mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-18 18:56:58 +07:00
cea92e843e
Pull timer fixes from Thomas Gleixner: "A pile of fixes for long standing issues with the timer wheel and the NOHZ code: - Prevent timer base confusion accross the nohz switch, which can cause unlocked access and data corruption - Reinitialize the stale base clock on cpu hotplug to prevent subtle side effects including rollovers on 32bit - Prevent an interrupt storm when the timer softirq is already pending caused by tick_nohz_stop_sched_tick() - Move the timer start tracepoint to a place where it actually makes sense - Add documentation to timerqueue functions as they caused confusion several times now" * 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: timerqueue: Document return values of timerqueue_add/del() timers: Invoke timer_start_debug() where it makes sense nohz: Prevent a timer interrupt storm in tick_nohz_stop_sched_tick() timers: Reinitialize per cpu bases on hotplug timers: Use deferrable base independent of base::nohz_active
2029 lines
48 KiB
C
2029 lines
48 KiB
C
/* CPU control.
|
|
* (C) 2001, 2002, 2003, 2004 Rusty Russell
|
|
*
|
|
* This code is licenced under the GPL.
|
|
*/
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/init.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/oom.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/export.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/smpboot.h>
|
|
#include <linux/relay.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/percpu-rwsem.h>
|
|
|
|
#include <trace/events/power.h>
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/cpuhp.h>
|
|
|
|
#include "smpboot.h"
|
|
|
|
/**
|
|
* cpuhp_cpu_state - Per cpu hotplug state storage
|
|
* @state: The current cpu state
|
|
* @target: The target state
|
|
* @thread: Pointer to the hotplug thread
|
|
* @should_run: Thread should execute
|
|
* @rollback: Perform a rollback
|
|
* @single: Single callback invocation
|
|
* @bringup: Single callback bringup or teardown selector
|
|
* @cb_state: The state for a single callback (install/uninstall)
|
|
* @result: Result of the operation
|
|
* @done_up: Signal completion to the issuer of the task for cpu-up
|
|
* @done_down: Signal completion to the issuer of the task for cpu-down
|
|
*/
|
|
struct cpuhp_cpu_state {
|
|
enum cpuhp_state state;
|
|
enum cpuhp_state target;
|
|
enum cpuhp_state fail;
|
|
#ifdef CONFIG_SMP
|
|
struct task_struct *thread;
|
|
bool should_run;
|
|
bool rollback;
|
|
bool single;
|
|
bool bringup;
|
|
struct hlist_node *node;
|
|
struct hlist_node *last;
|
|
enum cpuhp_state cb_state;
|
|
int result;
|
|
struct completion done_up;
|
|
struct completion done_down;
|
|
#endif
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
|
|
.fail = CPUHP_INVALID,
|
|
};
|
|
|
|
#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
|
|
static struct lockdep_map cpuhp_state_up_map =
|
|
STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
|
|
static struct lockdep_map cpuhp_state_down_map =
|
|
STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
|
|
|
|
|
|
static inline void cpuhp_lock_acquire(bool bringup)
|
|
{
|
|
lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
|
|
}
|
|
|
|
static inline void cpuhp_lock_release(bool bringup)
|
|
{
|
|
lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
|
|
}
|
|
#else
|
|
|
|
static inline void cpuhp_lock_acquire(bool bringup) { }
|
|
static inline void cpuhp_lock_release(bool bringup) { }
|
|
|
|
#endif
|
|
|
|
/**
|
|
* cpuhp_step - Hotplug state machine step
|
|
* @name: Name of the step
|
|
* @startup: Startup function of the step
|
|
* @teardown: Teardown function of the step
|
|
* @skip_onerr: Do not invoke the functions on error rollback
|
|
* Will go away once the notifiers are gone
|
|
* @cant_stop: Bringup/teardown can't be stopped at this step
|
|
*/
|
|
struct cpuhp_step {
|
|
const char *name;
|
|
union {
|
|
int (*single)(unsigned int cpu);
|
|
int (*multi)(unsigned int cpu,
|
|
struct hlist_node *node);
|
|
} startup;
|
|
union {
|
|
int (*single)(unsigned int cpu);
|
|
int (*multi)(unsigned int cpu,
|
|
struct hlist_node *node);
|
|
} teardown;
|
|
struct hlist_head list;
|
|
bool skip_onerr;
|
|
bool cant_stop;
|
|
bool multi_instance;
|
|
};
|
|
|
|
static DEFINE_MUTEX(cpuhp_state_mutex);
|
|
static struct cpuhp_step cpuhp_bp_states[];
|
|
static struct cpuhp_step cpuhp_ap_states[];
|
|
|
|
static bool cpuhp_is_ap_state(enum cpuhp_state state)
|
|
{
|
|
/*
|
|
* The extra check for CPUHP_TEARDOWN_CPU is only for documentation
|
|
* purposes as that state is handled explicitly in cpu_down.
|
|
*/
|
|
return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
|
|
}
|
|
|
|
static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
|
|
{
|
|
struct cpuhp_step *sp;
|
|
|
|
sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
|
|
return sp + state;
|
|
}
|
|
|
|
/**
|
|
* cpuhp_invoke_callback _ Invoke the callbacks for a given state
|
|
* @cpu: The cpu for which the callback should be invoked
|
|
* @state: The state to do callbacks for
|
|
* @bringup: True if the bringup callback should be invoked
|
|
* @node: For multi-instance, do a single entry callback for install/remove
|
|
* @lastp: For multi-instance rollback, remember how far we got
|
|
*
|
|
* Called from cpu hotplug and from the state register machinery.
|
|
*/
|
|
static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
|
|
bool bringup, struct hlist_node *node,
|
|
struct hlist_node **lastp)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
struct cpuhp_step *step = cpuhp_get_step(state);
|
|
int (*cbm)(unsigned int cpu, struct hlist_node *node);
|
|
int (*cb)(unsigned int cpu);
|
|
int ret, cnt;
|
|
|
|
if (st->fail == state) {
|
|
st->fail = CPUHP_INVALID;
|
|
|
|
if (!(bringup ? step->startup.single : step->teardown.single))
|
|
return 0;
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (!step->multi_instance) {
|
|
WARN_ON_ONCE(lastp && *lastp);
|
|
cb = bringup ? step->startup.single : step->teardown.single;
|
|
if (!cb)
|
|
return 0;
|
|
trace_cpuhp_enter(cpu, st->target, state, cb);
|
|
ret = cb(cpu);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
return ret;
|
|
}
|
|
cbm = bringup ? step->startup.multi : step->teardown.multi;
|
|
if (!cbm)
|
|
return 0;
|
|
|
|
/* Single invocation for instance add/remove */
|
|
if (node) {
|
|
WARN_ON_ONCE(lastp && *lastp);
|
|
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
|
|
ret = cbm(cpu, node);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* State transition. Invoke on all instances */
|
|
cnt = 0;
|
|
hlist_for_each(node, &step->list) {
|
|
if (lastp && node == *lastp)
|
|
break;
|
|
|
|
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
|
|
ret = cbm(cpu, node);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
if (ret) {
|
|
if (!lastp)
|
|
goto err;
|
|
|
|
*lastp = node;
|
|
return ret;
|
|
}
|
|
cnt++;
|
|
}
|
|
if (lastp)
|
|
*lastp = NULL;
|
|
return 0;
|
|
err:
|
|
/* Rollback the instances if one failed */
|
|
cbm = !bringup ? step->startup.multi : step->teardown.multi;
|
|
if (!cbm)
|
|
return ret;
|
|
|
|
hlist_for_each(node, &step->list) {
|
|
if (!cnt--)
|
|
break;
|
|
|
|
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
|
|
ret = cbm(cpu, node);
|
|
trace_cpuhp_exit(cpu, st->state, state, ret);
|
|
/*
|
|
* Rollback must not fail,
|
|
*/
|
|
WARN_ON_ONCE(ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
|
|
{
|
|
struct completion *done = bringup ? &st->done_up : &st->done_down;
|
|
wait_for_completion(done);
|
|
}
|
|
|
|
static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
|
|
{
|
|
struct completion *done = bringup ? &st->done_up : &st->done_down;
|
|
complete(done);
|
|
}
|
|
|
|
/*
|
|
* The former STARTING/DYING states, ran with IRQs disabled and must not fail.
|
|
*/
|
|
static bool cpuhp_is_atomic_state(enum cpuhp_state state)
|
|
{
|
|
return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
|
|
}
|
|
|
|
/* Serializes the updates to cpu_online_mask, cpu_present_mask */
|
|
static DEFINE_MUTEX(cpu_add_remove_lock);
|
|
bool cpuhp_tasks_frozen;
|
|
EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
|
|
|
|
/*
|
|
* The following two APIs (cpu_maps_update_begin/done) must be used when
|
|
* attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
|
|
*/
|
|
void cpu_maps_update_begin(void)
|
|
{
|
|
mutex_lock(&cpu_add_remove_lock);
|
|
}
|
|
|
|
void cpu_maps_update_done(void)
|
|
{
|
|
mutex_unlock(&cpu_add_remove_lock);
|
|
}
|
|
|
|
/*
|
|
* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
|
|
* Should always be manipulated under cpu_add_remove_lock
|
|
*/
|
|
static int cpu_hotplug_disabled;
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
|
|
|
|
void cpus_read_lock(void)
|
|
{
|
|
percpu_down_read(&cpu_hotplug_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpus_read_lock);
|
|
|
|
void cpus_read_unlock(void)
|
|
{
|
|
percpu_up_read(&cpu_hotplug_lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpus_read_unlock);
|
|
|
|
void cpus_write_lock(void)
|
|
{
|
|
percpu_down_write(&cpu_hotplug_lock);
|
|
}
|
|
|
|
void cpus_write_unlock(void)
|
|
{
|
|
percpu_up_write(&cpu_hotplug_lock);
|
|
}
|
|
|
|
void lockdep_assert_cpus_held(void)
|
|
{
|
|
percpu_rwsem_assert_held(&cpu_hotplug_lock);
|
|
}
|
|
|
|
/*
|
|
* Wait for currently running CPU hotplug operations to complete (if any) and
|
|
* disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
|
|
* the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
|
|
* hotplug path before performing hotplug operations. So acquiring that lock
|
|
* guarantees mutual exclusion from any currently running hotplug operations.
|
|
*/
|
|
void cpu_hotplug_disable(void)
|
|
{
|
|
cpu_maps_update_begin();
|
|
cpu_hotplug_disabled++;
|
|
cpu_maps_update_done();
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
|
|
|
|
static void __cpu_hotplug_enable(void)
|
|
{
|
|
if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
|
|
return;
|
|
cpu_hotplug_disabled--;
|
|
}
|
|
|
|
void cpu_hotplug_enable(void)
|
|
{
|
|
cpu_maps_update_begin();
|
|
__cpu_hotplug_enable();
|
|
cpu_maps_update_done();
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
|
|
#endif /* CONFIG_HOTPLUG_CPU */
|
|
|
|
static inline enum cpuhp_state
|
|
cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state = st->state;
|
|
|
|
st->rollback = false;
|
|
st->last = NULL;
|
|
|
|
st->target = target;
|
|
st->single = false;
|
|
st->bringup = st->state < target;
|
|
|
|
return prev_state;
|
|
}
|
|
|
|
static inline void
|
|
cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
|
|
{
|
|
st->rollback = true;
|
|
|
|
/*
|
|
* If we have st->last we need to undo partial multi_instance of this
|
|
* state first. Otherwise start undo at the previous state.
|
|
*/
|
|
if (!st->last) {
|
|
if (st->bringup)
|
|
st->state--;
|
|
else
|
|
st->state++;
|
|
}
|
|
|
|
st->target = prev_state;
|
|
st->bringup = !st->bringup;
|
|
}
|
|
|
|
/* Regular hotplug invocation of the AP hotplug thread */
|
|
static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
|
|
{
|
|
if (!st->single && st->state == st->target)
|
|
return;
|
|
|
|
st->result = 0;
|
|
/*
|
|
* Make sure the above stores are visible before should_run becomes
|
|
* true. Paired with the mb() above in cpuhp_thread_fun()
|
|
*/
|
|
smp_mb();
|
|
st->should_run = true;
|
|
wake_up_process(st->thread);
|
|
wait_for_ap_thread(st, st->bringup);
|
|
}
|
|
|
|
static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state;
|
|
int ret;
|
|
|
|
prev_state = cpuhp_set_state(st, target);
|
|
__cpuhp_kick_ap(st);
|
|
if ((ret = st->result)) {
|
|
cpuhp_reset_state(st, prev_state);
|
|
__cpuhp_kick_ap(st);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bringup_wait_for_ap(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
|
|
/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
|
|
wait_for_ap_thread(st, true);
|
|
if (WARN_ON_ONCE((!cpu_online(cpu))))
|
|
return -ECANCELED;
|
|
|
|
/* Unpark the stopper thread and the hotplug thread of the target cpu */
|
|
stop_machine_unpark(cpu);
|
|
kthread_unpark(st->thread);
|
|
|
|
if (st->target <= CPUHP_AP_ONLINE_IDLE)
|
|
return 0;
|
|
|
|
return cpuhp_kick_ap(st, st->target);
|
|
}
|
|
|
|
static int bringup_cpu(unsigned int cpu)
|
|
{
|
|
struct task_struct *idle = idle_thread_get(cpu);
|
|
int ret;
|
|
|
|
/*
|
|
* Some architectures have to walk the irq descriptors to
|
|
* setup the vector space for the cpu which comes online.
|
|
* Prevent irq alloc/free across the bringup.
|
|
*/
|
|
irq_lock_sparse();
|
|
|
|
/* Arch-specific enabling code. */
|
|
ret = __cpu_up(cpu, idle);
|
|
irq_unlock_sparse();
|
|
if (ret)
|
|
return ret;
|
|
return bringup_wait_for_ap(cpu);
|
|
}
|
|
|
|
/*
|
|
* Hotplug state machine related functions
|
|
*/
|
|
|
|
static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
|
|
{
|
|
for (st->state--; st->state > st->target; st->state--) {
|
|
struct cpuhp_step *step = cpuhp_get_step(st->state);
|
|
|
|
if (!step->skip_onerr)
|
|
cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state = st->state;
|
|
int ret = 0;
|
|
|
|
while (st->state < target) {
|
|
st->state++;
|
|
ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
|
|
if (ret) {
|
|
st->target = prev_state;
|
|
undo_cpu_up(cpu, st);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The cpu hotplug threads manage the bringup and teardown of the cpus
|
|
*/
|
|
static void cpuhp_create(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
|
|
init_completion(&st->done_up);
|
|
init_completion(&st->done_down);
|
|
}
|
|
|
|
static int cpuhp_should_run(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
|
|
return st->should_run;
|
|
}
|
|
|
|
/*
|
|
* Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
|
|
* callbacks when a state gets [un]installed at runtime.
|
|
*
|
|
* Each invocation of this function by the smpboot thread does a single AP
|
|
* state callback.
|
|
*
|
|
* It has 3 modes of operation:
|
|
* - single: runs st->cb_state
|
|
* - up: runs ++st->state, while st->state < st->target
|
|
* - down: runs st->state--, while st->state > st->target
|
|
*
|
|
* When complete or on error, should_run is cleared and the completion is fired.
|
|
*/
|
|
static void cpuhp_thread_fun(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
bool bringup = st->bringup;
|
|
enum cpuhp_state state;
|
|
|
|
/*
|
|
* ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
|
|
* that if we see ->should_run we also see the rest of the state.
|
|
*/
|
|
smp_mb();
|
|
|
|
if (WARN_ON_ONCE(!st->should_run))
|
|
return;
|
|
|
|
cpuhp_lock_acquire(bringup);
|
|
|
|
if (st->single) {
|
|
state = st->cb_state;
|
|
st->should_run = false;
|
|
} else {
|
|
if (bringup) {
|
|
st->state++;
|
|
state = st->state;
|
|
st->should_run = (st->state < st->target);
|
|
WARN_ON_ONCE(st->state > st->target);
|
|
} else {
|
|
state = st->state;
|
|
st->state--;
|
|
st->should_run = (st->state > st->target);
|
|
WARN_ON_ONCE(st->state < st->target);
|
|
}
|
|
}
|
|
|
|
WARN_ON_ONCE(!cpuhp_is_ap_state(state));
|
|
|
|
if (st->rollback) {
|
|
struct cpuhp_step *step = cpuhp_get_step(state);
|
|
if (step->skip_onerr)
|
|
goto next;
|
|
}
|
|
|
|
if (cpuhp_is_atomic_state(state)) {
|
|
local_irq_disable();
|
|
st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
|
|
local_irq_enable();
|
|
|
|
/*
|
|
* STARTING/DYING must not fail!
|
|
*/
|
|
WARN_ON_ONCE(st->result);
|
|
} else {
|
|
st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
|
|
}
|
|
|
|
if (st->result) {
|
|
/*
|
|
* If we fail on a rollback, we're up a creek without no
|
|
* paddle, no way forward, no way back. We loose, thanks for
|
|
* playing.
|
|
*/
|
|
WARN_ON_ONCE(st->rollback);
|
|
st->should_run = false;
|
|
}
|
|
|
|
next:
|
|
cpuhp_lock_release(bringup);
|
|
|
|
if (!st->should_run)
|
|
complete_ap_thread(st, bringup);
|
|
}
|
|
|
|
/* Invoke a single callback on a remote cpu */
|
|
static int
|
|
cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
|
|
struct hlist_node *node)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int ret;
|
|
|
|
if (!cpu_online(cpu))
|
|
return 0;
|
|
|
|
cpuhp_lock_acquire(false);
|
|
cpuhp_lock_release(false);
|
|
|
|
cpuhp_lock_acquire(true);
|
|
cpuhp_lock_release(true);
|
|
|
|
/*
|
|
* If we are up and running, use the hotplug thread. For early calls
|
|
* we invoke the thread function directly.
|
|
*/
|
|
if (!st->thread)
|
|
return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
|
|
|
|
st->rollback = false;
|
|
st->last = NULL;
|
|
|
|
st->node = node;
|
|
st->bringup = bringup;
|
|
st->cb_state = state;
|
|
st->single = true;
|
|
|
|
__cpuhp_kick_ap(st);
|
|
|
|
/*
|
|
* If we failed and did a partial, do a rollback.
|
|
*/
|
|
if ((ret = st->result) && st->last) {
|
|
st->rollback = true;
|
|
st->bringup = !bringup;
|
|
|
|
__cpuhp_kick_ap(st);
|
|
}
|
|
|
|
/*
|
|
* Clean up the leftovers so the next hotplug operation wont use stale
|
|
* data.
|
|
*/
|
|
st->node = st->last = NULL;
|
|
return ret;
|
|
}
|
|
|
|
static int cpuhp_kick_ap_work(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
enum cpuhp_state prev_state = st->state;
|
|
int ret;
|
|
|
|
cpuhp_lock_acquire(false);
|
|
cpuhp_lock_release(false);
|
|
|
|
cpuhp_lock_acquire(true);
|
|
cpuhp_lock_release(true);
|
|
|
|
trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
|
|
ret = cpuhp_kick_ap(st, st->target);
|
|
trace_cpuhp_exit(cpu, st->state, prev_state, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct smp_hotplug_thread cpuhp_threads = {
|
|
.store = &cpuhp_state.thread,
|
|
.create = &cpuhp_create,
|
|
.thread_should_run = cpuhp_should_run,
|
|
.thread_fn = cpuhp_thread_fun,
|
|
.thread_comm = "cpuhp/%u",
|
|
.selfparking = true,
|
|
};
|
|
|
|
void __init cpuhp_threads_init(void)
|
|
{
|
|
BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
|
|
kthread_unpark(this_cpu_read(cpuhp_state.thread));
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
/**
|
|
* clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
|
|
* @cpu: a CPU id
|
|
*
|
|
* This function walks all processes, finds a valid mm struct for each one and
|
|
* then clears a corresponding bit in mm's cpumask. While this all sounds
|
|
* trivial, there are various non-obvious corner cases, which this function
|
|
* tries to solve in a safe manner.
|
|
*
|
|
* Also note that the function uses a somewhat relaxed locking scheme, so it may
|
|
* be called only for an already offlined CPU.
|
|
*/
|
|
void clear_tasks_mm_cpumask(int cpu)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
/*
|
|
* This function is called after the cpu is taken down and marked
|
|
* offline, so its not like new tasks will ever get this cpu set in
|
|
* their mm mask. -- Peter Zijlstra
|
|
* Thus, we may use rcu_read_lock() here, instead of grabbing
|
|
* full-fledged tasklist_lock.
|
|
*/
|
|
WARN_ON(cpu_online(cpu));
|
|
rcu_read_lock();
|
|
for_each_process(p) {
|
|
struct task_struct *t;
|
|
|
|
/*
|
|
* Main thread might exit, but other threads may still have
|
|
* a valid mm. Find one.
|
|
*/
|
|
t = find_lock_task_mm(p);
|
|
if (!t)
|
|
continue;
|
|
cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
|
|
task_unlock(t);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Take this CPU down. */
|
|
static int take_cpu_down(void *_param)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
|
|
int err, cpu = smp_processor_id();
|
|
int ret;
|
|
|
|
/* Ensure this CPU doesn't handle any more interrupts. */
|
|
err = __cpu_disable();
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/*
|
|
* We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
|
|
* do this step again.
|
|
*/
|
|
WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
|
|
st->state--;
|
|
/* Invoke the former CPU_DYING callbacks */
|
|
for (; st->state > target; st->state--) {
|
|
ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
|
|
/*
|
|
* DYING must not fail!
|
|
*/
|
|
WARN_ON_ONCE(ret);
|
|
}
|
|
|
|
/* Give up timekeeping duties */
|
|
tick_handover_do_timer();
|
|
/* Park the stopper thread */
|
|
stop_machine_park(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static int takedown_cpu(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int err;
|
|
|
|
/* Park the smpboot threads */
|
|
kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
|
|
smpboot_park_threads(cpu);
|
|
|
|
/*
|
|
* Prevent irq alloc/free while the dying cpu reorganizes the
|
|
* interrupt affinities.
|
|
*/
|
|
irq_lock_sparse();
|
|
|
|
/*
|
|
* So now all preempt/rcu users must observe !cpu_active().
|
|
*/
|
|
err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
|
|
if (err) {
|
|
/* CPU refused to die */
|
|
irq_unlock_sparse();
|
|
/* Unpark the hotplug thread so we can rollback there */
|
|
kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
|
|
return err;
|
|
}
|
|
BUG_ON(cpu_online(cpu));
|
|
|
|
/*
|
|
* The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
|
|
* all runnable tasks from the CPU, there's only the idle task left now
|
|
* that the migration thread is done doing the stop_machine thing.
|
|
*
|
|
* Wait for the stop thread to go away.
|
|
*/
|
|
wait_for_ap_thread(st, false);
|
|
BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
|
|
|
|
/* Interrupts are moved away from the dying cpu, reenable alloc/free */
|
|
irq_unlock_sparse();
|
|
|
|
hotplug_cpu__broadcast_tick_pull(cpu);
|
|
/* This actually kills the CPU. */
|
|
__cpu_die(cpu);
|
|
|
|
tick_cleanup_dead_cpu(cpu);
|
|
rcutree_migrate_callbacks(cpu);
|
|
return 0;
|
|
}
|
|
|
|
static void cpuhp_complete_idle_dead(void *arg)
|
|
{
|
|
struct cpuhp_cpu_state *st = arg;
|
|
|
|
complete_ap_thread(st, false);
|
|
}
|
|
|
|
void cpuhp_report_idle_dead(void)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
|
|
BUG_ON(st->state != CPUHP_AP_OFFLINE);
|
|
rcu_report_dead(smp_processor_id());
|
|
st->state = CPUHP_AP_IDLE_DEAD;
|
|
/*
|
|
* We cannot call complete after rcu_report_dead() so we delegate it
|
|
* to an online cpu.
|
|
*/
|
|
smp_call_function_single(cpumask_first(cpu_online_mask),
|
|
cpuhp_complete_idle_dead, st, 0);
|
|
}
|
|
|
|
static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
|
|
{
|
|
for (st->state++; st->state < st->target; st->state++) {
|
|
struct cpuhp_step *step = cpuhp_get_step(st->state);
|
|
|
|
if (!step->skip_onerr)
|
|
cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
|
|
}
|
|
}
|
|
|
|
static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
|
|
enum cpuhp_state target)
|
|
{
|
|
enum cpuhp_state prev_state = st->state;
|
|
int ret = 0;
|
|
|
|
for (; st->state > target; st->state--) {
|
|
ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
|
|
if (ret) {
|
|
st->target = prev_state;
|
|
undo_cpu_down(cpu, st);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Requires cpu_add_remove_lock to be held */
|
|
static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
|
|
enum cpuhp_state target)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int prev_state, ret = 0;
|
|
|
|
if (num_online_cpus() == 1)
|
|
return -EBUSY;
|
|
|
|
if (!cpu_present(cpu))
|
|
return -EINVAL;
|
|
|
|
cpus_write_lock();
|
|
|
|
cpuhp_tasks_frozen = tasks_frozen;
|
|
|
|
prev_state = cpuhp_set_state(st, target);
|
|
/*
|
|
* If the current CPU state is in the range of the AP hotplug thread,
|
|
* then we need to kick the thread.
|
|
*/
|
|
if (st->state > CPUHP_TEARDOWN_CPU) {
|
|
st->target = max((int)target, CPUHP_TEARDOWN_CPU);
|
|
ret = cpuhp_kick_ap_work(cpu);
|
|
/*
|
|
* The AP side has done the error rollback already. Just
|
|
* return the error code..
|
|
*/
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* We might have stopped still in the range of the AP hotplug
|
|
* thread. Nothing to do anymore.
|
|
*/
|
|
if (st->state > CPUHP_TEARDOWN_CPU)
|
|
goto out;
|
|
|
|
st->target = target;
|
|
}
|
|
/*
|
|
* The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
|
|
* to do the further cleanups.
|
|
*/
|
|
ret = cpuhp_down_callbacks(cpu, st, target);
|
|
if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
|
|
cpuhp_reset_state(st, prev_state);
|
|
__cpuhp_kick_ap(st);
|
|
}
|
|
|
|
out:
|
|
cpus_write_unlock();
|
|
/*
|
|
* Do post unplug cleanup. This is still protected against
|
|
* concurrent CPU hotplug via cpu_add_remove_lock.
|
|
*/
|
|
lockup_detector_cleanup();
|
|
return ret;
|
|
}
|
|
|
|
static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
|
|
{
|
|
int err;
|
|
|
|
cpu_maps_update_begin();
|
|
|
|
if (cpu_hotplug_disabled) {
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
err = _cpu_down(cpu, 0, target);
|
|
|
|
out:
|
|
cpu_maps_update_done();
|
|
return err;
|
|
}
|
|
|
|
int cpu_down(unsigned int cpu)
|
|
{
|
|
return do_cpu_down(cpu, CPUHP_OFFLINE);
|
|
}
|
|
EXPORT_SYMBOL(cpu_down);
|
|
|
|
#else
|
|
#define takedown_cpu NULL
|
|
#endif /*CONFIG_HOTPLUG_CPU*/
|
|
|
|
/**
|
|
* notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
|
|
* @cpu: cpu that just started
|
|
*
|
|
* It must be called by the arch code on the new cpu, before the new cpu
|
|
* enables interrupts and before the "boot" cpu returns from __cpu_up().
|
|
*/
|
|
void notify_cpu_starting(unsigned int cpu)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
|
|
int ret;
|
|
|
|
rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
|
|
while (st->state < target) {
|
|
st->state++;
|
|
ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
|
|
/*
|
|
* STARTING must not fail!
|
|
*/
|
|
WARN_ON_ONCE(ret);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called from the idle task. Wake up the controlling task which brings the
|
|
* stopper and the hotplug thread of the upcoming CPU up and then delegates
|
|
* the rest of the online bringup to the hotplug thread.
|
|
*/
|
|
void cpuhp_online_idle(enum cpuhp_state state)
|
|
{
|
|
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
|
|
|
|
/* Happens for the boot cpu */
|
|
if (state != CPUHP_AP_ONLINE_IDLE)
|
|
return;
|
|
|
|
st->state = CPUHP_AP_ONLINE_IDLE;
|
|
complete_ap_thread(st, true);
|
|
}
|
|
|
|
/* Requires cpu_add_remove_lock to be held */
|
|
static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
struct task_struct *idle;
|
|
int ret = 0;
|
|
|
|
cpus_write_lock();
|
|
|
|
if (!cpu_present(cpu)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The caller of do_cpu_up might have raced with another
|
|
* caller. Ignore it for now.
|
|
*/
|
|
if (st->state >= target)
|
|
goto out;
|
|
|
|
if (st->state == CPUHP_OFFLINE) {
|
|
/* Let it fail before we try to bring the cpu up */
|
|
idle = idle_thread_get(cpu);
|
|
if (IS_ERR(idle)) {
|
|
ret = PTR_ERR(idle);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
cpuhp_tasks_frozen = tasks_frozen;
|
|
|
|
cpuhp_set_state(st, target);
|
|
/*
|
|
* If the current CPU state is in the range of the AP hotplug thread,
|
|
* then we need to kick the thread once more.
|
|
*/
|
|
if (st->state > CPUHP_BRINGUP_CPU) {
|
|
ret = cpuhp_kick_ap_work(cpu);
|
|
/*
|
|
* The AP side has done the error rollback already. Just
|
|
* return the error code..
|
|
*/
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Try to reach the target state. We max out on the BP at
|
|
* CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
|
|
* responsible for bringing it up to the target state.
|
|
*/
|
|
target = min((int)target, CPUHP_BRINGUP_CPU);
|
|
ret = cpuhp_up_callbacks(cpu, st, target);
|
|
out:
|
|
cpus_write_unlock();
|
|
return ret;
|
|
}
|
|
|
|
static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
|
|
{
|
|
int err = 0;
|
|
|
|
if (!cpu_possible(cpu)) {
|
|
pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
|
|
cpu);
|
|
#if defined(CONFIG_IA64)
|
|
pr_err("please check additional_cpus= boot parameter\n");
|
|
#endif
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = try_online_node(cpu_to_node(cpu));
|
|
if (err)
|
|
return err;
|
|
|
|
cpu_maps_update_begin();
|
|
|
|
if (cpu_hotplug_disabled) {
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
err = _cpu_up(cpu, 0, target);
|
|
out:
|
|
cpu_maps_update_done();
|
|
return err;
|
|
}
|
|
|
|
int cpu_up(unsigned int cpu)
|
|
{
|
|
return do_cpu_up(cpu, CPUHP_ONLINE);
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpu_up);
|
|
|
|
#ifdef CONFIG_PM_SLEEP_SMP
|
|
static cpumask_var_t frozen_cpus;
|
|
|
|
int freeze_secondary_cpus(int primary)
|
|
{
|
|
int cpu, error = 0;
|
|
|
|
cpu_maps_update_begin();
|
|
if (!cpu_online(primary))
|
|
primary = cpumask_first(cpu_online_mask);
|
|
/*
|
|
* We take down all of the non-boot CPUs in one shot to avoid races
|
|
* with the userspace trying to use the CPU hotplug at the same time
|
|
*/
|
|
cpumask_clear(frozen_cpus);
|
|
|
|
pr_info("Disabling non-boot CPUs ...\n");
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu == primary)
|
|
continue;
|
|
trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
|
|
error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
|
|
trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
|
|
if (!error)
|
|
cpumask_set_cpu(cpu, frozen_cpus);
|
|
else {
|
|
pr_err("Error taking CPU%d down: %d\n", cpu, error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!error)
|
|
BUG_ON(num_online_cpus() > 1);
|
|
else
|
|
pr_err("Non-boot CPUs are not disabled\n");
|
|
|
|
/*
|
|
* Make sure the CPUs won't be enabled by someone else. We need to do
|
|
* this even in case of failure as all disable_nonboot_cpus() users are
|
|
* supposed to do enable_nonboot_cpus() on the failure path.
|
|
*/
|
|
cpu_hotplug_disabled++;
|
|
|
|
cpu_maps_update_done();
|
|
return error;
|
|
}
|
|
|
|
void __weak arch_enable_nonboot_cpus_begin(void)
|
|
{
|
|
}
|
|
|
|
void __weak arch_enable_nonboot_cpus_end(void)
|
|
{
|
|
}
|
|
|
|
void enable_nonboot_cpus(void)
|
|
{
|
|
int cpu, error;
|
|
|
|
/* Allow everyone to use the CPU hotplug again */
|
|
cpu_maps_update_begin();
|
|
__cpu_hotplug_enable();
|
|
if (cpumask_empty(frozen_cpus))
|
|
goto out;
|
|
|
|
pr_info("Enabling non-boot CPUs ...\n");
|
|
|
|
arch_enable_nonboot_cpus_begin();
|
|
|
|
for_each_cpu(cpu, frozen_cpus) {
|
|
trace_suspend_resume(TPS("CPU_ON"), cpu, true);
|
|
error = _cpu_up(cpu, 1, CPUHP_ONLINE);
|
|
trace_suspend_resume(TPS("CPU_ON"), cpu, false);
|
|
if (!error) {
|
|
pr_info("CPU%d is up\n", cpu);
|
|
continue;
|
|
}
|
|
pr_warn("Error taking CPU%d up: %d\n", cpu, error);
|
|
}
|
|
|
|
arch_enable_nonboot_cpus_end();
|
|
|
|
cpumask_clear(frozen_cpus);
|
|
out:
|
|
cpu_maps_update_done();
|
|
}
|
|
|
|
static int __init alloc_frozen_cpus(void)
|
|
{
|
|
if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
core_initcall(alloc_frozen_cpus);
|
|
|
|
/*
|
|
* When callbacks for CPU hotplug notifications are being executed, we must
|
|
* ensure that the state of the system with respect to the tasks being frozen
|
|
* or not, as reported by the notification, remains unchanged *throughout the
|
|
* duration* of the execution of the callbacks.
|
|
* Hence we need to prevent the freezer from racing with regular CPU hotplug.
|
|
*
|
|
* This synchronization is implemented by mutually excluding regular CPU
|
|
* hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
|
|
* Hibernate notifications.
|
|
*/
|
|
static int
|
|
cpu_hotplug_pm_callback(struct notifier_block *nb,
|
|
unsigned long action, void *ptr)
|
|
{
|
|
switch (action) {
|
|
|
|
case PM_SUSPEND_PREPARE:
|
|
case PM_HIBERNATION_PREPARE:
|
|
cpu_hotplug_disable();
|
|
break;
|
|
|
|
case PM_POST_SUSPEND:
|
|
case PM_POST_HIBERNATION:
|
|
cpu_hotplug_enable();
|
|
break;
|
|
|
|
default:
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
|
|
static int __init cpu_hotplug_pm_sync_init(void)
|
|
{
|
|
/*
|
|
* cpu_hotplug_pm_callback has higher priority than x86
|
|
* bsp_pm_callback which depends on cpu_hotplug_pm_callback
|
|
* to disable cpu hotplug to avoid cpu hotplug race.
|
|
*/
|
|
pm_notifier(cpu_hotplug_pm_callback, 0);
|
|
return 0;
|
|
}
|
|
core_initcall(cpu_hotplug_pm_sync_init);
|
|
|
|
#endif /* CONFIG_PM_SLEEP_SMP */
|
|
|
|
int __boot_cpu_id;
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/* Boot processor state steps */
|
|
static struct cpuhp_step cpuhp_bp_states[] = {
|
|
[CPUHP_OFFLINE] = {
|
|
.name = "offline",
|
|
.startup.single = NULL,
|
|
.teardown.single = NULL,
|
|
},
|
|
#ifdef CONFIG_SMP
|
|
[CPUHP_CREATE_THREADS]= {
|
|
.name = "threads:prepare",
|
|
.startup.single = smpboot_create_threads,
|
|
.teardown.single = NULL,
|
|
.cant_stop = true,
|
|
},
|
|
[CPUHP_PERF_PREPARE] = {
|
|
.name = "perf:prepare",
|
|
.startup.single = perf_event_init_cpu,
|
|
.teardown.single = perf_event_exit_cpu,
|
|
},
|
|
[CPUHP_WORKQUEUE_PREP] = {
|
|
.name = "workqueue:prepare",
|
|
.startup.single = workqueue_prepare_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_HRTIMERS_PREPARE] = {
|
|
.name = "hrtimers:prepare",
|
|
.startup.single = hrtimers_prepare_cpu,
|
|
.teardown.single = hrtimers_dead_cpu,
|
|
},
|
|
[CPUHP_SMPCFD_PREPARE] = {
|
|
.name = "smpcfd:prepare",
|
|
.startup.single = smpcfd_prepare_cpu,
|
|
.teardown.single = smpcfd_dead_cpu,
|
|
},
|
|
[CPUHP_RELAY_PREPARE] = {
|
|
.name = "relay:prepare",
|
|
.startup.single = relay_prepare_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_SLAB_PREPARE] = {
|
|
.name = "slab:prepare",
|
|
.startup.single = slab_prepare_cpu,
|
|
.teardown.single = slab_dead_cpu,
|
|
},
|
|
[CPUHP_RCUTREE_PREP] = {
|
|
.name = "RCU/tree:prepare",
|
|
.startup.single = rcutree_prepare_cpu,
|
|
.teardown.single = rcutree_dead_cpu,
|
|
},
|
|
/*
|
|
* On the tear-down path, timers_dead_cpu() must be invoked
|
|
* before blk_mq_queue_reinit_notify() from notify_dead(),
|
|
* otherwise a RCU stall occurs.
|
|
*/
|
|
[CPUHP_TIMERS_PREPARE] = {
|
|
.name = "timers:dead",
|
|
.startup.single = timers_prepare_cpu,
|
|
.teardown.single = timers_dead_cpu,
|
|
},
|
|
/* Kicks the plugged cpu into life */
|
|
[CPUHP_BRINGUP_CPU] = {
|
|
.name = "cpu:bringup",
|
|
.startup.single = bringup_cpu,
|
|
.teardown.single = NULL,
|
|
.cant_stop = true,
|
|
},
|
|
/*
|
|
* Handled on controll processor until the plugged processor manages
|
|
* this itself.
|
|
*/
|
|
[CPUHP_TEARDOWN_CPU] = {
|
|
.name = "cpu:teardown",
|
|
.startup.single = NULL,
|
|
.teardown.single = takedown_cpu,
|
|
.cant_stop = true,
|
|
},
|
|
#else
|
|
[CPUHP_BRINGUP_CPU] = { },
|
|
#endif
|
|
};
|
|
|
|
/* Application processor state steps */
|
|
static struct cpuhp_step cpuhp_ap_states[] = {
|
|
#ifdef CONFIG_SMP
|
|
/* Final state before CPU kills itself */
|
|
[CPUHP_AP_IDLE_DEAD] = {
|
|
.name = "idle:dead",
|
|
},
|
|
/*
|
|
* Last state before CPU enters the idle loop to die. Transient state
|
|
* for synchronization.
|
|
*/
|
|
[CPUHP_AP_OFFLINE] = {
|
|
.name = "ap:offline",
|
|
.cant_stop = true,
|
|
},
|
|
/* First state is scheduler control. Interrupts are disabled */
|
|
[CPUHP_AP_SCHED_STARTING] = {
|
|
.name = "sched:starting",
|
|
.startup.single = sched_cpu_starting,
|
|
.teardown.single = sched_cpu_dying,
|
|
},
|
|
[CPUHP_AP_RCUTREE_DYING] = {
|
|
.name = "RCU/tree:dying",
|
|
.startup.single = NULL,
|
|
.teardown.single = rcutree_dying_cpu,
|
|
},
|
|
[CPUHP_AP_SMPCFD_DYING] = {
|
|
.name = "smpcfd:dying",
|
|
.startup.single = NULL,
|
|
.teardown.single = smpcfd_dying_cpu,
|
|
},
|
|
/* Entry state on starting. Interrupts enabled from here on. Transient
|
|
* state for synchronsization */
|
|
[CPUHP_AP_ONLINE] = {
|
|
.name = "ap:online",
|
|
},
|
|
/* Handle smpboot threads park/unpark */
|
|
[CPUHP_AP_SMPBOOT_THREADS] = {
|
|
.name = "smpboot/threads:online",
|
|
.startup.single = smpboot_unpark_threads,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
|
|
.name = "irq/affinity:online",
|
|
.startup.single = irq_affinity_online_cpu,
|
|
.teardown.single = NULL,
|
|
},
|
|
[CPUHP_AP_PERF_ONLINE] = {
|
|
.name = "perf:online",
|
|
.startup.single = perf_event_init_cpu,
|
|
.teardown.single = perf_event_exit_cpu,
|
|
},
|
|
[CPUHP_AP_WORKQUEUE_ONLINE] = {
|
|
.name = "workqueue:online",
|
|
.startup.single = workqueue_online_cpu,
|
|
.teardown.single = workqueue_offline_cpu,
|
|
},
|
|
[CPUHP_AP_RCUTREE_ONLINE] = {
|
|
.name = "RCU/tree:online",
|
|
.startup.single = rcutree_online_cpu,
|
|
.teardown.single = rcutree_offline_cpu,
|
|
},
|
|
#endif
|
|
/*
|
|
* The dynamically registered state space is here
|
|
*/
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* Last state is scheduler control setting the cpu active */
|
|
[CPUHP_AP_ACTIVE] = {
|
|
.name = "sched:active",
|
|
.startup.single = sched_cpu_activate,
|
|
.teardown.single = sched_cpu_deactivate,
|
|
},
|
|
#endif
|
|
|
|
/* CPU is fully up and running. */
|
|
[CPUHP_ONLINE] = {
|
|
.name = "online",
|
|
.startup.single = NULL,
|
|
.teardown.single = NULL,
|
|
},
|
|
};
|
|
|
|
/* Sanity check for callbacks */
|
|
static int cpuhp_cb_check(enum cpuhp_state state)
|
|
{
|
|
if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns a free for dynamic slot assignment of the Online state. The states
|
|
* are protected by the cpuhp_slot_states mutex and an empty slot is identified
|
|
* by having no name assigned.
|
|
*/
|
|
static int cpuhp_reserve_state(enum cpuhp_state state)
|
|
{
|
|
enum cpuhp_state i, end;
|
|
struct cpuhp_step *step;
|
|
|
|
switch (state) {
|
|
case CPUHP_AP_ONLINE_DYN:
|
|
step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
|
|
end = CPUHP_AP_ONLINE_DYN_END;
|
|
break;
|
|
case CPUHP_BP_PREPARE_DYN:
|
|
step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
|
|
end = CPUHP_BP_PREPARE_DYN_END;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = state; i <= end; i++, step++) {
|
|
if (!step->name)
|
|
return i;
|
|
}
|
|
WARN(1, "No more dynamic states available for CPU hotplug\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
|
|
int (*startup)(unsigned int cpu),
|
|
int (*teardown)(unsigned int cpu),
|
|
bool multi_instance)
|
|
{
|
|
/* (Un)Install the callbacks for further cpu hotplug operations */
|
|
struct cpuhp_step *sp;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* If name is NULL, then the state gets removed.
|
|
*
|
|
* CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
|
|
* the first allocation from these dynamic ranges, so the removal
|
|
* would trigger a new allocation and clear the wrong (already
|
|
* empty) state, leaving the callbacks of the to be cleared state
|
|
* dangling, which causes wreckage on the next hotplug operation.
|
|
*/
|
|
if (name && (state == CPUHP_AP_ONLINE_DYN ||
|
|
state == CPUHP_BP_PREPARE_DYN)) {
|
|
ret = cpuhp_reserve_state(state);
|
|
if (ret < 0)
|
|
return ret;
|
|
state = ret;
|
|
}
|
|
sp = cpuhp_get_step(state);
|
|
if (name && sp->name)
|
|
return -EBUSY;
|
|
|
|
sp->startup.single = startup;
|
|
sp->teardown.single = teardown;
|
|
sp->name = name;
|
|
sp->multi_instance = multi_instance;
|
|
INIT_HLIST_HEAD(&sp->list);
|
|
return ret;
|
|
}
|
|
|
|
static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
|
|
{
|
|
return cpuhp_get_step(state)->teardown.single;
|
|
}
|
|
|
|
/*
|
|
* Call the startup/teardown function for a step either on the AP or
|
|
* on the current CPU.
|
|
*/
|
|
static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
|
|
struct hlist_node *node)
|
|
{
|
|
struct cpuhp_step *sp = cpuhp_get_step(state);
|
|
int ret;
|
|
|
|
/*
|
|
* If there's nothing to do, we done.
|
|
* Relies on the union for multi_instance.
|
|
*/
|
|
if ((bringup && !sp->startup.single) ||
|
|
(!bringup && !sp->teardown.single))
|
|
return 0;
|
|
/*
|
|
* The non AP bound callbacks can fail on bringup. On teardown
|
|
* e.g. module removal we crash for now.
|
|
*/
|
|
#ifdef CONFIG_SMP
|
|
if (cpuhp_is_ap_state(state))
|
|
ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
|
|
else
|
|
ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
|
|
#else
|
|
ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
|
|
#endif
|
|
BUG_ON(ret && !bringup);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called from __cpuhp_setup_state on a recoverable failure.
|
|
*
|
|
* Note: The teardown callbacks for rollback are not allowed to fail!
|
|
*/
|
|
static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
|
|
struct hlist_node *node)
|
|
{
|
|
int cpu;
|
|
|
|
/* Roll back the already executed steps on the other cpus */
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpu >= failedcpu)
|
|
break;
|
|
|
|
/* Did we invoke the startup call on that cpu ? */
|
|
if (cpustate >= state)
|
|
cpuhp_issue_call(cpu, state, false, node);
|
|
}
|
|
}
|
|
|
|
int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
|
|
struct hlist_node *node,
|
|
bool invoke)
|
|
{
|
|
struct cpuhp_step *sp;
|
|
int cpu;
|
|
int ret;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
sp = cpuhp_get_step(state);
|
|
if (sp->multi_instance == false)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
|
|
if (!invoke || !sp->startup.multi)
|
|
goto add_node;
|
|
|
|
/*
|
|
* Try to call the startup callback for each present cpu
|
|
* depending on the hotplug state of the cpu.
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate < state)
|
|
continue;
|
|
|
|
ret = cpuhp_issue_call(cpu, state, true, node);
|
|
if (ret) {
|
|
if (sp->teardown.multi)
|
|
cpuhp_rollback_install(cpu, state, node);
|
|
goto unlock;
|
|
}
|
|
}
|
|
add_node:
|
|
ret = 0;
|
|
hlist_add_head(node, &sp->list);
|
|
unlock:
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
|
|
bool invoke)
|
|
{
|
|
int ret;
|
|
|
|
cpus_read_lock();
|
|
ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
|
|
cpus_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
|
|
|
|
/**
|
|
* __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
|
|
* @state: The state to setup
|
|
* @invoke: If true, the startup function is invoked for cpus where
|
|
* cpu state >= @state
|
|
* @startup: startup callback function
|
|
* @teardown: teardown callback function
|
|
* @multi_instance: State is set up for multiple instances which get
|
|
* added afterwards.
|
|
*
|
|
* The caller needs to hold cpus read locked while calling this function.
|
|
* Returns:
|
|
* On success:
|
|
* Positive state number if @state is CPUHP_AP_ONLINE_DYN
|
|
* 0 for all other states
|
|
* On failure: proper (negative) error code
|
|
*/
|
|
int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
|
|
const char *name, bool invoke,
|
|
int (*startup)(unsigned int cpu),
|
|
int (*teardown)(unsigned int cpu),
|
|
bool multi_instance)
|
|
{
|
|
int cpu, ret = 0;
|
|
bool dynstate;
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
if (cpuhp_cb_check(state) || !name)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
|
|
ret = cpuhp_store_callbacks(state, name, startup, teardown,
|
|
multi_instance);
|
|
|
|
dynstate = state == CPUHP_AP_ONLINE_DYN;
|
|
if (ret > 0 && dynstate) {
|
|
state = ret;
|
|
ret = 0;
|
|
}
|
|
|
|
if (ret || !invoke || !startup)
|
|
goto out;
|
|
|
|
/*
|
|
* Try to call the startup callback for each present cpu
|
|
* depending on the hotplug state of the cpu.
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate < state)
|
|
continue;
|
|
|
|
ret = cpuhp_issue_call(cpu, state, true, NULL);
|
|
if (ret) {
|
|
if (teardown)
|
|
cpuhp_rollback_install(cpu, state, NULL);
|
|
cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
|
|
goto out;
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
/*
|
|
* If the requested state is CPUHP_AP_ONLINE_DYN, return the
|
|
* dynamically allocated state in case of success.
|
|
*/
|
|
if (!ret && dynstate)
|
|
return state;
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
|
|
|
|
int __cpuhp_setup_state(enum cpuhp_state state,
|
|
const char *name, bool invoke,
|
|
int (*startup)(unsigned int cpu),
|
|
int (*teardown)(unsigned int cpu),
|
|
bool multi_instance)
|
|
{
|
|
int ret;
|
|
|
|
cpus_read_lock();
|
|
ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
|
|
teardown, multi_instance);
|
|
cpus_read_unlock();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_setup_state);
|
|
|
|
int __cpuhp_state_remove_instance(enum cpuhp_state state,
|
|
struct hlist_node *node, bool invoke)
|
|
{
|
|
struct cpuhp_step *sp = cpuhp_get_step(state);
|
|
int cpu;
|
|
|
|
BUG_ON(cpuhp_cb_check(state));
|
|
|
|
if (!sp->multi_instance)
|
|
return -EINVAL;
|
|
|
|
cpus_read_lock();
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
|
|
if (!invoke || !cpuhp_get_teardown_cb(state))
|
|
goto remove;
|
|
/*
|
|
* Call the teardown callback for each present cpu depending
|
|
* on the hotplug state of the cpu. This function is not
|
|
* allowed to fail currently!
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate >= state)
|
|
cpuhp_issue_call(cpu, state, false, node);
|
|
}
|
|
|
|
remove:
|
|
hlist_del(node);
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
cpus_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
|
|
|
|
/**
|
|
* __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
|
|
* @state: The state to remove
|
|
* @invoke: If true, the teardown function is invoked for cpus where
|
|
* cpu state >= @state
|
|
*
|
|
* The caller needs to hold cpus read locked while calling this function.
|
|
* The teardown callback is currently not allowed to fail. Think
|
|
* about module removal!
|
|
*/
|
|
void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
|
|
{
|
|
struct cpuhp_step *sp = cpuhp_get_step(state);
|
|
int cpu;
|
|
|
|
BUG_ON(cpuhp_cb_check(state));
|
|
|
|
lockdep_assert_cpus_held();
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
if (sp->multi_instance) {
|
|
WARN(!hlist_empty(&sp->list),
|
|
"Error: Removing state %d which has instances left.\n",
|
|
state);
|
|
goto remove;
|
|
}
|
|
|
|
if (!invoke || !cpuhp_get_teardown_cb(state))
|
|
goto remove;
|
|
|
|
/*
|
|
* Call the teardown callback for each present cpu depending
|
|
* on the hotplug state of the cpu. This function is not
|
|
* allowed to fail currently!
|
|
*/
|
|
for_each_present_cpu(cpu) {
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
|
|
int cpustate = st->state;
|
|
|
|
if (cpustate >= state)
|
|
cpuhp_issue_call(cpu, state, false, NULL);
|
|
}
|
|
remove:
|
|
cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
|
|
|
|
void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
|
|
{
|
|
cpus_read_lock();
|
|
__cpuhp_remove_state_cpuslocked(state, invoke);
|
|
cpus_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL(__cpuhp_remove_state);
|
|
|
|
#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
|
|
static ssize_t show_cpuhp_state(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
|
|
return sprintf(buf, "%d\n", st->state);
|
|
}
|
|
static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
|
|
|
|
static ssize_t write_cpuhp_target(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
struct cpuhp_step *sp;
|
|
int target, ret;
|
|
|
|
ret = kstrtoint(buf, 10, &target);
|
|
if (ret)
|
|
return ret;
|
|
|
|
#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
|
|
if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
|
|
return -EINVAL;
|
|
#else
|
|
if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
|
|
return -EINVAL;
|
|
#endif
|
|
|
|
ret = lock_device_hotplug_sysfs();
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
sp = cpuhp_get_step(target);
|
|
ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (st->state < target)
|
|
ret = do_cpu_up(dev->id, target);
|
|
else
|
|
ret = do_cpu_down(dev->id, target);
|
|
out:
|
|
unlock_device_hotplug();
|
|
return ret ? ret : count;
|
|
}
|
|
|
|
static ssize_t show_cpuhp_target(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
|
|
return sprintf(buf, "%d\n", st->target);
|
|
}
|
|
static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
|
|
|
|
|
|
static ssize_t write_cpuhp_fail(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
struct cpuhp_step *sp;
|
|
int fail, ret;
|
|
|
|
ret = kstrtoint(buf, 10, &fail);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Cannot fail STARTING/DYING callbacks.
|
|
*/
|
|
if (cpuhp_is_atomic_state(fail))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Cannot fail anything that doesn't have callbacks.
|
|
*/
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
sp = cpuhp_get_step(fail);
|
|
if (!sp->startup.single && !sp->teardown.single)
|
|
ret = -EINVAL;
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
st->fail = fail;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t show_cpuhp_fail(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
|
|
|
|
return sprintf(buf, "%d\n", st->fail);
|
|
}
|
|
|
|
static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
|
|
|
|
static struct attribute *cpuhp_cpu_attrs[] = {
|
|
&dev_attr_state.attr,
|
|
&dev_attr_target.attr,
|
|
&dev_attr_fail.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group cpuhp_cpu_attr_group = {
|
|
.attrs = cpuhp_cpu_attrs,
|
|
.name = "hotplug",
|
|
NULL
|
|
};
|
|
|
|
static ssize_t show_cpuhp_states(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
ssize_t cur, res = 0;
|
|
int i;
|
|
|
|
mutex_lock(&cpuhp_state_mutex);
|
|
for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
|
|
struct cpuhp_step *sp = cpuhp_get_step(i);
|
|
|
|
if (sp->name) {
|
|
cur = sprintf(buf, "%3d: %s\n", i, sp->name);
|
|
buf += cur;
|
|
res += cur;
|
|
}
|
|
}
|
|
mutex_unlock(&cpuhp_state_mutex);
|
|
return res;
|
|
}
|
|
static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
|
|
|
|
static struct attribute *cpuhp_cpu_root_attrs[] = {
|
|
&dev_attr_states.attr,
|
|
NULL
|
|
};
|
|
|
|
static const struct attribute_group cpuhp_cpu_root_attr_group = {
|
|
.attrs = cpuhp_cpu_root_attrs,
|
|
.name = "hotplug",
|
|
NULL
|
|
};
|
|
|
|
static int __init cpuhp_sysfs_init(void)
|
|
{
|
|
int cpu, ret;
|
|
|
|
ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
|
|
&cpuhp_cpu_root_attr_group);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct device *dev = get_cpu_device(cpu);
|
|
|
|
if (!dev)
|
|
continue;
|
|
ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
device_initcall(cpuhp_sysfs_init);
|
|
#endif
|
|
|
|
/*
|
|
* cpu_bit_bitmap[] is a special, "compressed" data structure that
|
|
* represents all NR_CPUS bits binary values of 1<<nr.
|
|
*
|
|
* It is used by cpumask_of() to get a constant address to a CPU
|
|
* mask value that has a single bit set only.
|
|
*/
|
|
|
|
/* cpu_bit_bitmap[0] is empty - so we can back into it */
|
|
#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
|
|
#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
|
|
#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
|
|
#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
|
|
|
|
const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
|
|
|
|
MASK_DECLARE_8(0), MASK_DECLARE_8(8),
|
|
MASK_DECLARE_8(16), MASK_DECLARE_8(24),
|
|
#if BITS_PER_LONG > 32
|
|
MASK_DECLARE_8(32), MASK_DECLARE_8(40),
|
|
MASK_DECLARE_8(48), MASK_DECLARE_8(56),
|
|
#endif
|
|
};
|
|
EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
|
|
|
|
const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
|
|
EXPORT_SYMBOL(cpu_all_bits);
|
|
|
|
#ifdef CONFIG_INIT_ALL_POSSIBLE
|
|
struct cpumask __cpu_possible_mask __read_mostly
|
|
= {CPU_BITS_ALL};
|
|
#else
|
|
struct cpumask __cpu_possible_mask __read_mostly;
|
|
#endif
|
|
EXPORT_SYMBOL(__cpu_possible_mask);
|
|
|
|
struct cpumask __cpu_online_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_online_mask);
|
|
|
|
struct cpumask __cpu_present_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_present_mask);
|
|
|
|
struct cpumask __cpu_active_mask __read_mostly;
|
|
EXPORT_SYMBOL(__cpu_active_mask);
|
|
|
|
void init_cpu_present(const struct cpumask *src)
|
|
{
|
|
cpumask_copy(&__cpu_present_mask, src);
|
|
}
|
|
|
|
void init_cpu_possible(const struct cpumask *src)
|
|
{
|
|
cpumask_copy(&__cpu_possible_mask, src);
|
|
}
|
|
|
|
void init_cpu_online(const struct cpumask *src)
|
|
{
|
|
cpumask_copy(&__cpu_online_mask, src);
|
|
}
|
|
|
|
/*
|
|
* Activate the first processor.
|
|
*/
|
|
void __init boot_cpu_init(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
/* Mark the boot cpu "present", "online" etc for SMP and UP case */
|
|
set_cpu_online(cpu, true);
|
|
set_cpu_active(cpu, true);
|
|
set_cpu_present(cpu, true);
|
|
set_cpu_possible(cpu, true);
|
|
|
|
#ifdef CONFIG_SMP
|
|
__boot_cpu_id = cpu;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Must be called _AFTER_ setting up the per_cpu areas
|
|
*/
|
|
void __init boot_cpu_state_init(void)
|
|
{
|
|
per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
|
|
}
|