mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 06:56:52 +07:00
3668b70fcf
UBIFS currently prints a lot of information when it mounts a volume, which bothers some people. Make it less chatty - print only important information by default. Get rid of 'dbg_msg()' macro completely. Reported-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
1070 lines
29 KiB
C
1070 lines
29 KiB
C
/*
|
|
* This file is part of UBIFS.
|
|
*
|
|
* Copyright (C) 2006-2008 Nokia Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published by
|
|
* the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 51
|
|
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* Authors: Adrian Hunter
|
|
* Artem Bityutskiy (Битюцкий Артём)
|
|
*/
|
|
|
|
/*
|
|
* This file contains journal replay code. It runs when the file-system is being
|
|
* mounted and requires no locking.
|
|
*
|
|
* The larger is the journal, the longer it takes to scan it, so the longer it
|
|
* takes to mount UBIFS. This is why the journal has limited size which may be
|
|
* changed depending on the system requirements. But a larger journal gives
|
|
* faster I/O speed because it writes the index less frequently. So this is a
|
|
* trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
|
|
* larger is the journal, the more memory its index may consume.
|
|
*/
|
|
|
|
#include "ubifs.h"
|
|
#include <linux/list_sort.h>
|
|
|
|
/**
|
|
* struct replay_entry - replay list entry.
|
|
* @lnum: logical eraseblock number of the node
|
|
* @offs: node offset
|
|
* @len: node length
|
|
* @deletion: non-zero if this entry corresponds to a node deletion
|
|
* @sqnum: node sequence number
|
|
* @list: links the replay list
|
|
* @key: node key
|
|
* @nm: directory entry name
|
|
* @old_size: truncation old size
|
|
* @new_size: truncation new size
|
|
*
|
|
* The replay process first scans all buds and builds the replay list, then
|
|
* sorts the replay list in nodes sequence number order, and then inserts all
|
|
* the replay entries to the TNC.
|
|
*/
|
|
struct replay_entry {
|
|
int lnum;
|
|
int offs;
|
|
int len;
|
|
unsigned int deletion:1;
|
|
unsigned long long sqnum;
|
|
struct list_head list;
|
|
union ubifs_key key;
|
|
union {
|
|
struct qstr nm;
|
|
struct {
|
|
loff_t old_size;
|
|
loff_t new_size;
|
|
};
|
|
};
|
|
};
|
|
|
|
/**
|
|
* struct bud_entry - entry in the list of buds to replay.
|
|
* @list: next bud in the list
|
|
* @bud: bud description object
|
|
* @sqnum: reference node sequence number
|
|
* @free: free bytes in the bud
|
|
* @dirty: dirty bytes in the bud
|
|
*/
|
|
struct bud_entry {
|
|
struct list_head list;
|
|
struct ubifs_bud *bud;
|
|
unsigned long long sqnum;
|
|
int free;
|
|
int dirty;
|
|
};
|
|
|
|
/**
|
|
* set_bud_lprops - set free and dirty space used by a bud.
|
|
* @c: UBIFS file-system description object
|
|
* @b: bud entry which describes the bud
|
|
*
|
|
* This function makes sure the LEB properties of bud @b are set correctly
|
|
* after the replay. Returns zero in case of success and a negative error code
|
|
* in case of failure.
|
|
*/
|
|
static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
|
|
{
|
|
const struct ubifs_lprops *lp;
|
|
int err = 0, dirty;
|
|
|
|
ubifs_get_lprops(c);
|
|
|
|
lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
|
|
dirty = lp->dirty;
|
|
if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
|
|
/*
|
|
* The LEB was added to the journal with a starting offset of
|
|
* zero which means the LEB must have been empty. The LEB
|
|
* property values should be @lp->free == @c->leb_size and
|
|
* @lp->dirty == 0, but that is not the case. The reason is that
|
|
* the LEB had been garbage collected before it became the bud,
|
|
* and there was not commit inbetween. The garbage collector
|
|
* resets the free and dirty space without recording it
|
|
* anywhere except lprops, so if there was no commit then
|
|
* lprops does not have that information.
|
|
*
|
|
* We do not need to adjust free space because the scan has told
|
|
* us the exact value which is recorded in the replay entry as
|
|
* @b->free.
|
|
*
|
|
* However we do need to subtract from the dirty space the
|
|
* amount of space that the garbage collector reclaimed, which
|
|
* is the whole LEB minus the amount of space that was free.
|
|
*/
|
|
dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
|
|
lp->free, lp->dirty);
|
|
dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
|
|
lp->free, lp->dirty);
|
|
dirty -= c->leb_size - lp->free;
|
|
/*
|
|
* If the replay order was perfect the dirty space would now be
|
|
* zero. The order is not perfect because the journal heads
|
|
* race with each other. This is not a problem but is does mean
|
|
* that the dirty space may temporarily exceed c->leb_size
|
|
* during the replay.
|
|
*/
|
|
if (dirty != 0)
|
|
dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
|
|
b->bud->lnum, lp->free, lp->dirty, b->free,
|
|
b->dirty);
|
|
}
|
|
lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
|
|
lp->flags | LPROPS_TAKEN, 0);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
|
|
/* Make sure the journal head points to the latest bud */
|
|
err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
|
|
b->bud->lnum, c->leb_size - b->free);
|
|
|
|
out:
|
|
ubifs_release_lprops(c);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* set_buds_lprops - set free and dirty space for all replayed buds.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function sets LEB properties for all replayed buds. Returns zero in
|
|
* case of success and a negative error code in case of failure.
|
|
*/
|
|
static int set_buds_lprops(struct ubifs_info *c)
|
|
{
|
|
struct bud_entry *b;
|
|
int err;
|
|
|
|
list_for_each_entry(b, &c->replay_buds, list) {
|
|
err = set_bud_lprops(c, b);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* trun_remove_range - apply a replay entry for a truncation to the TNC.
|
|
* @c: UBIFS file-system description object
|
|
* @r: replay entry of truncation
|
|
*/
|
|
static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
|
|
{
|
|
unsigned min_blk, max_blk;
|
|
union ubifs_key min_key, max_key;
|
|
ino_t ino;
|
|
|
|
min_blk = r->new_size / UBIFS_BLOCK_SIZE;
|
|
if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
|
|
min_blk += 1;
|
|
|
|
max_blk = r->old_size / UBIFS_BLOCK_SIZE;
|
|
if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
|
|
max_blk -= 1;
|
|
|
|
ino = key_inum(c, &r->key);
|
|
|
|
data_key_init(c, &min_key, ino, min_blk);
|
|
data_key_init(c, &max_key, ino, max_blk);
|
|
|
|
return ubifs_tnc_remove_range(c, &min_key, &max_key);
|
|
}
|
|
|
|
/**
|
|
* apply_replay_entry - apply a replay entry to the TNC.
|
|
* @c: UBIFS file-system description object
|
|
* @r: replay entry to apply
|
|
*
|
|
* Apply a replay entry to the TNC.
|
|
*/
|
|
static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
|
|
{
|
|
int err;
|
|
|
|
dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
|
|
r->lnum, r->offs, r->len, r->deletion, r->sqnum);
|
|
|
|
/* Set c->replay_sqnum to help deal with dangling branches. */
|
|
c->replay_sqnum = r->sqnum;
|
|
|
|
if (is_hash_key(c, &r->key)) {
|
|
if (r->deletion)
|
|
err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
|
|
else
|
|
err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
|
|
r->len, &r->nm);
|
|
} else {
|
|
if (r->deletion)
|
|
switch (key_type(c, &r->key)) {
|
|
case UBIFS_INO_KEY:
|
|
{
|
|
ino_t inum = key_inum(c, &r->key);
|
|
|
|
err = ubifs_tnc_remove_ino(c, inum);
|
|
break;
|
|
}
|
|
case UBIFS_TRUN_KEY:
|
|
err = trun_remove_range(c, r);
|
|
break;
|
|
default:
|
|
err = ubifs_tnc_remove(c, &r->key);
|
|
break;
|
|
}
|
|
else
|
|
err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
|
|
r->len);
|
|
if (err)
|
|
return err;
|
|
|
|
if (c->need_recovery)
|
|
err = ubifs_recover_size_accum(c, &r->key, r->deletion,
|
|
r->new_size);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* replay_entries_cmp - compare 2 replay entries.
|
|
* @priv: UBIFS file-system description object
|
|
* @a: first replay entry
|
|
* @a: second replay entry
|
|
*
|
|
* This is a comparios function for 'list_sort()' which compares 2 replay
|
|
* entries @a and @b by comparing their sequence numer. Returns %1 if @a has
|
|
* greater sequence number and %-1 otherwise.
|
|
*/
|
|
static int replay_entries_cmp(void *priv, struct list_head *a,
|
|
struct list_head *b)
|
|
{
|
|
struct replay_entry *ra, *rb;
|
|
|
|
cond_resched();
|
|
if (a == b)
|
|
return 0;
|
|
|
|
ra = list_entry(a, struct replay_entry, list);
|
|
rb = list_entry(b, struct replay_entry, list);
|
|
ubifs_assert(ra->sqnum != rb->sqnum);
|
|
if (ra->sqnum > rb->sqnum)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* apply_replay_list - apply the replay list to the TNC.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* Apply all entries in the replay list to the TNC. Returns zero in case of
|
|
* success and a negative error code in case of failure.
|
|
*/
|
|
static int apply_replay_list(struct ubifs_info *c)
|
|
{
|
|
struct replay_entry *r;
|
|
int err;
|
|
|
|
list_sort(c, &c->replay_list, &replay_entries_cmp);
|
|
|
|
list_for_each_entry(r, &c->replay_list, list) {
|
|
cond_resched();
|
|
|
|
err = apply_replay_entry(c, r);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* destroy_replay_list - destroy the replay.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* Destroy the replay list.
|
|
*/
|
|
static void destroy_replay_list(struct ubifs_info *c)
|
|
{
|
|
struct replay_entry *r, *tmp;
|
|
|
|
list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
|
|
if (is_hash_key(c, &r->key))
|
|
kfree(r->nm.name);
|
|
list_del(&r->list);
|
|
kfree(r);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* insert_node - insert a node to the replay list
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: node logical eraseblock number
|
|
* @offs: node offset
|
|
* @len: node length
|
|
* @key: node key
|
|
* @sqnum: sequence number
|
|
* @deletion: non-zero if this is a deletion
|
|
* @used: number of bytes in use in a LEB
|
|
* @old_size: truncation old size
|
|
* @new_size: truncation new size
|
|
*
|
|
* This function inserts a scanned non-direntry node to the replay list. The
|
|
* replay list contains @struct replay_entry elements, and we sort this list in
|
|
* sequence number order before applying it. The replay list is applied at the
|
|
* very end of the replay process. Since the list is sorted in sequence number
|
|
* order, the older modifications are applied first. This function returns zero
|
|
* in case of success and a negative error code in case of failure.
|
|
*/
|
|
static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
|
|
union ubifs_key *key, unsigned long long sqnum,
|
|
int deletion, int *used, loff_t old_size,
|
|
loff_t new_size)
|
|
{
|
|
struct replay_entry *r;
|
|
|
|
dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
|
|
|
|
if (key_inum(c, key) >= c->highest_inum)
|
|
c->highest_inum = key_inum(c, key);
|
|
|
|
r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
|
|
if (!r)
|
|
return -ENOMEM;
|
|
|
|
if (!deletion)
|
|
*used += ALIGN(len, 8);
|
|
r->lnum = lnum;
|
|
r->offs = offs;
|
|
r->len = len;
|
|
r->deletion = !!deletion;
|
|
r->sqnum = sqnum;
|
|
key_copy(c, key, &r->key);
|
|
r->old_size = old_size;
|
|
r->new_size = new_size;
|
|
|
|
list_add_tail(&r->list, &c->replay_list);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* insert_dent - insert a directory entry node into the replay list.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: node logical eraseblock number
|
|
* @offs: node offset
|
|
* @len: node length
|
|
* @key: node key
|
|
* @name: directory entry name
|
|
* @nlen: directory entry name length
|
|
* @sqnum: sequence number
|
|
* @deletion: non-zero if this is a deletion
|
|
* @used: number of bytes in use in a LEB
|
|
*
|
|
* This function inserts a scanned directory entry node or an extended
|
|
* attribute entry to the replay list. Returns zero in case of success and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
|
|
union ubifs_key *key, const char *name, int nlen,
|
|
unsigned long long sqnum, int deletion, int *used)
|
|
{
|
|
struct replay_entry *r;
|
|
char *nbuf;
|
|
|
|
dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
|
|
if (key_inum(c, key) >= c->highest_inum)
|
|
c->highest_inum = key_inum(c, key);
|
|
|
|
r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
|
|
if (!r)
|
|
return -ENOMEM;
|
|
|
|
nbuf = kmalloc(nlen + 1, GFP_KERNEL);
|
|
if (!nbuf) {
|
|
kfree(r);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!deletion)
|
|
*used += ALIGN(len, 8);
|
|
r->lnum = lnum;
|
|
r->offs = offs;
|
|
r->len = len;
|
|
r->deletion = !!deletion;
|
|
r->sqnum = sqnum;
|
|
key_copy(c, key, &r->key);
|
|
r->nm.len = nlen;
|
|
memcpy(nbuf, name, nlen);
|
|
nbuf[nlen] = '\0';
|
|
r->nm.name = nbuf;
|
|
|
|
list_add_tail(&r->list, &c->replay_list);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ubifs_validate_entry - validate directory or extended attribute entry node.
|
|
* @c: UBIFS file-system description object
|
|
* @dent: the node to validate
|
|
*
|
|
* This function validates directory or extended attribute entry node @dent.
|
|
* Returns zero if the node is all right and a %-EINVAL if not.
|
|
*/
|
|
int ubifs_validate_entry(struct ubifs_info *c,
|
|
const struct ubifs_dent_node *dent)
|
|
{
|
|
int key_type = key_type_flash(c, dent->key);
|
|
int nlen = le16_to_cpu(dent->nlen);
|
|
|
|
if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
|
|
dent->type >= UBIFS_ITYPES_CNT ||
|
|
nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
|
|
strnlen(dent->name, nlen) != nlen ||
|
|
le64_to_cpu(dent->inum) > MAX_INUM) {
|
|
ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
|
|
"directory entry" : "extended attribute entry");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
|
|
ubifs_err("bad key type %d", key_type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* is_last_bud - check if the bud is the last in the journal head.
|
|
* @c: UBIFS file-system description object
|
|
* @bud: bud description object
|
|
*
|
|
* This function checks if bud @bud is the last bud in its journal head. This
|
|
* information is then used by 'replay_bud()' to decide whether the bud can
|
|
* have corruptions or not. Indeed, only last buds can be corrupted by power
|
|
* cuts. Returns %1 if this is the last bud, and %0 if not.
|
|
*/
|
|
static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
|
|
{
|
|
struct ubifs_jhead *jh = &c->jheads[bud->jhead];
|
|
struct ubifs_bud *next;
|
|
uint32_t data;
|
|
int err;
|
|
|
|
if (list_is_last(&bud->list, &jh->buds_list))
|
|
return 1;
|
|
|
|
/*
|
|
* The following is a quirk to make sure we work correctly with UBIFS
|
|
* images used with older UBIFS.
|
|
*
|
|
* Normally, the last bud will be the last in the journal head's list
|
|
* of bud. However, there is one exception if the UBIFS image belongs
|
|
* to older UBIFS. This is fairly unlikely: one would need to use old
|
|
* UBIFS, then have a power cut exactly at the right point, and then
|
|
* try to mount this image with new UBIFS.
|
|
*
|
|
* The exception is: it is possible to have 2 buds A and B, A goes
|
|
* before B, and B is the last, bud B is contains no data, and bud A is
|
|
* corrupted at the end. The reason is that in older versions when the
|
|
* journal code switched the next bud (from A to B), it first added a
|
|
* log reference node for the new bud (B), and only after this it
|
|
* synchronized the write-buffer of current bud (A). But later this was
|
|
* changed and UBIFS started to always synchronize the write-buffer of
|
|
* the bud (A) before writing the log reference for the new bud (B).
|
|
*
|
|
* But because older UBIFS always synchronized A's write-buffer before
|
|
* writing to B, we can recognize this exceptional situation but
|
|
* checking the contents of bud B - if it is empty, then A can be
|
|
* treated as the last and we can recover it.
|
|
*
|
|
* TODO: remove this piece of code in a couple of years (today it is
|
|
* 16.05.2011).
|
|
*/
|
|
next = list_entry(bud->list.next, struct ubifs_bud, list);
|
|
if (!list_is_last(&next->list, &jh->buds_list))
|
|
return 0;
|
|
|
|
err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
|
|
if (err)
|
|
return 0;
|
|
|
|
return data == 0xFFFFFFFF;
|
|
}
|
|
|
|
/**
|
|
* replay_bud - replay a bud logical eraseblock.
|
|
* @c: UBIFS file-system description object
|
|
* @b: bud entry which describes the bud
|
|
*
|
|
* This function replays bud @bud, recovers it if needed, and adds all nodes
|
|
* from this bud to the replay list. Returns zero in case of success and a
|
|
* negative error code in case of failure.
|
|
*/
|
|
static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
|
|
{
|
|
int is_last = is_last_bud(c, b->bud);
|
|
int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
|
|
struct ubifs_scan_leb *sleb;
|
|
struct ubifs_scan_node *snod;
|
|
|
|
dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
|
|
lnum, b->bud->jhead, offs, is_last);
|
|
|
|
if (c->need_recovery && is_last)
|
|
/*
|
|
* Recover only last LEBs in the journal heads, because power
|
|
* cuts may cause corruptions only in these LEBs, because only
|
|
* these LEBs could possibly be written to at the power cut
|
|
* time.
|
|
*/
|
|
sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
|
|
else
|
|
sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
|
|
if (IS_ERR(sleb))
|
|
return PTR_ERR(sleb);
|
|
|
|
/*
|
|
* The bud does not have to start from offset zero - the beginning of
|
|
* the 'lnum' LEB may contain previously committed data. One of the
|
|
* things we have to do in replay is to correctly update lprops with
|
|
* newer information about this LEB.
|
|
*
|
|
* At this point lprops thinks that this LEB has 'c->leb_size - offs'
|
|
* bytes of free space because it only contain information about
|
|
* committed data.
|
|
*
|
|
* But we know that real amount of free space is 'c->leb_size -
|
|
* sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
|
|
* 'sleb->endpt' is used by bud data. We have to correctly calculate
|
|
* how much of these data are dirty and update lprops with this
|
|
* information.
|
|
*
|
|
* The dirt in that LEB region is comprised of padding nodes, deletion
|
|
* nodes, truncation nodes and nodes which are obsoleted by subsequent
|
|
* nodes in this LEB. So instead of calculating clean space, we
|
|
* calculate used space ('used' variable).
|
|
*/
|
|
|
|
list_for_each_entry(snod, &sleb->nodes, list) {
|
|
int deletion = 0;
|
|
|
|
cond_resched();
|
|
|
|
if (snod->sqnum >= SQNUM_WATERMARK) {
|
|
ubifs_err("file system's life ended");
|
|
goto out_dump;
|
|
}
|
|
|
|
if (snod->sqnum > c->max_sqnum)
|
|
c->max_sqnum = snod->sqnum;
|
|
|
|
switch (snod->type) {
|
|
case UBIFS_INO_NODE:
|
|
{
|
|
struct ubifs_ino_node *ino = snod->node;
|
|
loff_t new_size = le64_to_cpu(ino->size);
|
|
|
|
if (le32_to_cpu(ino->nlink) == 0)
|
|
deletion = 1;
|
|
err = insert_node(c, lnum, snod->offs, snod->len,
|
|
&snod->key, snod->sqnum, deletion,
|
|
&used, 0, new_size);
|
|
break;
|
|
}
|
|
case UBIFS_DATA_NODE:
|
|
{
|
|
struct ubifs_data_node *dn = snod->node;
|
|
loff_t new_size = le32_to_cpu(dn->size) +
|
|
key_block(c, &snod->key) *
|
|
UBIFS_BLOCK_SIZE;
|
|
|
|
err = insert_node(c, lnum, snod->offs, snod->len,
|
|
&snod->key, snod->sqnum, deletion,
|
|
&used, 0, new_size);
|
|
break;
|
|
}
|
|
case UBIFS_DENT_NODE:
|
|
case UBIFS_XENT_NODE:
|
|
{
|
|
struct ubifs_dent_node *dent = snod->node;
|
|
|
|
err = ubifs_validate_entry(c, dent);
|
|
if (err)
|
|
goto out_dump;
|
|
|
|
err = insert_dent(c, lnum, snod->offs, snod->len,
|
|
&snod->key, dent->name,
|
|
le16_to_cpu(dent->nlen), snod->sqnum,
|
|
!le64_to_cpu(dent->inum), &used);
|
|
break;
|
|
}
|
|
case UBIFS_TRUN_NODE:
|
|
{
|
|
struct ubifs_trun_node *trun = snod->node;
|
|
loff_t old_size = le64_to_cpu(trun->old_size);
|
|
loff_t new_size = le64_to_cpu(trun->new_size);
|
|
union ubifs_key key;
|
|
|
|
/* Validate truncation node */
|
|
if (old_size < 0 || old_size > c->max_inode_sz ||
|
|
new_size < 0 || new_size > c->max_inode_sz ||
|
|
old_size <= new_size) {
|
|
ubifs_err("bad truncation node");
|
|
goto out_dump;
|
|
}
|
|
|
|
/*
|
|
* Create a fake truncation key just to use the same
|
|
* functions which expect nodes to have keys.
|
|
*/
|
|
trun_key_init(c, &key, le32_to_cpu(trun->inum));
|
|
err = insert_node(c, lnum, snod->offs, snod->len,
|
|
&key, snod->sqnum, 1, &used,
|
|
old_size, new_size);
|
|
break;
|
|
}
|
|
default:
|
|
ubifs_err("unexpected node type %d in bud LEB %d:%d",
|
|
snod->type, lnum, snod->offs);
|
|
err = -EINVAL;
|
|
goto out_dump;
|
|
}
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
ubifs_assert(ubifs_search_bud(c, lnum));
|
|
ubifs_assert(sleb->endpt - offs >= used);
|
|
ubifs_assert(sleb->endpt % c->min_io_size == 0);
|
|
|
|
b->dirty = sleb->endpt - offs - used;
|
|
b->free = c->leb_size - sleb->endpt;
|
|
dbg_mnt("bud LEB %d replied: dirty %d, free %d",
|
|
lnum, b->dirty, b->free);
|
|
|
|
out:
|
|
ubifs_scan_destroy(sleb);
|
|
return err;
|
|
|
|
out_dump:
|
|
ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
|
|
ubifs_dump_node(c, snod->node);
|
|
ubifs_scan_destroy(sleb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* replay_buds - replay all buds.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int replay_buds(struct ubifs_info *c)
|
|
{
|
|
struct bud_entry *b;
|
|
int err;
|
|
unsigned long long prev_sqnum = 0;
|
|
|
|
list_for_each_entry(b, &c->replay_buds, list) {
|
|
err = replay_bud(c, b);
|
|
if (err)
|
|
return err;
|
|
|
|
ubifs_assert(b->sqnum > prev_sqnum);
|
|
prev_sqnum = b->sqnum;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* destroy_bud_list - destroy the list of buds to replay.
|
|
* @c: UBIFS file-system description object
|
|
*/
|
|
static void destroy_bud_list(struct ubifs_info *c)
|
|
{
|
|
struct bud_entry *b;
|
|
|
|
while (!list_empty(&c->replay_buds)) {
|
|
b = list_entry(c->replay_buds.next, struct bud_entry, list);
|
|
list_del(&b->list);
|
|
kfree(b);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* add_replay_bud - add a bud to the list of buds to replay.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: bud logical eraseblock number to replay
|
|
* @offs: bud start offset
|
|
* @jhead: journal head to which this bud belongs
|
|
* @sqnum: reference node sequence number
|
|
*
|
|
* This function returns zero in case of success and a negative error code in
|
|
* case of failure.
|
|
*/
|
|
static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
|
|
unsigned long long sqnum)
|
|
{
|
|
struct ubifs_bud *bud;
|
|
struct bud_entry *b;
|
|
|
|
dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
|
|
|
|
bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
|
|
if (!bud)
|
|
return -ENOMEM;
|
|
|
|
b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
|
|
if (!b) {
|
|
kfree(bud);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
bud->lnum = lnum;
|
|
bud->start = offs;
|
|
bud->jhead = jhead;
|
|
ubifs_add_bud(c, bud);
|
|
|
|
b->bud = bud;
|
|
b->sqnum = sqnum;
|
|
list_add_tail(&b->list, &c->replay_buds);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* validate_ref - validate a reference node.
|
|
* @c: UBIFS file-system description object
|
|
* @ref: the reference node to validate
|
|
* @ref_lnum: LEB number of the reference node
|
|
* @ref_offs: reference node offset
|
|
*
|
|
* This function returns %1 if a bud reference already exists for the LEB. %0 is
|
|
* returned if the reference node is new, otherwise %-EINVAL is returned if
|
|
* validation failed.
|
|
*/
|
|
static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
|
|
{
|
|
struct ubifs_bud *bud;
|
|
int lnum = le32_to_cpu(ref->lnum);
|
|
unsigned int offs = le32_to_cpu(ref->offs);
|
|
unsigned int jhead = le32_to_cpu(ref->jhead);
|
|
|
|
/*
|
|
* ref->offs may point to the end of LEB when the journal head points
|
|
* to the end of LEB and we write reference node for it during commit.
|
|
* So this is why we require 'offs > c->leb_size'.
|
|
*/
|
|
if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
|
|
lnum < c->main_first || offs > c->leb_size ||
|
|
offs & (c->min_io_size - 1))
|
|
return -EINVAL;
|
|
|
|
/* Make sure we have not already looked at this bud */
|
|
bud = ubifs_search_bud(c, lnum);
|
|
if (bud) {
|
|
if (bud->jhead == jhead && bud->start <= offs)
|
|
return 1;
|
|
ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* replay_log_leb - replay a log logical eraseblock.
|
|
* @c: UBIFS file-system description object
|
|
* @lnum: log logical eraseblock to replay
|
|
* @offs: offset to start replaying from
|
|
* @sbuf: scan buffer
|
|
*
|
|
* This function replays a log LEB and returns zero in case of success, %1 if
|
|
* this is the last LEB in the log, and a negative error code in case of
|
|
* failure.
|
|
*/
|
|
static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
|
|
{
|
|
int err;
|
|
struct ubifs_scan_leb *sleb;
|
|
struct ubifs_scan_node *snod;
|
|
const struct ubifs_cs_node *node;
|
|
|
|
dbg_mnt("replay log LEB %d:%d", lnum, offs);
|
|
sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
|
|
if (IS_ERR(sleb)) {
|
|
if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
|
|
return PTR_ERR(sleb);
|
|
/*
|
|
* Note, the below function will recover this log LEB only if
|
|
* it is the last, because unclean reboots can possibly corrupt
|
|
* only the tail of the log.
|
|
*/
|
|
sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
|
|
if (IS_ERR(sleb))
|
|
return PTR_ERR(sleb);
|
|
}
|
|
|
|
if (sleb->nodes_cnt == 0) {
|
|
err = 1;
|
|
goto out;
|
|
}
|
|
|
|
node = sleb->buf;
|
|
snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
|
|
if (c->cs_sqnum == 0) {
|
|
/*
|
|
* This is the first log LEB we are looking at, make sure that
|
|
* the first node is a commit start node. Also record its
|
|
* sequence number so that UBIFS can determine where the log
|
|
* ends, because all nodes which were have higher sequence
|
|
* numbers.
|
|
*/
|
|
if (snod->type != UBIFS_CS_NODE) {
|
|
ubifs_err("first log node at LEB %d:%d is not CS node",
|
|
lnum, offs);
|
|
goto out_dump;
|
|
}
|
|
if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
|
|
ubifs_err("first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
|
|
lnum, offs,
|
|
(unsigned long long)le64_to_cpu(node->cmt_no),
|
|
c->cmt_no);
|
|
goto out_dump;
|
|
}
|
|
|
|
c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
|
|
dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
|
|
}
|
|
|
|
if (snod->sqnum < c->cs_sqnum) {
|
|
/*
|
|
* This means that we reached end of log and now
|
|
* look to the older log data, which was already
|
|
* committed but the eraseblock was not erased (UBIFS
|
|
* only un-maps it). So this basically means we have to
|
|
* exit with "end of log" code.
|
|
*/
|
|
err = 1;
|
|
goto out;
|
|
}
|
|
|
|
/* Make sure the first node sits at offset zero of the LEB */
|
|
if (snod->offs != 0) {
|
|
ubifs_err("first node is not at zero offset");
|
|
goto out_dump;
|
|
}
|
|
|
|
list_for_each_entry(snod, &sleb->nodes, list) {
|
|
cond_resched();
|
|
|
|
if (snod->sqnum >= SQNUM_WATERMARK) {
|
|
ubifs_err("file system's life ended");
|
|
goto out_dump;
|
|
}
|
|
|
|
if (snod->sqnum < c->cs_sqnum) {
|
|
ubifs_err("bad sqnum %llu, commit sqnum %llu",
|
|
snod->sqnum, c->cs_sqnum);
|
|
goto out_dump;
|
|
}
|
|
|
|
if (snod->sqnum > c->max_sqnum)
|
|
c->max_sqnum = snod->sqnum;
|
|
|
|
switch (snod->type) {
|
|
case UBIFS_REF_NODE: {
|
|
const struct ubifs_ref_node *ref = snod->node;
|
|
|
|
err = validate_ref(c, ref);
|
|
if (err == 1)
|
|
break; /* Already have this bud */
|
|
if (err)
|
|
goto out_dump;
|
|
|
|
err = add_replay_bud(c, le32_to_cpu(ref->lnum),
|
|
le32_to_cpu(ref->offs),
|
|
le32_to_cpu(ref->jhead),
|
|
snod->sqnum);
|
|
if (err)
|
|
goto out;
|
|
|
|
break;
|
|
}
|
|
case UBIFS_CS_NODE:
|
|
/* Make sure it sits at the beginning of LEB */
|
|
if (snod->offs != 0) {
|
|
ubifs_err("unexpected node in log");
|
|
goto out_dump;
|
|
}
|
|
break;
|
|
default:
|
|
ubifs_err("unexpected node in log");
|
|
goto out_dump;
|
|
}
|
|
}
|
|
|
|
if (sleb->endpt || c->lhead_offs >= c->leb_size) {
|
|
c->lhead_lnum = lnum;
|
|
c->lhead_offs = sleb->endpt;
|
|
}
|
|
|
|
err = !sleb->endpt;
|
|
out:
|
|
ubifs_scan_destroy(sleb);
|
|
return err;
|
|
|
|
out_dump:
|
|
ubifs_err("log error detected while replaying the log at LEB %d:%d",
|
|
lnum, offs + snod->offs);
|
|
ubifs_dump_node(c, snod->node);
|
|
ubifs_scan_destroy(sleb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* take_ihead - update the status of the index head in lprops to 'taken'.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function returns the amount of free space in the index head LEB or a
|
|
* negative error code.
|
|
*/
|
|
static int take_ihead(struct ubifs_info *c)
|
|
{
|
|
const struct ubifs_lprops *lp;
|
|
int err, free;
|
|
|
|
ubifs_get_lprops(c);
|
|
|
|
lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
|
|
free = lp->free;
|
|
|
|
lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
|
|
lp->flags | LPROPS_TAKEN, 0);
|
|
if (IS_ERR(lp)) {
|
|
err = PTR_ERR(lp);
|
|
goto out;
|
|
}
|
|
|
|
err = free;
|
|
out:
|
|
ubifs_release_lprops(c);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* ubifs_replay_journal - replay journal.
|
|
* @c: UBIFS file-system description object
|
|
*
|
|
* This function scans the journal, replays and cleans it up. It makes sure all
|
|
* memory data structures related to uncommitted journal are built (dirty TNC
|
|
* tree, tree of buds, modified lprops, etc).
|
|
*/
|
|
int ubifs_replay_journal(struct ubifs_info *c)
|
|
{
|
|
int err, lnum, free;
|
|
|
|
BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
|
|
|
|
/* Update the status of the index head in lprops to 'taken' */
|
|
free = take_ihead(c);
|
|
if (free < 0)
|
|
return free; /* Error code */
|
|
|
|
if (c->ihead_offs != c->leb_size - free) {
|
|
ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
|
|
c->ihead_offs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dbg_mnt("start replaying the journal");
|
|
c->replaying = 1;
|
|
lnum = c->ltail_lnum = c->lhead_lnum;
|
|
|
|
do {
|
|
err = replay_log_leb(c, lnum, 0, c->sbuf);
|
|
if (err == 1)
|
|
/* We hit the end of the log */
|
|
break;
|
|
if (err)
|
|
goto out;
|
|
lnum = ubifs_next_log_lnum(c, lnum);
|
|
} while (lnum != c->ltail_lnum);
|
|
|
|
err = replay_buds(c);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = apply_replay_list(c);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = set_buds_lprops(c);
|
|
if (err)
|
|
goto out;
|
|
|
|
/*
|
|
* UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
|
|
* to roughly estimate index growth. Things like @c->bi.min_idx_lebs
|
|
* depend on it. This means we have to initialize it to make sure
|
|
* budgeting works properly.
|
|
*/
|
|
c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
|
|
c->bi.uncommitted_idx *= c->max_idx_node_sz;
|
|
|
|
ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
|
|
dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
|
|
c->lhead_lnum, c->lhead_offs, c->max_sqnum,
|
|
(unsigned long)c->highest_inum);
|
|
out:
|
|
destroy_replay_list(c);
|
|
destroy_bud_list(c);
|
|
c->replaying = 0;
|
|
return err;
|
|
}
|