mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-19 10:57:01 +07:00
be0502a3f2
TCP resets cause instant transition from established to closed state provided the reset is in-window. Endpoints that implement RFC 5961 require resets to match the next expected sequence number. RST segments that are in-window (but that do not match RCV.NXT) are ignored, and a "challenge ACK" is sent back. Main problem for conntrack is that its a middlebox, i.e. whereas an end host might have ACK'd SEQ (and would thus accept an RST with this sequence number), conntrack might not have seen this ACK (yet). Therefore we can't simply flag RSTs with non-exact match as invalid. This updates RST processing as follows: 1. If the connection is in a state other than ESTABLISHED, nothing is changed, RST is subject to normal in-window check. 2. If the RSTs sequence number either matches exactly RCV.NXT, connection state moves to CLOSE. 3. The same applies if the RST sequence number aligns with a previous packet in the same direction. In all other cases, the connection remains in ESTABLISHED state. If the normal-in-window check passes, the timeout will be lowered to that of CLOSE. If the peer sends a challenge ack, connection timeout will be reset. If the challenge ACK triggers another RST (RST was valid after all), this 2nd RST will match expected sequence and conntrack state changes to CLOSE. If no challenge ACK is received, the connection will time out after CLOSE seconds (10 seconds by default), just like without this patch. Packetdrill test case: 0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 0.000 bind(3, ..., ...) = 0 0.000 listen(3, 1) = 0 0.100 < S 0:0(0) win 32792 <mss 1460,sackOK,nop,nop,nop,wscale 7> 0.100 > S. 0:0(0) ack 1 win 64240 <mss 1460,nop,nop,sackOK,nop,wscale 7> 0.200 < . 1:1(0) ack 1 win 257 0.200 accept(3, ..., ...) = 4 // Receive a segment. 0.210 < P. 1:1001(1000) ack 1 win 46 0.210 > . 1:1(0) ack 1001 // Application writes 1000 bytes. 0.250 write(4, ..., 1000) = 1000 0.250 > P. 1:1001(1000) ack 1001 // First reset, old sequence. Conntrack (correctly) considers this // invalid due to failed window validation (regardless of this patch). 0.260 < R 2:2(0) ack 1001 win 260 // 2nd reset, but too far ahead sequence. Same: correctly handled // as invalid. 0.270 < R 99990001:99990001(0) ack 1001 win 260 // in-window, but not exact sequence. // Current Linux kernels might reply with a challenge ack, and do not // remove connection. // Without this patch, conntrack state moves to CLOSE. // With patch, timeout is lowered like CLOSE, but connection stays // in ESTABLISHED state. 0.280 < R 1010:1010(0) ack 1001 win 260 // Expect challenge ACK 0.281 > . 1001:1001(0) ack 1001 win 501 // With or without this patch, RST will cause connection // to move to CLOSE (sequence number matches) // 0.282 < R 1001:1001(0) ack 1001 win 260 // ACK 0.300 < . 1001:1001(0) ack 1001 win 257 // more data could be exchanged here, connection // is still established // Client closes the connection. 0.610 < F. 1001:1001(0) ack 1001 win 260 0.650 > . 1001:1001(0) ack 1002 // Close the connection without reading outstanding data 0.700 close(4) = 0 // so one more reset. Will be deemed acceptable with patch as well: // connection is already closing. 0.701 > R. 1001:1001(0) ack 1002 win 501 // End packetdrill test case. With patch, this generates following conntrack events: [NEW] 120 SYN_SENT src=10.0.2.1 dst=10.0.0.1 sport=5437 dport=80 [UNREPLIED] [UPDATE] 60 SYN_RECV src=10.0.2.1 dst=10.0.0.1 sport=5437 dport=80 [UPDATE] 432000 ESTABLISHED src=10.0.2.1 dst=10.0.0.1 sport=5437 dport=80 [ASSURED] [UPDATE] 120 FIN_WAIT src=10.0.2.1 dst=10.0.0.1 sport=5437 dport=80 [ASSURED] [UPDATE] 60 CLOSE_WAIT src=10.0.2.1 dst=10.0.0.1 sport=5437 dport=80 [ASSURED] [UPDATE] 10 CLOSE src=10.0.2.1 dst=10.0.0.1 sport=5437 dport=80 [ASSURED] Without patch, first RST moves connection to close, whereas socket state does not change until FIN is received. [NEW] 120 SYN_SENT src=10.0.2.1 dst=10.0.0.1 sport=5141 dport=80 [UNREPLIED] [UPDATE] 60 SYN_RECV src=10.0.2.1 dst=10.0.0.1 sport=5141 dport=80 [UPDATE] 432000 ESTABLISHED src=10.0.2.1 dst=10.0.0.1 sport=5141 dport=80 [ASSURED] [UPDATE] 10 CLOSE src=10.0.2.1 dst=10.0.0.1 sport=5141 dport=80 [ASSURED] Cc: Jozsef Kadlecsik <kadlec@blackhole.kfki.hu> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
firmware | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.