mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 02:06:40 +07:00
582a32e708
This reverts commit eff8962888
, which
deferred the processing of persistent memory reservations to a point
where the memory may have already been allocated and overwritten,
defeating the purpose.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/20190215123333.21209-3-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1091 lines
26 KiB
C
1091 lines
26 KiB
C
/*
|
|
* efi.c - EFI subsystem
|
|
*
|
|
* Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
|
|
* Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
|
|
* Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
|
|
*
|
|
* This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
|
|
* allowing the efivarfs to be mounted or the efivars module to be loaded.
|
|
* The existance of /sys/firmware/efi may also be used by userspace to
|
|
* determine that the system supports EFI.
|
|
*
|
|
* This file is released under the GPLv2.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kobject.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/random.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/ucs2_string.h>
|
|
#include <linux/memblock.h>
|
|
|
|
#include <asm/early_ioremap.h>
|
|
|
|
struct efi __read_mostly efi = {
|
|
.mps = EFI_INVALID_TABLE_ADDR,
|
|
.acpi = EFI_INVALID_TABLE_ADDR,
|
|
.acpi20 = EFI_INVALID_TABLE_ADDR,
|
|
.smbios = EFI_INVALID_TABLE_ADDR,
|
|
.smbios3 = EFI_INVALID_TABLE_ADDR,
|
|
.sal_systab = EFI_INVALID_TABLE_ADDR,
|
|
.boot_info = EFI_INVALID_TABLE_ADDR,
|
|
.hcdp = EFI_INVALID_TABLE_ADDR,
|
|
.uga = EFI_INVALID_TABLE_ADDR,
|
|
.uv_systab = EFI_INVALID_TABLE_ADDR,
|
|
.fw_vendor = EFI_INVALID_TABLE_ADDR,
|
|
.runtime = EFI_INVALID_TABLE_ADDR,
|
|
.config_table = EFI_INVALID_TABLE_ADDR,
|
|
.esrt = EFI_INVALID_TABLE_ADDR,
|
|
.properties_table = EFI_INVALID_TABLE_ADDR,
|
|
.mem_attr_table = EFI_INVALID_TABLE_ADDR,
|
|
.rng_seed = EFI_INVALID_TABLE_ADDR,
|
|
.tpm_log = EFI_INVALID_TABLE_ADDR,
|
|
.mem_reserve = EFI_INVALID_TABLE_ADDR,
|
|
};
|
|
EXPORT_SYMBOL(efi);
|
|
|
|
static unsigned long *efi_tables[] = {
|
|
&efi.mps,
|
|
&efi.acpi,
|
|
&efi.acpi20,
|
|
&efi.smbios,
|
|
&efi.smbios3,
|
|
&efi.sal_systab,
|
|
&efi.boot_info,
|
|
&efi.hcdp,
|
|
&efi.uga,
|
|
&efi.uv_systab,
|
|
&efi.fw_vendor,
|
|
&efi.runtime,
|
|
&efi.config_table,
|
|
&efi.esrt,
|
|
&efi.properties_table,
|
|
&efi.mem_attr_table,
|
|
};
|
|
|
|
struct mm_struct efi_mm = {
|
|
.mm_rb = RB_ROOT,
|
|
.mm_users = ATOMIC_INIT(2),
|
|
.mm_count = ATOMIC_INIT(1),
|
|
.mmap_sem = __RWSEM_INITIALIZER(efi_mm.mmap_sem),
|
|
.page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
|
|
.mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
|
|
.cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
|
|
};
|
|
|
|
struct workqueue_struct *efi_rts_wq;
|
|
|
|
static bool disable_runtime;
|
|
static int __init setup_noefi(char *arg)
|
|
{
|
|
disable_runtime = true;
|
|
return 0;
|
|
}
|
|
early_param("noefi", setup_noefi);
|
|
|
|
bool efi_runtime_disabled(void)
|
|
{
|
|
return disable_runtime;
|
|
}
|
|
|
|
static int __init parse_efi_cmdline(char *str)
|
|
{
|
|
if (!str) {
|
|
pr_warn("need at least one option\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (parse_option_str(str, "debug"))
|
|
set_bit(EFI_DBG, &efi.flags);
|
|
|
|
if (parse_option_str(str, "noruntime"))
|
|
disable_runtime = true;
|
|
|
|
return 0;
|
|
}
|
|
early_param("efi", parse_efi_cmdline);
|
|
|
|
struct kobject *efi_kobj;
|
|
|
|
/*
|
|
* Let's not leave out systab information that snuck into
|
|
* the efivars driver
|
|
* Note, do not add more fields in systab sysfs file as it breaks sysfs
|
|
* one value per file rule!
|
|
*/
|
|
static ssize_t systab_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
char *str = buf;
|
|
|
|
if (!kobj || !buf)
|
|
return -EINVAL;
|
|
|
|
if (efi.mps != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "MPS=0x%lx\n", efi.mps);
|
|
if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
|
|
if (efi.acpi != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
|
|
/*
|
|
* If both SMBIOS and SMBIOS3 entry points are implemented, the
|
|
* SMBIOS3 entry point shall be preferred, so we list it first to
|
|
* let applications stop parsing after the first match.
|
|
*/
|
|
if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
|
|
if (efi.smbios != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
|
|
if (efi.hcdp != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp);
|
|
if (efi.boot_info != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info);
|
|
if (efi.uga != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "UGA=0x%lx\n", efi.uga);
|
|
|
|
return str - buf;
|
|
}
|
|
|
|
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
|
|
|
|
#define EFI_FIELD(var) efi.var
|
|
|
|
#define EFI_ATTR_SHOW(name) \
|
|
static ssize_t name##_show(struct kobject *kobj, \
|
|
struct kobj_attribute *attr, char *buf) \
|
|
{ \
|
|
return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
|
|
}
|
|
|
|
EFI_ATTR_SHOW(fw_vendor);
|
|
EFI_ATTR_SHOW(runtime);
|
|
EFI_ATTR_SHOW(config_table);
|
|
|
|
static ssize_t fw_platform_size_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
|
|
}
|
|
|
|
static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
|
|
static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
|
|
static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
|
|
static struct kobj_attribute efi_attr_fw_platform_size =
|
|
__ATTR_RO(fw_platform_size);
|
|
|
|
static struct attribute *efi_subsys_attrs[] = {
|
|
&efi_attr_systab.attr,
|
|
&efi_attr_fw_vendor.attr,
|
|
&efi_attr_runtime.attr,
|
|
&efi_attr_config_table.attr,
|
|
&efi_attr_fw_platform_size.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t efi_attr_is_visible(struct kobject *kobj,
|
|
struct attribute *attr, int n)
|
|
{
|
|
if (attr == &efi_attr_fw_vendor.attr) {
|
|
if (efi_enabled(EFI_PARAVIRT) ||
|
|
efi.fw_vendor == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
} else if (attr == &efi_attr_runtime.attr) {
|
|
if (efi.runtime == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
} else if (attr == &efi_attr_config_table.attr) {
|
|
if (efi.config_table == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
}
|
|
|
|
return attr->mode;
|
|
}
|
|
|
|
static const struct attribute_group efi_subsys_attr_group = {
|
|
.attrs = efi_subsys_attrs,
|
|
.is_visible = efi_attr_is_visible,
|
|
};
|
|
|
|
static struct efivars generic_efivars;
|
|
static struct efivar_operations generic_ops;
|
|
|
|
static int generic_ops_register(void)
|
|
{
|
|
generic_ops.get_variable = efi.get_variable;
|
|
generic_ops.set_variable = efi.set_variable;
|
|
generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
|
|
generic_ops.get_next_variable = efi.get_next_variable;
|
|
generic_ops.query_variable_store = efi_query_variable_store;
|
|
|
|
return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
|
|
}
|
|
|
|
static void generic_ops_unregister(void)
|
|
{
|
|
efivars_unregister(&generic_efivars);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_ACPI)
|
|
#define EFIVAR_SSDT_NAME_MAX 16
|
|
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
|
|
static int __init efivar_ssdt_setup(char *str)
|
|
{
|
|
if (strlen(str) < sizeof(efivar_ssdt))
|
|
memcpy(efivar_ssdt, str, strlen(str));
|
|
else
|
|
pr_warn("efivar_ssdt: name too long: %s\n", str);
|
|
return 0;
|
|
}
|
|
__setup("efivar_ssdt=", efivar_ssdt_setup);
|
|
|
|
static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
|
|
unsigned long name_size, void *data)
|
|
{
|
|
struct efivar_entry *entry;
|
|
struct list_head *list = data;
|
|
char utf8_name[EFIVAR_SSDT_NAME_MAX];
|
|
int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
|
|
|
|
ucs2_as_utf8(utf8_name, name, limit - 1);
|
|
if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
|
|
return 0;
|
|
|
|
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
return 0;
|
|
|
|
memcpy(entry->var.VariableName, name, name_size);
|
|
memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
|
|
|
|
efivar_entry_add(entry, list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init int efivar_ssdt_load(void)
|
|
{
|
|
LIST_HEAD(entries);
|
|
struct efivar_entry *entry, *aux;
|
|
unsigned long size;
|
|
void *data;
|
|
int ret;
|
|
|
|
ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
|
|
|
|
list_for_each_entry_safe(entry, aux, &entries, list) {
|
|
pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
|
|
&entry->var.VendorGuid);
|
|
|
|
list_del(&entry->list);
|
|
|
|
ret = efivar_entry_size(entry, &size);
|
|
if (ret) {
|
|
pr_err("failed to get var size\n");
|
|
goto free_entry;
|
|
}
|
|
|
|
data = kmalloc(size, GFP_KERNEL);
|
|
if (!data) {
|
|
ret = -ENOMEM;
|
|
goto free_entry;
|
|
}
|
|
|
|
ret = efivar_entry_get(entry, NULL, &size, data);
|
|
if (ret) {
|
|
pr_err("failed to get var data\n");
|
|
goto free_data;
|
|
}
|
|
|
|
ret = acpi_load_table(data);
|
|
if (ret) {
|
|
pr_err("failed to load table: %d\n", ret);
|
|
goto free_data;
|
|
}
|
|
|
|
goto free_entry;
|
|
|
|
free_data:
|
|
kfree(data);
|
|
|
|
free_entry:
|
|
kfree(entry);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline int efivar_ssdt_load(void) { return 0; }
|
|
#endif
|
|
|
|
/*
|
|
* We register the efi subsystem with the firmware subsystem and the
|
|
* efivars subsystem with the efi subsystem, if the system was booted with
|
|
* EFI.
|
|
*/
|
|
static int __init efisubsys_init(void)
|
|
{
|
|
int error;
|
|
|
|
if (!efi_enabled(EFI_BOOT))
|
|
return 0;
|
|
|
|
/*
|
|
* Since we process only one efi_runtime_service() at a time, an
|
|
* ordered workqueue (which creates only one execution context)
|
|
* should suffice all our needs.
|
|
*/
|
|
efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
|
|
if (!efi_rts_wq) {
|
|
pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
return 0;
|
|
}
|
|
|
|
/* We register the efi directory at /sys/firmware/efi */
|
|
efi_kobj = kobject_create_and_add("efi", firmware_kobj);
|
|
if (!efi_kobj) {
|
|
pr_err("efi: Firmware registration failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
error = generic_ops_register();
|
|
if (error)
|
|
goto err_put;
|
|
|
|
if (efi_enabled(EFI_RUNTIME_SERVICES))
|
|
efivar_ssdt_load();
|
|
|
|
error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
|
|
if (error) {
|
|
pr_err("efi: Sysfs attribute export failed with error %d.\n",
|
|
error);
|
|
goto err_unregister;
|
|
}
|
|
|
|
error = efi_runtime_map_init(efi_kobj);
|
|
if (error)
|
|
goto err_remove_group;
|
|
|
|
/* and the standard mountpoint for efivarfs */
|
|
error = sysfs_create_mount_point(efi_kobj, "efivars");
|
|
if (error) {
|
|
pr_err("efivars: Subsystem registration failed.\n");
|
|
goto err_remove_group;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_remove_group:
|
|
sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
|
|
err_unregister:
|
|
generic_ops_unregister();
|
|
err_put:
|
|
kobject_put(efi_kobj);
|
|
return error;
|
|
}
|
|
|
|
subsys_initcall(efisubsys_init);
|
|
|
|
/*
|
|
* Find the efi memory descriptor for a given physical address. Given a
|
|
* physical address, determine if it exists within an EFI Memory Map entry,
|
|
* and if so, populate the supplied memory descriptor with the appropriate
|
|
* data.
|
|
*/
|
|
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP)) {
|
|
pr_err_once("EFI_MEMMAP is not enabled.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!out_md) {
|
|
pr_err_once("out_md is null.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
u64 size;
|
|
u64 end;
|
|
|
|
size = md->num_pages << EFI_PAGE_SHIFT;
|
|
end = md->phys_addr + size;
|
|
if (phys_addr >= md->phys_addr && phys_addr < end) {
|
|
memcpy(out_md, md, sizeof(*out_md));
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* Calculate the highest address of an efi memory descriptor.
|
|
*/
|
|
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
|
|
{
|
|
u64 size = md->num_pages << EFI_PAGE_SHIFT;
|
|
u64 end = md->phys_addr + size;
|
|
return end;
|
|
}
|
|
|
|
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
|
|
|
|
/**
|
|
* efi_mem_reserve - Reserve an EFI memory region
|
|
* @addr: Physical address to reserve
|
|
* @size: Size of reservation
|
|
*
|
|
* Mark a region as reserved from general kernel allocation and
|
|
* prevent it being released by efi_free_boot_services().
|
|
*
|
|
* This function should be called drivers once they've parsed EFI
|
|
* configuration tables to figure out where their data lives, e.g.
|
|
* efi_esrt_init().
|
|
*/
|
|
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
|
|
{
|
|
if (!memblock_is_region_reserved(addr, size))
|
|
memblock_reserve(addr, size);
|
|
|
|
/*
|
|
* Some architectures (x86) reserve all boot services ranges
|
|
* until efi_free_boot_services() because of buggy firmware
|
|
* implementations. This means the above memblock_reserve() is
|
|
* superfluous on x86 and instead what it needs to do is
|
|
* ensure the @start, @size is not freed.
|
|
*/
|
|
efi_arch_mem_reserve(addr, size);
|
|
}
|
|
|
|
static __initdata efi_config_table_type_t common_tables[] = {
|
|
{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
|
|
{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
|
|
{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
|
|
{MPS_TABLE_GUID, "MPS", &efi.mps},
|
|
{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
|
|
{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
|
|
{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3},
|
|
{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
|
|
{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt},
|
|
{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table},
|
|
{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table},
|
|
{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed},
|
|
{LINUX_EFI_TPM_EVENT_LOG_GUID, "TPMEventLog", &efi.tpm_log},
|
|
{LINUX_EFI_MEMRESERVE_TABLE_GUID, "MEMRESERVE", &efi.mem_reserve},
|
|
{NULL_GUID, NULL, NULL},
|
|
};
|
|
|
|
static __init int match_config_table(efi_guid_t *guid,
|
|
unsigned long table,
|
|
efi_config_table_type_t *table_types)
|
|
{
|
|
int i;
|
|
|
|
if (table_types) {
|
|
for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
|
|
if (!efi_guidcmp(*guid, table_types[i].guid)) {
|
|
*(table_types[i].ptr) = table;
|
|
if (table_types[i].name)
|
|
pr_cont(" %s=0x%lx ",
|
|
table_types[i].name, table);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init efi_config_parse_tables(void *config_tables, int count, int sz,
|
|
efi_config_table_type_t *arch_tables)
|
|
{
|
|
void *tablep;
|
|
int i;
|
|
|
|
tablep = config_tables;
|
|
pr_info("");
|
|
for (i = 0; i < count; i++) {
|
|
efi_guid_t guid;
|
|
unsigned long table;
|
|
|
|
if (efi_enabled(EFI_64BIT)) {
|
|
u64 table64;
|
|
guid = ((efi_config_table_64_t *)tablep)->guid;
|
|
table64 = ((efi_config_table_64_t *)tablep)->table;
|
|
table = table64;
|
|
#ifndef CONFIG_64BIT
|
|
if (table64 >> 32) {
|
|
pr_cont("\n");
|
|
pr_err("Table located above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
} else {
|
|
guid = ((efi_config_table_32_t *)tablep)->guid;
|
|
table = ((efi_config_table_32_t *)tablep)->table;
|
|
}
|
|
|
|
if (!match_config_table(&guid, table, common_tables))
|
|
match_config_table(&guid, table, arch_tables);
|
|
|
|
tablep += sz;
|
|
}
|
|
pr_cont("\n");
|
|
set_bit(EFI_CONFIG_TABLES, &efi.flags);
|
|
|
|
if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) {
|
|
struct linux_efi_random_seed *seed;
|
|
u32 size = 0;
|
|
|
|
seed = early_memremap(efi.rng_seed, sizeof(*seed));
|
|
if (seed != NULL) {
|
|
size = seed->size;
|
|
early_memunmap(seed, sizeof(*seed));
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
if (size > 0) {
|
|
seed = early_memremap(efi.rng_seed,
|
|
sizeof(*seed) + size);
|
|
if (seed != NULL) {
|
|
pr_notice("seeding entropy pool\n");
|
|
add_device_randomness(seed->bits, seed->size);
|
|
early_memunmap(seed, sizeof(*seed) + size);
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (efi_enabled(EFI_MEMMAP))
|
|
efi_memattr_init();
|
|
|
|
efi_tpm_eventlog_init();
|
|
|
|
/* Parse the EFI Properties table if it exists */
|
|
if (efi.properties_table != EFI_INVALID_TABLE_ADDR) {
|
|
efi_properties_table_t *tbl;
|
|
|
|
tbl = early_memremap(efi.properties_table, sizeof(*tbl));
|
|
if (tbl == NULL) {
|
|
pr_err("Could not map Properties table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (tbl->memory_protection_attribute &
|
|
EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
|
|
set_bit(EFI_NX_PE_DATA, &efi.flags);
|
|
|
|
early_memunmap(tbl, sizeof(*tbl));
|
|
}
|
|
|
|
if (efi.mem_reserve != EFI_INVALID_TABLE_ADDR) {
|
|
unsigned long prsv = efi.mem_reserve;
|
|
|
|
while (prsv) {
|
|
struct linux_efi_memreserve *rsv;
|
|
u8 *p;
|
|
int i;
|
|
|
|
/*
|
|
* Just map a full page: that is what we will get
|
|
* anyway, and it permits us to map the entire entry
|
|
* before knowing its size.
|
|
*/
|
|
p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
|
|
PAGE_SIZE);
|
|
if (p == NULL) {
|
|
pr_err("Could not map UEFI memreserve entry!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rsv = (void *)(p + prsv % PAGE_SIZE);
|
|
|
|
/* reserve the entry itself */
|
|
memblock_reserve(prsv, EFI_MEMRESERVE_SIZE(rsv->size));
|
|
|
|
for (i = 0; i < atomic_read(&rsv->count); i++) {
|
|
memblock_reserve(rsv->entry[i].base,
|
|
rsv->entry[i].size);
|
|
}
|
|
|
|
prsv = rsv->next;
|
|
early_memunmap(p, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init efi_config_init(efi_config_table_type_t *arch_tables)
|
|
{
|
|
void *config_tables;
|
|
int sz, ret;
|
|
|
|
if (efi_enabled(EFI_64BIT))
|
|
sz = sizeof(efi_config_table_64_t);
|
|
else
|
|
sz = sizeof(efi_config_table_32_t);
|
|
|
|
/*
|
|
* Let's see what config tables the firmware passed to us.
|
|
*/
|
|
config_tables = early_memremap(efi.systab->tables,
|
|
efi.systab->nr_tables * sz);
|
|
if (config_tables == NULL) {
|
|
pr_err("Could not map Configuration table!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz,
|
|
arch_tables);
|
|
|
|
early_memunmap(config_tables, efi.systab->nr_tables * sz);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_EFI_VARS_MODULE
|
|
static int __init efi_load_efivars(void)
|
|
{
|
|
struct platform_device *pdev;
|
|
|
|
if (!efi_enabled(EFI_RUNTIME_SERVICES))
|
|
return 0;
|
|
|
|
pdev = platform_device_register_simple("efivars", 0, NULL, 0);
|
|
return PTR_ERR_OR_ZERO(pdev);
|
|
}
|
|
device_initcall(efi_load_efivars);
|
|
#endif
|
|
|
|
#ifdef CONFIG_EFI_PARAMS_FROM_FDT
|
|
|
|
#define UEFI_PARAM(name, prop, field) \
|
|
{ \
|
|
{ name }, \
|
|
{ prop }, \
|
|
offsetof(struct efi_fdt_params, field), \
|
|
FIELD_SIZEOF(struct efi_fdt_params, field) \
|
|
}
|
|
|
|
struct params {
|
|
const char name[32];
|
|
const char propname[32];
|
|
int offset;
|
|
int size;
|
|
};
|
|
|
|
static __initdata struct params fdt_params[] = {
|
|
UEFI_PARAM("System Table", "linux,uefi-system-table", system_table),
|
|
UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap),
|
|
UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size),
|
|
UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size),
|
|
UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver)
|
|
};
|
|
|
|
static __initdata struct params xen_fdt_params[] = {
|
|
UEFI_PARAM("System Table", "xen,uefi-system-table", system_table),
|
|
UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap),
|
|
UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size),
|
|
UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size),
|
|
UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver)
|
|
};
|
|
|
|
#define EFI_FDT_PARAMS_SIZE ARRAY_SIZE(fdt_params)
|
|
|
|
static __initdata struct {
|
|
const char *uname;
|
|
const char *subnode;
|
|
struct params *params;
|
|
} dt_params[] = {
|
|
{ "hypervisor", "uefi", xen_fdt_params },
|
|
{ "chosen", NULL, fdt_params },
|
|
};
|
|
|
|
struct param_info {
|
|
int found;
|
|
void *params;
|
|
const char *missing;
|
|
};
|
|
|
|
static int __init __find_uefi_params(unsigned long node,
|
|
struct param_info *info,
|
|
struct params *params)
|
|
{
|
|
const void *prop;
|
|
void *dest;
|
|
u64 val;
|
|
int i, len;
|
|
|
|
for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) {
|
|
prop = of_get_flat_dt_prop(node, params[i].propname, &len);
|
|
if (!prop) {
|
|
info->missing = params[i].name;
|
|
return 0;
|
|
}
|
|
|
|
dest = info->params + params[i].offset;
|
|
info->found++;
|
|
|
|
val = of_read_number(prop, len / sizeof(u32));
|
|
|
|
if (params[i].size == sizeof(u32))
|
|
*(u32 *)dest = val;
|
|
else
|
|
*(u64 *)dest = val;
|
|
|
|
if (efi_enabled(EFI_DBG))
|
|
pr_info(" %s: 0x%0*llx\n", params[i].name,
|
|
params[i].size * 2, val);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int __init fdt_find_uefi_params(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
struct param_info *info = data;
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dt_params); i++) {
|
|
const char *subnode = dt_params[i].subnode;
|
|
|
|
if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) {
|
|
info->missing = dt_params[i].params[0].name;
|
|
continue;
|
|
}
|
|
|
|
if (subnode) {
|
|
int err = of_get_flat_dt_subnode_by_name(node, subnode);
|
|
|
|
if (err < 0)
|
|
return 0;
|
|
|
|
node = err;
|
|
}
|
|
|
|
return __find_uefi_params(node, info, dt_params[i].params);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init efi_get_fdt_params(struct efi_fdt_params *params)
|
|
{
|
|
struct param_info info;
|
|
int ret;
|
|
|
|
pr_info("Getting EFI parameters from FDT:\n");
|
|
|
|
info.found = 0;
|
|
info.params = params;
|
|
|
|
ret = of_scan_flat_dt(fdt_find_uefi_params, &info);
|
|
if (!info.found)
|
|
pr_info("UEFI not found.\n");
|
|
else if (!ret)
|
|
pr_err("Can't find '%s' in device tree!\n",
|
|
info.missing);
|
|
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_EFI_PARAMS_FROM_FDT */
|
|
|
|
static __initdata char memory_type_name[][20] = {
|
|
"Reserved",
|
|
"Loader Code",
|
|
"Loader Data",
|
|
"Boot Code",
|
|
"Boot Data",
|
|
"Runtime Code",
|
|
"Runtime Data",
|
|
"Conventional Memory",
|
|
"Unusable Memory",
|
|
"ACPI Reclaim Memory",
|
|
"ACPI Memory NVS",
|
|
"Memory Mapped I/O",
|
|
"MMIO Port Space",
|
|
"PAL Code",
|
|
"Persistent Memory",
|
|
};
|
|
|
|
char * __init efi_md_typeattr_format(char *buf, size_t size,
|
|
const efi_memory_desc_t *md)
|
|
{
|
|
char *pos;
|
|
int type_len;
|
|
u64 attr;
|
|
|
|
pos = buf;
|
|
if (md->type >= ARRAY_SIZE(memory_type_name))
|
|
type_len = snprintf(pos, size, "[type=%u", md->type);
|
|
else
|
|
type_len = snprintf(pos, size, "[%-*s",
|
|
(int)(sizeof(memory_type_name[0]) - 1),
|
|
memory_type_name[md->type]);
|
|
if (type_len >= size)
|
|
return buf;
|
|
|
|
pos += type_len;
|
|
size -= type_len;
|
|
|
|
attr = md->attribute;
|
|
if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
|
|
EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
|
|
EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
|
|
EFI_MEMORY_NV |
|
|
EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
|
|
snprintf(pos, size, "|attr=0x%016llx]",
|
|
(unsigned long long)attr);
|
|
else
|
|
snprintf(pos, size,
|
|
"|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
|
|
attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
|
|
attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
|
|
attr & EFI_MEMORY_NV ? "NV" : "",
|
|
attr & EFI_MEMORY_XP ? "XP" : "",
|
|
attr & EFI_MEMORY_RP ? "RP" : "",
|
|
attr & EFI_MEMORY_WP ? "WP" : "",
|
|
attr & EFI_MEMORY_RO ? "RO" : "",
|
|
attr & EFI_MEMORY_UCE ? "UCE" : "",
|
|
attr & EFI_MEMORY_WB ? "WB" : "",
|
|
attr & EFI_MEMORY_WT ? "WT" : "",
|
|
attr & EFI_MEMORY_WC ? "WC" : "",
|
|
attr & EFI_MEMORY_UC ? "UC" : "");
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* IA64 has a funky EFI memory map that doesn't work the same way as
|
|
* other architectures.
|
|
*/
|
|
#ifndef CONFIG_IA64
|
|
/*
|
|
* efi_mem_attributes - lookup memmap attributes for physical address
|
|
* @phys_addr: the physical address to lookup
|
|
*
|
|
* Search in the EFI memory map for the region covering
|
|
* @phys_addr. Returns the EFI memory attributes if the region
|
|
* was found in the memory map, 0 otherwise.
|
|
*/
|
|
u64 efi_mem_attributes(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return 0;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->attribute;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* efi_mem_type - lookup memmap type for physical address
|
|
* @phys_addr: the physical address to lookup
|
|
*
|
|
* Search in the EFI memory map for the region covering @phys_addr.
|
|
* Returns the EFI memory type if the region was found in the memory
|
|
* map, EFI_RESERVED_TYPE (zero) otherwise.
|
|
*/
|
|
int efi_mem_type(unsigned long phys_addr)
|
|
{
|
|
const efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return -ENOTSUPP;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->type;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
int efi_status_to_err(efi_status_t status)
|
|
{
|
|
int err;
|
|
|
|
switch (status) {
|
|
case EFI_SUCCESS:
|
|
err = 0;
|
|
break;
|
|
case EFI_INVALID_PARAMETER:
|
|
err = -EINVAL;
|
|
break;
|
|
case EFI_OUT_OF_RESOURCES:
|
|
err = -ENOSPC;
|
|
break;
|
|
case EFI_DEVICE_ERROR:
|
|
err = -EIO;
|
|
break;
|
|
case EFI_WRITE_PROTECTED:
|
|
err = -EROFS;
|
|
break;
|
|
case EFI_SECURITY_VIOLATION:
|
|
err = -EACCES;
|
|
break;
|
|
case EFI_NOT_FOUND:
|
|
err = -ENOENT;
|
|
break;
|
|
case EFI_ABORTED:
|
|
err = -EINTR;
|
|
break;
|
|
default:
|
|
err = -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
bool efi_is_table_address(unsigned long phys_addr)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (phys_addr == EFI_INVALID_TABLE_ADDR)
|
|
return false;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
|
|
if (*(efi_tables[i]) == phys_addr)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
|
|
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
|
|
|
|
static int __init efi_memreserve_map_root(void)
|
|
{
|
|
if (efi.mem_reserve == EFI_INVALID_TABLE_ADDR)
|
|
return -ENODEV;
|
|
|
|
efi_memreserve_root = memremap(efi.mem_reserve,
|
|
sizeof(*efi_memreserve_root),
|
|
MEMREMAP_WB);
|
|
if (WARN_ON_ONCE(!efi_memreserve_root))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
|
|
{
|
|
struct linux_efi_memreserve *rsv;
|
|
unsigned long prsv;
|
|
int rc, index;
|
|
|
|
if (efi_memreserve_root == (void *)ULONG_MAX)
|
|
return -ENODEV;
|
|
|
|
if (!efi_memreserve_root) {
|
|
rc = efi_memreserve_map_root();
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* first try to find a slot in an existing linked list entry */
|
|
for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
|
|
rsv = __va(prsv);
|
|
index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
|
|
if (index < rsv->size) {
|
|
rsv->entry[index].base = addr;
|
|
rsv->entry[index].size = size;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* no slot found - allocate a new linked list entry */
|
|
rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
|
|
if (!rsv)
|
|
return -ENOMEM;
|
|
|
|
rsv->size = EFI_MEMRESERVE_COUNT(PAGE_SIZE);
|
|
atomic_set(&rsv->count, 1);
|
|
rsv->entry[0].base = addr;
|
|
rsv->entry[0].size = size;
|
|
|
|
spin_lock(&efi_mem_reserve_persistent_lock);
|
|
rsv->next = efi_memreserve_root->next;
|
|
efi_memreserve_root->next = __pa(rsv);
|
|
spin_unlock(&efi_mem_reserve_persistent_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init efi_memreserve_root_init(void)
|
|
{
|
|
if (efi_memreserve_root)
|
|
return 0;
|
|
if (efi_memreserve_map_root())
|
|
efi_memreserve_root = (void *)ULONG_MAX;
|
|
return 0;
|
|
}
|
|
early_initcall(efi_memreserve_root_init);
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
static int update_efi_random_seed(struct notifier_block *nb,
|
|
unsigned long code, void *unused)
|
|
{
|
|
struct linux_efi_random_seed *seed;
|
|
u32 size = 0;
|
|
|
|
if (!kexec_in_progress)
|
|
return NOTIFY_DONE;
|
|
|
|
seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB);
|
|
if (seed != NULL) {
|
|
size = min(seed->size, EFI_RANDOM_SEED_SIZE);
|
|
memunmap(seed);
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
if (size > 0) {
|
|
seed = memremap(efi.rng_seed, sizeof(*seed) + size,
|
|
MEMREMAP_WB);
|
|
if (seed != NULL) {
|
|
seed->size = size;
|
|
get_random_bytes(seed->bits, seed->size);
|
|
memunmap(seed);
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
}
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block efi_random_seed_nb = {
|
|
.notifier_call = update_efi_random_seed,
|
|
};
|
|
|
|
static int register_update_efi_random_seed(void)
|
|
{
|
|
if (efi.rng_seed == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
return register_reboot_notifier(&efi_random_seed_nb);
|
|
}
|
|
late_initcall(register_update_efi_random_seed);
|
|
#endif
|