mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
fbe3310840
sockex2_kern.c is purposefully large eBPF program in C. llvm compiles ~200 lines of C code into ~300 eBPF instructions. It's similar to __skb_flow_dissect() to demonstrate that complex packet parsing can be done by eBPF. Then it uses (struct flow_keys)->dst IP address (or hash of ipv6 dst) to keep stats of number of packets per IP. User space loads eBPF program, attaches it to loopback interface and prints dest_ip->#packets stats every second. Usage: $sudo samples/bpf/sockex2 ip 127.0.0.1 count 19 ip 127.0.0.1 count 178115 ip 127.0.0.1 count 369437 ip 127.0.0.1 count 559841 ip 127.0.0.1 count 750539 Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Signed-off-by: David S. Miller <davem@davemloft.net>
216 lines
4.6 KiB
C
216 lines
4.6 KiB
C
#include <uapi/linux/bpf.h>
|
|
#include "bpf_helpers.h"
|
|
#include <uapi/linux/in.h>
|
|
#include <uapi/linux/if.h>
|
|
#include <uapi/linux/if_ether.h>
|
|
#include <uapi/linux/ip.h>
|
|
#include <uapi/linux/ipv6.h>
|
|
#include <uapi/linux/if_tunnel.h>
|
|
#define IP_MF 0x2000
|
|
#define IP_OFFSET 0x1FFF
|
|
|
|
struct vlan_hdr {
|
|
__be16 h_vlan_TCI;
|
|
__be16 h_vlan_encapsulated_proto;
|
|
};
|
|
|
|
struct flow_keys {
|
|
__be32 src;
|
|
__be32 dst;
|
|
union {
|
|
__be32 ports;
|
|
__be16 port16[2];
|
|
};
|
|
__u16 thoff;
|
|
__u8 ip_proto;
|
|
};
|
|
|
|
static inline int proto_ports_offset(__u64 proto)
|
|
{
|
|
switch (proto) {
|
|
case IPPROTO_TCP:
|
|
case IPPROTO_UDP:
|
|
case IPPROTO_DCCP:
|
|
case IPPROTO_ESP:
|
|
case IPPROTO_SCTP:
|
|
case IPPROTO_UDPLITE:
|
|
return 0;
|
|
case IPPROTO_AH:
|
|
return 4;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline int ip_is_fragment(struct sk_buff *ctx, __u64 nhoff)
|
|
{
|
|
return load_half(ctx, nhoff + offsetof(struct iphdr, frag_off))
|
|
& (IP_MF | IP_OFFSET);
|
|
}
|
|
|
|
static inline __u32 ipv6_addr_hash(struct sk_buff *ctx, __u64 off)
|
|
{
|
|
__u64 w0 = load_word(ctx, off);
|
|
__u64 w1 = load_word(ctx, off + 4);
|
|
__u64 w2 = load_word(ctx, off + 8);
|
|
__u64 w3 = load_word(ctx, off + 12);
|
|
|
|
return (__u32)(w0 ^ w1 ^ w2 ^ w3);
|
|
}
|
|
|
|
static inline __u64 parse_ip(struct sk_buff *skb, __u64 nhoff, __u64 *ip_proto,
|
|
struct flow_keys *flow)
|
|
{
|
|
__u64 verlen;
|
|
|
|
if (unlikely(ip_is_fragment(skb, nhoff)))
|
|
*ip_proto = 0;
|
|
else
|
|
*ip_proto = load_byte(skb, nhoff + offsetof(struct iphdr, protocol));
|
|
|
|
if (*ip_proto != IPPROTO_GRE) {
|
|
flow->src = load_word(skb, nhoff + offsetof(struct iphdr, saddr));
|
|
flow->dst = load_word(skb, nhoff + offsetof(struct iphdr, daddr));
|
|
}
|
|
|
|
verlen = load_byte(skb, nhoff + 0/*offsetof(struct iphdr, ihl)*/);
|
|
if (likely(verlen == 0x45))
|
|
nhoff += 20;
|
|
else
|
|
nhoff += (verlen & 0xF) << 2;
|
|
|
|
return nhoff;
|
|
}
|
|
|
|
static inline __u64 parse_ipv6(struct sk_buff *skb, __u64 nhoff, __u64 *ip_proto,
|
|
struct flow_keys *flow)
|
|
{
|
|
*ip_proto = load_byte(skb,
|
|
nhoff + offsetof(struct ipv6hdr, nexthdr));
|
|
flow->src = ipv6_addr_hash(skb,
|
|
nhoff + offsetof(struct ipv6hdr, saddr));
|
|
flow->dst = ipv6_addr_hash(skb,
|
|
nhoff + offsetof(struct ipv6hdr, daddr));
|
|
nhoff += sizeof(struct ipv6hdr);
|
|
|
|
return nhoff;
|
|
}
|
|
|
|
static inline bool flow_dissector(struct sk_buff *skb, struct flow_keys *flow)
|
|
{
|
|
__u64 nhoff = ETH_HLEN;
|
|
__u64 ip_proto;
|
|
__u64 proto = load_half(skb, 12);
|
|
int poff;
|
|
|
|
if (proto == ETH_P_8021AD) {
|
|
proto = load_half(skb, nhoff + offsetof(struct vlan_hdr,
|
|
h_vlan_encapsulated_proto));
|
|
nhoff += sizeof(struct vlan_hdr);
|
|
}
|
|
|
|
if (proto == ETH_P_8021Q) {
|
|
proto = load_half(skb, nhoff + offsetof(struct vlan_hdr,
|
|
h_vlan_encapsulated_proto));
|
|
nhoff += sizeof(struct vlan_hdr);
|
|
}
|
|
|
|
if (likely(proto == ETH_P_IP))
|
|
nhoff = parse_ip(skb, nhoff, &ip_proto, flow);
|
|
else if (proto == ETH_P_IPV6)
|
|
nhoff = parse_ipv6(skb, nhoff, &ip_proto, flow);
|
|
else
|
|
return false;
|
|
|
|
switch (ip_proto) {
|
|
case IPPROTO_GRE: {
|
|
struct gre_hdr {
|
|
__be16 flags;
|
|
__be16 proto;
|
|
};
|
|
|
|
__u64 gre_flags = load_half(skb,
|
|
nhoff + offsetof(struct gre_hdr, flags));
|
|
__u64 gre_proto = load_half(skb,
|
|
nhoff + offsetof(struct gre_hdr, proto));
|
|
|
|
if (gre_flags & (GRE_VERSION|GRE_ROUTING))
|
|
break;
|
|
|
|
proto = gre_proto;
|
|
nhoff += 4;
|
|
if (gre_flags & GRE_CSUM)
|
|
nhoff += 4;
|
|
if (gre_flags & GRE_KEY)
|
|
nhoff += 4;
|
|
if (gre_flags & GRE_SEQ)
|
|
nhoff += 4;
|
|
|
|
if (proto == ETH_P_8021Q) {
|
|
proto = load_half(skb,
|
|
nhoff + offsetof(struct vlan_hdr,
|
|
h_vlan_encapsulated_proto));
|
|
nhoff += sizeof(struct vlan_hdr);
|
|
}
|
|
|
|
if (proto == ETH_P_IP)
|
|
nhoff = parse_ip(skb, nhoff, &ip_proto, flow);
|
|
else if (proto == ETH_P_IPV6)
|
|
nhoff = parse_ipv6(skb, nhoff, &ip_proto, flow);
|
|
else
|
|
return false;
|
|
break;
|
|
}
|
|
case IPPROTO_IPIP:
|
|
nhoff = parse_ip(skb, nhoff, &ip_proto, flow);
|
|
break;
|
|
case IPPROTO_IPV6:
|
|
nhoff = parse_ipv6(skb, nhoff, &ip_proto, flow);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
flow->ip_proto = ip_proto;
|
|
poff = proto_ports_offset(ip_proto);
|
|
if (poff >= 0) {
|
|
nhoff += poff;
|
|
flow->ports = load_word(skb, nhoff);
|
|
}
|
|
|
|
flow->thoff = (__u16) nhoff;
|
|
|
|
return true;
|
|
}
|
|
|
|
struct bpf_map_def SEC("maps") hash_map = {
|
|
.type = BPF_MAP_TYPE_HASH,
|
|
.key_size = sizeof(__be32),
|
|
.value_size = sizeof(long),
|
|
.max_entries = 1024,
|
|
};
|
|
|
|
SEC("socket2")
|
|
int bpf_prog2(struct sk_buff *skb)
|
|
{
|
|
struct flow_keys flow;
|
|
long *value;
|
|
u32 key;
|
|
|
|
if (!flow_dissector(skb, &flow))
|
|
return 0;
|
|
|
|
key = flow.dst;
|
|
value = bpf_map_lookup_elem(&hash_map, &key);
|
|
if (value) {
|
|
__sync_fetch_and_add(value, 1);
|
|
} else {
|
|
long val = 1;
|
|
|
|
bpf_map_update_elem(&hash_map, &key, &val, BPF_ANY);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
char _license[] SEC("license") = "GPL";
|