linux_dsm_epyc7002/arch/alpha/include/asm/bitops.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

462 lines
8.8 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ALPHA_BITOPS_H
#define _ALPHA_BITOPS_H
#ifndef _LINUX_BITOPS_H
#error only <linux/bitops.h> can be included directly
#endif
#include <asm/compiler.h>
#include <asm/barrier.h>
/*
* Copyright 1994, Linus Torvalds.
*/
/*
* These have to be done with inline assembly: that way the bit-setting
* is guaranteed to be atomic. All bit operations return 0 if the bit
* was cleared before the operation and != 0 if it was not.
*
* To get proper branch prediction for the main line, we must branch
* forward to code at the end of this object's .text section, then
* branch back to restart the operation.
*
* bit 0 is the LSB of addr; bit 64 is the LSB of (addr+1).
*/
static inline void
set_bit(unsigned long nr, volatile void * addr)
{
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%3\n"
" bis %0,%2,%0\n"
" stl_c %0,%1\n"
" beq %0,2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m)
:"Ir" (1UL << (nr & 31)), "m" (*m));
}
/*
* WARNING: non atomic version.
*/
static inline void
__set_bit(unsigned long nr, volatile void * addr)
{
int *m = ((int *) addr) + (nr >> 5);
*m |= 1 << (nr & 31);
}
static inline void
clear_bit(unsigned long nr, volatile void * addr)
{
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%3\n"
" bic %0,%2,%0\n"
" stl_c %0,%1\n"
" beq %0,2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m)
:"Ir" (1UL << (nr & 31)), "m" (*m));
}
static inline void
clear_bit_unlock(unsigned long nr, volatile void * addr)
{
smp_mb();
clear_bit(nr, addr);
}
/*
* WARNING: non atomic version.
*/
static __inline__ void
__clear_bit(unsigned long nr, volatile void * addr)
{
int *m = ((int *) addr) + (nr >> 5);
*m &= ~(1 << (nr & 31));
}
static inline void
__clear_bit_unlock(unsigned long nr, volatile void * addr)
{
smp_mb();
__clear_bit(nr, addr);
}
static inline void
change_bit(unsigned long nr, volatile void * addr)
{
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%3\n"
" xor %0,%2,%0\n"
" stl_c %0,%1\n"
" beq %0,2f\n"
".subsection 2\n"
"2: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m)
:"Ir" (1UL << (nr & 31)), "m" (*m));
}
/*
* WARNING: non atomic version.
*/
static __inline__ void
__change_bit(unsigned long nr, volatile void * addr)
{
int *m = ((int *) addr) + (nr >> 5);
*m ^= 1 << (nr & 31);
}
static inline int
test_and_set_bit(unsigned long nr, volatile void *addr)
{
unsigned long oldbit;
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
#ifdef CONFIG_SMP
" mb\n"
#endif
"1: ldl_l %0,%4\n"
" and %0,%3,%2\n"
" bne %2,2f\n"
" xor %0,%3,%0\n"
" stl_c %0,%1\n"
" beq %0,3f\n"
"2:\n"
#ifdef CONFIG_SMP
" mb\n"
#endif
".subsection 2\n"
"3: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m), "=&r" (oldbit)
:"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
return oldbit != 0;
}
static inline int
test_and_set_bit_lock(unsigned long nr, volatile void *addr)
{
unsigned long oldbit;
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
"1: ldl_l %0,%4\n"
" and %0,%3,%2\n"
" bne %2,2f\n"
" xor %0,%3,%0\n"
" stl_c %0,%1\n"
" beq %0,3f\n"
"2:\n"
#ifdef CONFIG_SMP
" mb\n"
#endif
".subsection 2\n"
"3: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m), "=&r" (oldbit)
:"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
return oldbit != 0;
}
/*
* WARNING: non atomic version.
*/
static inline int
__test_and_set_bit(unsigned long nr, volatile void * addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *) addr) + (nr >> 5);
int old = *m;
*m = old | mask;
return (old & mask) != 0;
}
static inline int
test_and_clear_bit(unsigned long nr, volatile void * addr)
{
unsigned long oldbit;
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
#ifdef CONFIG_SMP
" mb\n"
#endif
"1: ldl_l %0,%4\n"
" and %0,%3,%2\n"
" beq %2,2f\n"
" xor %0,%3,%0\n"
" stl_c %0,%1\n"
" beq %0,3f\n"
"2:\n"
#ifdef CONFIG_SMP
" mb\n"
#endif
".subsection 2\n"
"3: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m), "=&r" (oldbit)
:"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
return oldbit != 0;
}
/*
* WARNING: non atomic version.
*/
static inline int
__test_and_clear_bit(unsigned long nr, volatile void * addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *) addr) + (nr >> 5);
int old = *m;
*m = old & ~mask;
return (old & mask) != 0;
}
static inline int
test_and_change_bit(unsigned long nr, volatile void * addr)
{
unsigned long oldbit;
unsigned long temp;
int *m = ((int *) addr) + (nr >> 5);
__asm__ __volatile__(
#ifdef CONFIG_SMP
" mb\n"
#endif
"1: ldl_l %0,%4\n"
" and %0,%3,%2\n"
" xor %0,%3,%0\n"
" stl_c %0,%1\n"
" beq %0,3f\n"
#ifdef CONFIG_SMP
" mb\n"
#endif
".subsection 2\n"
"3: br 1b\n"
".previous"
:"=&r" (temp), "=m" (*m), "=&r" (oldbit)
:"Ir" (1UL << (nr & 31)), "m" (*m) : "memory");
return oldbit != 0;
}
/*
* WARNING: non atomic version.
*/
static __inline__ int
__test_and_change_bit(unsigned long nr, volatile void * addr)
{
unsigned long mask = 1 << (nr & 0x1f);
int *m = ((int *) addr) + (nr >> 5);
int old = *m;
*m = old ^ mask;
return (old & mask) != 0;
}
static inline int
test_bit(int nr, const volatile void * addr)
{
return (1UL & (((const int *) addr)[nr >> 5] >> (nr & 31))) != 0UL;
}
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*
* Do a binary search on the bits. Due to the nature of large
* constants on the alpha, it is worthwhile to split the search.
*/
static inline unsigned long ffz_b(unsigned long x)
{
unsigned long sum, x1, x2, x4;
x = ~x & -~x; /* set first 0 bit, clear others */
x1 = x & 0xAA;
x2 = x & 0xCC;
x4 = x & 0xF0;
sum = x2 ? 2 : 0;
sum += (x4 != 0) * 4;
sum += (x1 != 0);
return sum;
}
static inline unsigned long ffz(unsigned long word)
{
#if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67)
/* Whee. EV67 can calculate it directly. */
return __kernel_cttz(~word);
#else
unsigned long bits, qofs, bofs;
bits = __kernel_cmpbge(word, ~0UL);
qofs = ffz_b(bits);
bits = __kernel_extbl(word, qofs);
bofs = ffz_b(bits);
return qofs*8 + bofs;
#endif
}
/*
* __ffs = Find First set bit in word. Undefined if no set bit exists.
*/
static inline unsigned long __ffs(unsigned long word)
{
#if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67)
/* Whee. EV67 can calculate it directly. */
return __kernel_cttz(word);
#else
unsigned long bits, qofs, bofs;
bits = __kernel_cmpbge(0, word);
qofs = ffz_b(bits);
bits = __kernel_extbl(word, qofs);
bofs = ffz_b(~bits);
return qofs*8 + bofs;
#endif
}
#ifdef __KERNEL__
/*
* ffs: find first bit set. This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above __ffs.
*/
static inline int ffs(int word)
{
int result = __ffs(word) + 1;
return word ? result : 0;
}
/*
* fls: find last bit set.
*/
#if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67)
static inline int fls64(unsigned long word)
{
return 64 - __kernel_ctlz(word);
}
#else
extern const unsigned char __flsm1_tab[256];
static inline int fls64(unsigned long x)
{
unsigned long t, a, r;
t = __kernel_cmpbge (x, 0x0101010101010101UL);
a = __flsm1_tab[t];
t = __kernel_extbl (x, a);
r = a*8 + __flsm1_tab[t] + (x != 0);
return r;
}
#endif
static inline unsigned long __fls(unsigned long x)
{
return fls64(x) - 1;
}
static inline int fls(int x)
{
return fls64((unsigned int) x);
}
/*
* hweightN: returns the hamming weight (i.e. the number
* of bits set) of a N-bit word
*/
#if defined(CONFIG_ALPHA_EV6) && defined(CONFIG_ALPHA_EV67)
/* Whee. EV67 can calculate it directly. */
static inline unsigned long __arch_hweight64(unsigned long w)
{
return __kernel_ctpop(w);
}
static inline unsigned int __arch_hweight32(unsigned int w)
{
return __arch_hweight64(w);
}
static inline unsigned int __arch_hweight16(unsigned int w)
{
return __arch_hweight64(w & 0xffff);
}
static inline unsigned int __arch_hweight8(unsigned int w)
{
return __arch_hweight64(w & 0xff);
}
#else
#include <asm-generic/bitops/arch_hweight.h>
#endif
#include <asm-generic/bitops/const_hweight.h>
#endif /* __KERNEL__ */
#include <asm-generic/bitops/find.h>
#ifdef __KERNEL__
/*
* Every architecture must define this function. It's the fastest
* way of searching a 100-bit bitmap. It's guaranteed that at least
* one of the 100 bits is cleared.
*/
static inline unsigned long
sched_find_first_bit(const unsigned long b[2])
{
unsigned long b0, b1, ofs, tmp;
b0 = b[0];
b1 = b[1];
ofs = (b0 ? 0 : 64);
tmp = (b0 ? b0 : b1);
return __ffs(tmp) + ofs;
}
#include <asm-generic/bitops/le.h>
#include <asm-generic/bitops/ext2-atomic-setbit.h>
#endif /* __KERNEL__ */
#endif /* _ALPHA_BITOPS_H */