
struct cfp_rule *rule;
|
|
int ret = 0;
|
|
u32 reg;
|
|
|
|
if (list_empty(&priv->cfp.rules_list))
|
|
return ret;
|
|
|
|
reg = core_readl(priv, CORE_CFP_CTL_REG);
|
|
reg &= ~CFP_EN_MAP_MASK;
|
|
core_writel(priv, reg, CORE_CFP_CTL_REG);
|
|
|
|
ret = bcm_sf2_cfp_rst(priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
list_for_each_entry(rule, &priv->cfp.rules_list, next) {
|
|
ret = bcm_sf2_cfp_rule_remove(priv, rule->port,
|
|
rule->fs.location);
|
|
if (ret) {
|
|
dev_err(ds->dev, "failed to remove rule\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs);
|
|
if (ret) {
|
|
dev_err(ds->dev, "failed to restore rule\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct bcm_sf2_cfp_stat {
|
|
unsigned int offset;
|
|
unsigned int ram_loc;
|
|
const char *name;
|
|
} bcm_sf2_cfp_stats[] = {
|
|
{
|
|
.offset = CORE_STAT_GREEN_CNTR,
|
|
.ram_loc = GREEN_STAT_RAM,
|
|
.name = "Green"
|
|
},
|
|
{
|
|
.offset = CORE_STAT_YELLOW_CNTR,
|
|
.ram_loc = YELLOW_STAT_RAM,
|
|
.name = "Yellow"
|
|
},
|
|
{
|
|
.offset = CORE_STAT_RED_CNTR,
|
|
.ram_loc = RED_STAT_RAM,
|
|
.name = "Red"
|
|
},
|
|
};
|
|
|
|
void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port,
|
|
u32 stringset, uint8_t *data)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
|
|
char buf[ETH_GSTRING_LEN];
|
|
unsigned int i, j, iter;
|
|
|
|
if (stringset != ETH_SS_STATS)
|
|
return;
|
|
|
|
for (i = 1; i < priv->num_cfp_rules; i++) {
|
|
for (j = 0; j < s; j++) {
|
|
snprintf(buf, sizeof(buf),
|
|
"CFP%03d_%sCntr",
|
|
i, bcm_sf2_cfp_stats[j].name);
|
|
iter = (i - 1) * s + j;
|
|
strlcpy(data + iter * ETH_GSTRING_LEN,
|
|
buf, ETH_GSTRING_LEN);
|
|
}
|
|
}
|
|
}
|
|
|
|
void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port,
|
|
uint64_t *data)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats);
|
|
const struct bcm_sf2_cfp_stat *stat;
|
|
unsigned int i, j, iter;
|
|
struct cfp_rule *rule;
|
|
int ret;
|
|
|
|
mutex_lock(&priv->cfp.lock);
|
|
for (i = 1; i < priv->num_cfp_rules; i++) {
|
|
rule = bcm_sf2_cfp_rule_find(priv, port, i);
|
|
if (!rule)
|
|
continue;
|
|
|
|
for (j = 0; j < s; j++) {
|
|
stat = &bcm_sf2_cfp_stats[j];
|
|
|
|
bcm_sf2_cfp_rule_addr_set(priv, i);
|
|
ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ);
|
|
if (ret)
|
|
continue;
|
|
|
|
iter = (i - 1) * s + j;
|
|
data[iter] = core_readl(priv, stat->offset);
|
|
}
|
|
|
|
}
|
|
mutex_unlock(&priv->cfp.lock);
|
|
}
|
|
|
|
int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset)
|
|
{
|
|
struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
|
|
|
|
if (sset != ETH_SS_STATS)
|
|
return 0;
|
|
|
|
/* 3 counters per CFP rules */
|
|
return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats);
|
|
}
|