linux_dsm_epyc7002/drivers/net/ethernet/sfc/tx_common.c
Tom Zhao 3b4f06c715 sfc: complete the next packet when we receive a timestamp
We now ignore the "completion" event when using tx queue timestamping,
and only pay attention to the two (high and low) timestamp events. The
NIC will send a pair of timestamp events for every packet transmitted.
The current firmware may merge the completion events, and it is possible
that future versions may reorder the completion and timestamp events.
As such the completion event is not useful.

Without this patch in place a merged completion event on a queue with
timestamping will cause a "spurious TX completion" error. This affects
SFN8000-series adapters.

Signed-off-by: Tom Zhao <tzhao@solarflare.com>
Acked-by: Martin Habets <mhabets@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-05 14:56:57 -08:00

408 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
* Driver for Solarflare network controllers and boards
* Copyright 2018 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include "efx.h"
#include "nic.h"
#include "tx_common.h"
static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
{
return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
PAGE_SIZE >> EFX_TX_CB_ORDER);
}
int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int entries;
int rc;
/* Create the smallest power-of-two aligned ring */
entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
tx_queue->ptr_mask = entries - 1;
netif_dbg(efx, probe, efx->net_dev,
"creating TX queue %d size %#x mask %#x\n",
tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
/* Allocate software ring */
tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
GFP_KERNEL);
if (!tx_queue->buffer)
return -ENOMEM;
tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
if (!tx_queue->cb_page) {
rc = -ENOMEM;
goto fail1;
}
/* Allocate hardware ring */
rc = efx_nic_probe_tx(tx_queue);
if (rc)
goto fail2;
return 0;
fail2:
kfree(tx_queue->cb_page);
tx_queue->cb_page = NULL;
fail1:
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
return rc;
}
void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_nic *efx = tx_queue->efx;
netif_dbg(efx, drv, efx->net_dev,
"initialising TX queue %d\n", tx_queue->queue);
tx_queue->insert_count = 0;
tx_queue->write_count = 0;
tx_queue->packet_write_count = 0;
tx_queue->old_write_count = 0;
tx_queue->read_count = 0;
tx_queue->old_read_count = 0;
tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
tx_queue->xmit_more_available = false;
tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
tx_queue->channel == efx_ptp_channel(efx));
tx_queue->completed_timestamp_major = 0;
tx_queue->completed_timestamp_minor = 0;
tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
/* Set up default function pointers. These may get replaced by
* efx_nic_init_tx() based off NIC/queue capabilities.
*/
tx_queue->handle_tso = efx_enqueue_skb_tso;
/* Set up TX descriptor ring */
efx_nic_init_tx(tx_queue);
tx_queue->initialised = true;
}
void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
{
struct efx_tx_buffer *buffer;
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
"shutting down TX queue %d\n", tx_queue->queue);
if (!tx_queue->buffer)
return;
/* Free any buffers left in the ring */
while (tx_queue->read_count != tx_queue->write_count) {
unsigned int pkts_compl = 0, bytes_compl = 0;
buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
++tx_queue->read_count;
}
tx_queue->xmit_more_available = false;
netdev_tx_reset_queue(tx_queue->core_txq);
}
void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
{
int i;
if (!tx_queue->buffer)
return;
netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
"destroying TX queue %d\n", tx_queue->queue);
efx_nic_remove_tx(tx_queue);
if (tx_queue->cb_page) {
for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
efx_nic_free_buffer(tx_queue->efx,
&tx_queue->cb_page[i]);
kfree(tx_queue->cb_page);
tx_queue->cb_page = NULL;
}
kfree(tx_queue->buffer);
tx_queue->buffer = NULL;
}
void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
struct efx_tx_buffer *buffer,
unsigned int *pkts_compl,
unsigned int *bytes_compl)
{
if (buffer->unmap_len) {
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
DMA_TO_DEVICE);
else
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
DMA_TO_DEVICE);
buffer->unmap_len = 0;
}
if (buffer->flags & EFX_TX_BUF_SKB) {
struct sk_buff *skb = (struct sk_buff *)buffer->skb;
EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
(*pkts_compl)++;
(*bytes_compl) += skb->len;
if (tx_queue->timestamping &&
(tx_queue->completed_timestamp_major ||
tx_queue->completed_timestamp_minor)) {
struct skb_shared_hwtstamps hwtstamp;
hwtstamp.hwtstamp =
efx_ptp_nic_to_kernel_time(tx_queue);
skb_tstamp_tx(skb, &hwtstamp);
tx_queue->completed_timestamp_major = 0;
tx_queue->completed_timestamp_minor = 0;
}
dev_consume_skb_any((struct sk_buff *)buffer->skb);
netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
"TX queue %d transmission id %x complete\n",
tx_queue->queue, tx_queue->read_count);
} else if (buffer->flags & EFX_TX_BUF_XDP) {
xdp_return_frame_rx_napi(buffer->xdpf);
}
buffer->len = 0;
buffer->flags = 0;
}
/* Remove packets from the TX queue
*
* This removes packets from the TX queue, up to and including the
* specified index.
*/
static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
unsigned int index,
unsigned int *pkts_compl,
unsigned int *bytes_compl)
{
struct efx_nic *efx = tx_queue->efx;
unsigned int stop_index, read_ptr;
stop_index = (index + 1) & tx_queue->ptr_mask;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
while (read_ptr != stop_index) {
struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
if (!efx_tx_buffer_in_use(buffer)) {
netif_err(efx, tx_err, efx->net_dev,
"TX queue %d spurious TX completion id %d\n",
tx_queue->queue, read_ptr);
efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
return;
}
efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
++tx_queue->read_count;
read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
}
}
void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
{
if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
if (tx_queue->read_count == tx_queue->old_write_count) {
/* Ensure that read_count is flushed. */
smp_mb();
tx_queue->empty_read_count =
tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
}
}
}
void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
{
unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
struct efx_nic *efx = tx_queue->efx;
struct efx_tx_queue *txq2;
EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
tx_queue->pkts_compl += pkts_compl;
tx_queue->bytes_compl += bytes_compl;
if (pkts_compl > 1)
++tx_queue->merge_events;
/* See if we need to restart the netif queue. This memory
* barrier ensures that we write read_count (inside
* efx_dequeue_buffers()) before reading the queue status.
*/
smp_mb();
if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
likely(efx->port_enabled) &&
likely(netif_device_present(efx->net_dev))) {
txq2 = efx_tx_queue_partner(tx_queue);
fill_level = max(tx_queue->insert_count - tx_queue->read_count,
txq2->insert_count - txq2->read_count);
if (fill_level <= efx->txq_wake_thresh)
netif_tx_wake_queue(tx_queue->core_txq);
}
efx_xmit_done_check_empty(tx_queue);
}
/* Remove buffers put into a tx_queue for the current packet.
* None of the buffers must have an skb attached.
*/
void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
unsigned int insert_count)
{
struct efx_tx_buffer *buffer;
unsigned int bytes_compl = 0;
unsigned int pkts_compl = 0;
/* Work backwards until we hit the original insert pointer value */
while (tx_queue->insert_count != insert_count) {
--tx_queue->insert_count;
buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
}
}
struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
dma_addr_t dma_addr, size_t len)
{
const struct efx_nic_type *nic_type = tx_queue->efx->type;
struct efx_tx_buffer *buffer;
unsigned int dma_len;
/* Map the fragment taking account of NIC-dependent DMA limits. */
do {
buffer = efx_tx_queue_get_insert_buffer(tx_queue);
dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
buffer->len = dma_len;
buffer->dma_addr = dma_addr;
buffer->flags = EFX_TX_BUF_CONT;
len -= dma_len;
dma_addr += dma_len;
++tx_queue->insert_count;
} while (len);
return buffer;
}
/* Map all data from an SKB for DMA and create descriptors on the queue. */
int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
unsigned int segment_count)
{
struct efx_nic *efx = tx_queue->efx;
struct device *dma_dev = &efx->pci_dev->dev;
unsigned int frag_index, nr_frags;
dma_addr_t dma_addr, unmap_addr;
unsigned short dma_flags;
size_t len, unmap_len;
nr_frags = skb_shinfo(skb)->nr_frags;
frag_index = 0;
/* Map header data. */
len = skb_headlen(skb);
dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
dma_flags = EFX_TX_BUF_MAP_SINGLE;
unmap_len = len;
unmap_addr = dma_addr;
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
return -EIO;
if (segment_count) {
/* For TSO we need to put the header in to a separate
* descriptor. Map this separately if necessary.
*/
size_t header_len = skb_transport_header(skb) - skb->data +
(tcp_hdr(skb)->doff << 2u);
if (header_len != len) {
tx_queue->tso_long_headers++;
efx_tx_map_chunk(tx_queue, dma_addr, header_len);
len -= header_len;
dma_addr += header_len;
}
}
/* Add descriptors for each fragment. */
do {
struct efx_tx_buffer *buffer;
skb_frag_t *fragment;
buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
/* The final descriptor for a fragment is responsible for
* unmapping the whole fragment.
*/
buffer->flags = EFX_TX_BUF_CONT | dma_flags;
buffer->unmap_len = unmap_len;
buffer->dma_offset = buffer->dma_addr - unmap_addr;
if (frag_index >= nr_frags) {
/* Store SKB details with the final buffer for
* the completion.
*/
buffer->skb = skb;
buffer->flags = EFX_TX_BUF_SKB | dma_flags;
return 0;
}
/* Move on to the next fragment. */
fragment = &skb_shinfo(skb)->frags[frag_index++];
len = skb_frag_size(fragment);
dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
DMA_TO_DEVICE);
dma_flags = 0;
unmap_len = len;
unmap_addr = dma_addr;
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
return -EIO;
} while (1);
}
unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
{
/* Header and payload descriptor for each output segment, plus
* one for every input fragment boundary within a segment
*/
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
/* Possibly one more per segment for option descriptors */
if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
max_descs += EFX_TSO_MAX_SEGS;
/* Possibly more for PCIe page boundaries within input fragments */
if (PAGE_SIZE > EFX_PAGE_SIZE)
max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
return max_descs;
}