mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 04:46:37 +07:00
b7e97d2211
Pull slave-dmaengine updates from Vinod Koul: "This time we have Andy updates on dw_dmac which is attempting to make this IP block available as PCI and platform device though not fully complete this time. We also have TI EDMA moving the dma driver to use dmaengine APIs, also have a new driver for mmp-tdma, along with bunch of small updates. Now for your excitement the merge is little unusual here, while merging the auto merge on linux-next picks wrong choice for pl330 (drivers/dma/pl330.c) and this causes build failure. The correct resolution is in linux-next. (DMA: PL330: Fix build error) I didn't back merge your tree this time as you are better than me so no point in doing that for me :)" Fixed the pl330 conflict as in linux-next, along with trivial header file conflicts due to changed includes. * 'next' of git://git.infradead.org/users/vkoul/slave-dma: (29 commits) dma: tegra: fix interrupt name issue with apb dma. dw_dmac: fix a regression in dwc_prep_dma_memcpy dw_dmac: introduce software emulation of LLP transfers dw_dmac: autoconfigure data_width or get it via platform data dw_dmac: autoconfigure block_size or use platform data dw_dmac: get number of channels from hardware if possible dw_dmac: fill optional encoded parameters in register structure dw_dmac: mark dwc_dump_chan_regs as inline DMA: PL330: return ENOMEM instead of 0 from pl330_alloc_chan_resources DMA: PL330: Remove redundant runtime_suspend/resume functions DMA: PL330: Remove controller clock enable/disable dmaengine: use kmem_cache_zalloc instead of kmem_cache_alloc/memset DMA: PL330: Set the capability of pdm0 and pdm1 as DMA_PRIVATE ARM: EXYNOS: Set the capability of pdm0 and pdm1 as DMA_PRIVATE dma: tegra: use list_move_tail instead of list_del/list_add_tail mxs/dma: Enlarge the CCW descriptor area to 4 pages dw_dmac: utilize slave_id to pass request line dmaengine: mmp_tdma: add dt support dmaengine: mmp-pdma support spi: davici - make davinci select edma ...
3434 lines
86 KiB
C
3434 lines
86 KiB
C
/*
|
|
* Copyright (C) Ericsson AB 2007-2008
|
|
* Copyright (C) ST-Ericsson SA 2008-2010
|
|
* Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
|
|
* Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
|
|
* License terms: GNU General Public License (GPL) version 2
|
|
*/
|
|
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/err.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/regulator/consumer.h>
|
|
|
|
#include <plat/ste_dma40.h>
|
|
|
|
#include "dmaengine.h"
|
|
#include "ste_dma40_ll.h"
|
|
|
|
#define D40_NAME "dma40"
|
|
|
|
#define D40_PHY_CHAN -1
|
|
|
|
/* For masking out/in 2 bit channel positions */
|
|
#define D40_CHAN_POS(chan) (2 * (chan / 2))
|
|
#define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
|
|
|
|
/* Maximum iterations taken before giving up suspending a channel */
|
|
#define D40_SUSPEND_MAX_IT 500
|
|
|
|
/* Milliseconds */
|
|
#define DMA40_AUTOSUSPEND_DELAY 100
|
|
|
|
/* Hardware requirement on LCLA alignment */
|
|
#define LCLA_ALIGNMENT 0x40000
|
|
|
|
/* Max number of links per event group */
|
|
#define D40_LCLA_LINK_PER_EVENT_GRP 128
|
|
#define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
|
|
|
|
/* Attempts before giving up to trying to get pages that are aligned */
|
|
#define MAX_LCLA_ALLOC_ATTEMPTS 256
|
|
|
|
/* Bit markings for allocation map */
|
|
#define D40_ALLOC_FREE (1 << 31)
|
|
#define D40_ALLOC_PHY (1 << 30)
|
|
#define D40_ALLOC_LOG_FREE 0
|
|
|
|
/**
|
|
* enum 40_command - The different commands and/or statuses.
|
|
*
|
|
* @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
|
|
* @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
|
|
* @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
|
|
* @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
|
|
*/
|
|
enum d40_command {
|
|
D40_DMA_STOP = 0,
|
|
D40_DMA_RUN = 1,
|
|
D40_DMA_SUSPEND_REQ = 2,
|
|
D40_DMA_SUSPENDED = 3
|
|
};
|
|
|
|
/*
|
|
* enum d40_events - The different Event Enables for the event lines.
|
|
*
|
|
* @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
|
|
* @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
|
|
* @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
|
|
* @D40_ROUND_EVENTLINE: Status check for event line.
|
|
*/
|
|
|
|
enum d40_events {
|
|
D40_DEACTIVATE_EVENTLINE = 0,
|
|
D40_ACTIVATE_EVENTLINE = 1,
|
|
D40_SUSPEND_REQ_EVENTLINE = 2,
|
|
D40_ROUND_EVENTLINE = 3
|
|
};
|
|
|
|
/*
|
|
* These are the registers that has to be saved and later restored
|
|
* when the DMA hw is powered off.
|
|
* TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
|
|
*/
|
|
static u32 d40_backup_regs[] = {
|
|
D40_DREG_LCPA,
|
|
D40_DREG_LCLA,
|
|
D40_DREG_PRMSE,
|
|
D40_DREG_PRMSO,
|
|
D40_DREG_PRMOE,
|
|
D40_DREG_PRMOO,
|
|
};
|
|
|
|
#define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
|
|
|
|
/* TODO: Check if all these registers have to be saved/restored on dma40 v3 */
|
|
static u32 d40_backup_regs_v3[] = {
|
|
D40_DREG_PSEG1,
|
|
D40_DREG_PSEG2,
|
|
D40_DREG_PSEG3,
|
|
D40_DREG_PSEG4,
|
|
D40_DREG_PCEG1,
|
|
D40_DREG_PCEG2,
|
|
D40_DREG_PCEG3,
|
|
D40_DREG_PCEG4,
|
|
D40_DREG_RSEG1,
|
|
D40_DREG_RSEG2,
|
|
D40_DREG_RSEG3,
|
|
D40_DREG_RSEG4,
|
|
D40_DREG_RCEG1,
|
|
D40_DREG_RCEG2,
|
|
D40_DREG_RCEG3,
|
|
D40_DREG_RCEG4,
|
|
};
|
|
|
|
#define BACKUP_REGS_SZ_V3 ARRAY_SIZE(d40_backup_regs_v3)
|
|
|
|
static u32 d40_backup_regs_chan[] = {
|
|
D40_CHAN_REG_SSCFG,
|
|
D40_CHAN_REG_SSELT,
|
|
D40_CHAN_REG_SSPTR,
|
|
D40_CHAN_REG_SSLNK,
|
|
D40_CHAN_REG_SDCFG,
|
|
D40_CHAN_REG_SDELT,
|
|
D40_CHAN_REG_SDPTR,
|
|
D40_CHAN_REG_SDLNK,
|
|
};
|
|
|
|
/**
|
|
* struct d40_lli_pool - Structure for keeping LLIs in memory
|
|
*
|
|
* @base: Pointer to memory area when the pre_alloc_lli's are not large
|
|
* enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
|
|
* pre_alloc_lli is used.
|
|
* @dma_addr: DMA address, if mapped
|
|
* @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
|
|
* @pre_alloc_lli: Pre allocated area for the most common case of transfers,
|
|
* one buffer to one buffer.
|
|
*/
|
|
struct d40_lli_pool {
|
|
void *base;
|
|
int size;
|
|
dma_addr_t dma_addr;
|
|
/* Space for dst and src, plus an extra for padding */
|
|
u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
|
|
};
|
|
|
|
/**
|
|
* struct d40_desc - A descriptor is one DMA job.
|
|
*
|
|
* @lli_phy: LLI settings for physical channel. Both src and dst=
|
|
* points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
|
|
* lli_len equals one.
|
|
* @lli_log: Same as above but for logical channels.
|
|
* @lli_pool: The pool with two entries pre-allocated.
|
|
* @lli_len: Number of llis of current descriptor.
|
|
* @lli_current: Number of transferred llis.
|
|
* @lcla_alloc: Number of LCLA entries allocated.
|
|
* @txd: DMA engine struct. Used for among other things for communication
|
|
* during a transfer.
|
|
* @node: List entry.
|
|
* @is_in_client_list: true if the client owns this descriptor.
|
|
* @cyclic: true if this is a cyclic job
|
|
*
|
|
* This descriptor is used for both logical and physical transfers.
|
|
*/
|
|
struct d40_desc {
|
|
/* LLI physical */
|
|
struct d40_phy_lli_bidir lli_phy;
|
|
/* LLI logical */
|
|
struct d40_log_lli_bidir lli_log;
|
|
|
|
struct d40_lli_pool lli_pool;
|
|
int lli_len;
|
|
int lli_current;
|
|
int lcla_alloc;
|
|
|
|
struct dma_async_tx_descriptor txd;
|
|
struct list_head node;
|
|
|
|
bool is_in_client_list;
|
|
bool cyclic;
|
|
};
|
|
|
|
/**
|
|
* struct d40_lcla_pool - LCLA pool settings and data.
|
|
*
|
|
* @base: The virtual address of LCLA. 18 bit aligned.
|
|
* @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
|
|
* This pointer is only there for clean-up on error.
|
|
* @pages: The number of pages needed for all physical channels.
|
|
* Only used later for clean-up on error
|
|
* @lock: Lock to protect the content in this struct.
|
|
* @alloc_map: big map over which LCLA entry is own by which job.
|
|
*/
|
|
struct d40_lcla_pool {
|
|
void *base;
|
|
dma_addr_t dma_addr;
|
|
void *base_unaligned;
|
|
int pages;
|
|
spinlock_t lock;
|
|
struct d40_desc **alloc_map;
|
|
};
|
|
|
|
/**
|
|
* struct d40_phy_res - struct for handling eventlines mapped to physical
|
|
* channels.
|
|
*
|
|
* @lock: A lock protection this entity.
|
|
* @reserved: True if used by secure world or otherwise.
|
|
* @num: The physical channel number of this entity.
|
|
* @allocated_src: Bit mapped to show which src event line's are mapped to
|
|
* this physical channel. Can also be free or physically allocated.
|
|
* @allocated_dst: Same as for src but is dst.
|
|
* allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
|
|
* event line number.
|
|
*/
|
|
struct d40_phy_res {
|
|
spinlock_t lock;
|
|
bool reserved;
|
|
int num;
|
|
u32 allocated_src;
|
|
u32 allocated_dst;
|
|
};
|
|
|
|
struct d40_base;
|
|
|
|
/**
|
|
* struct d40_chan - Struct that describes a channel.
|
|
*
|
|
* @lock: A spinlock to protect this struct.
|
|
* @log_num: The logical number, if any of this channel.
|
|
* @pending_tx: The number of pending transfers. Used between interrupt handler
|
|
* and tasklet.
|
|
* @busy: Set to true when transfer is ongoing on this channel.
|
|
* @phy_chan: Pointer to physical channel which this instance runs on. If this
|
|
* point is NULL, then the channel is not allocated.
|
|
* @chan: DMA engine handle.
|
|
* @tasklet: Tasklet that gets scheduled from interrupt context to complete a
|
|
* transfer and call client callback.
|
|
* @client: Cliented owned descriptor list.
|
|
* @pending_queue: Submitted jobs, to be issued by issue_pending()
|
|
* @active: Active descriptor.
|
|
* @queue: Queued jobs.
|
|
* @prepare_queue: Prepared jobs.
|
|
* @dma_cfg: The client configuration of this dma channel.
|
|
* @configured: whether the dma_cfg configuration is valid
|
|
* @base: Pointer to the device instance struct.
|
|
* @src_def_cfg: Default cfg register setting for src.
|
|
* @dst_def_cfg: Default cfg register setting for dst.
|
|
* @log_def: Default logical channel settings.
|
|
* @lcpa: Pointer to dst and src lcpa settings.
|
|
* @runtime_addr: runtime configured address.
|
|
* @runtime_direction: runtime configured direction.
|
|
*
|
|
* This struct can either "be" a logical or a physical channel.
|
|
*/
|
|
struct d40_chan {
|
|
spinlock_t lock;
|
|
int log_num;
|
|
int pending_tx;
|
|
bool busy;
|
|
struct d40_phy_res *phy_chan;
|
|
struct dma_chan chan;
|
|
struct tasklet_struct tasklet;
|
|
struct list_head client;
|
|
struct list_head pending_queue;
|
|
struct list_head active;
|
|
struct list_head queue;
|
|
struct list_head prepare_queue;
|
|
struct stedma40_chan_cfg dma_cfg;
|
|
bool configured;
|
|
struct d40_base *base;
|
|
/* Default register configurations */
|
|
u32 src_def_cfg;
|
|
u32 dst_def_cfg;
|
|
struct d40_def_lcsp log_def;
|
|
struct d40_log_lli_full *lcpa;
|
|
/* Runtime reconfiguration */
|
|
dma_addr_t runtime_addr;
|
|
enum dma_transfer_direction runtime_direction;
|
|
};
|
|
|
|
/**
|
|
* struct d40_base - The big global struct, one for each probe'd instance.
|
|
*
|
|
* @interrupt_lock: Lock used to make sure one interrupt is handle a time.
|
|
* @execmd_lock: Lock for execute command usage since several channels share
|
|
* the same physical register.
|
|
* @dev: The device structure.
|
|
* @virtbase: The virtual base address of the DMA's register.
|
|
* @rev: silicon revision detected.
|
|
* @clk: Pointer to the DMA clock structure.
|
|
* @phy_start: Physical memory start of the DMA registers.
|
|
* @phy_size: Size of the DMA register map.
|
|
* @irq: The IRQ number.
|
|
* @num_phy_chans: The number of physical channels. Read from HW. This
|
|
* is the number of available channels for this driver, not counting "Secure
|
|
* mode" allocated physical channels.
|
|
* @num_log_chans: The number of logical channels. Calculated from
|
|
* num_phy_chans.
|
|
* @dma_both: dma_device channels that can do both memcpy and slave transfers.
|
|
* @dma_slave: dma_device channels that can do only do slave transfers.
|
|
* @dma_memcpy: dma_device channels that can do only do memcpy transfers.
|
|
* @phy_chans: Room for all possible physical channels in system.
|
|
* @log_chans: Room for all possible logical channels in system.
|
|
* @lookup_log_chans: Used to map interrupt number to logical channel. Points
|
|
* to log_chans entries.
|
|
* @lookup_phy_chans: Used to map interrupt number to physical channel. Points
|
|
* to phy_chans entries.
|
|
* @plat_data: Pointer to provided platform_data which is the driver
|
|
* configuration.
|
|
* @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
|
|
* @phy_res: Vector containing all physical channels.
|
|
* @lcla_pool: lcla pool settings and data.
|
|
* @lcpa_base: The virtual mapped address of LCPA.
|
|
* @phy_lcpa: The physical address of the LCPA.
|
|
* @lcpa_size: The size of the LCPA area.
|
|
* @desc_slab: cache for descriptors.
|
|
* @reg_val_backup: Here the values of some hardware registers are stored
|
|
* before the DMA is powered off. They are restored when the power is back on.
|
|
* @reg_val_backup_v3: Backup of registers that only exits on dma40 v3 and
|
|
* later.
|
|
* @reg_val_backup_chan: Backup data for standard channel parameter registers.
|
|
* @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
|
|
* @initialized: true if the dma has been initialized
|
|
*/
|
|
struct d40_base {
|
|
spinlock_t interrupt_lock;
|
|
spinlock_t execmd_lock;
|
|
struct device *dev;
|
|
void __iomem *virtbase;
|
|
u8 rev:4;
|
|
struct clk *clk;
|
|
phys_addr_t phy_start;
|
|
resource_size_t phy_size;
|
|
int irq;
|
|
int num_phy_chans;
|
|
int num_log_chans;
|
|
struct dma_device dma_both;
|
|
struct dma_device dma_slave;
|
|
struct dma_device dma_memcpy;
|
|
struct d40_chan *phy_chans;
|
|
struct d40_chan *log_chans;
|
|
struct d40_chan **lookup_log_chans;
|
|
struct d40_chan **lookup_phy_chans;
|
|
struct stedma40_platform_data *plat_data;
|
|
struct regulator *lcpa_regulator;
|
|
/* Physical half channels */
|
|
struct d40_phy_res *phy_res;
|
|
struct d40_lcla_pool lcla_pool;
|
|
void *lcpa_base;
|
|
dma_addr_t phy_lcpa;
|
|
resource_size_t lcpa_size;
|
|
struct kmem_cache *desc_slab;
|
|
u32 reg_val_backup[BACKUP_REGS_SZ];
|
|
u32 reg_val_backup_v3[BACKUP_REGS_SZ_V3];
|
|
u32 *reg_val_backup_chan;
|
|
u16 gcc_pwr_off_mask;
|
|
bool initialized;
|
|
};
|
|
|
|
/**
|
|
* struct d40_interrupt_lookup - lookup table for interrupt handler
|
|
*
|
|
* @src: Interrupt mask register.
|
|
* @clr: Interrupt clear register.
|
|
* @is_error: true if this is an error interrupt.
|
|
* @offset: start delta in the lookup_log_chans in d40_base. If equals to
|
|
* D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
|
|
*/
|
|
struct d40_interrupt_lookup {
|
|
u32 src;
|
|
u32 clr;
|
|
bool is_error;
|
|
int offset;
|
|
};
|
|
|
|
/**
|
|
* struct d40_reg_val - simple lookup struct
|
|
*
|
|
* @reg: The register.
|
|
* @val: The value that belongs to the register in reg.
|
|
*/
|
|
struct d40_reg_val {
|
|
unsigned int reg;
|
|
unsigned int val;
|
|
};
|
|
|
|
static struct device *chan2dev(struct d40_chan *d40c)
|
|
{
|
|
return &d40c->chan.dev->device;
|
|
}
|
|
|
|
static bool chan_is_physical(struct d40_chan *chan)
|
|
{
|
|
return chan->log_num == D40_PHY_CHAN;
|
|
}
|
|
|
|
static bool chan_is_logical(struct d40_chan *chan)
|
|
{
|
|
return !chan_is_physical(chan);
|
|
}
|
|
|
|
static void __iomem *chan_base(struct d40_chan *chan)
|
|
{
|
|
return chan->base->virtbase + D40_DREG_PCBASE +
|
|
chan->phy_chan->num * D40_DREG_PCDELTA;
|
|
}
|
|
|
|
#define d40_err(dev, format, arg...) \
|
|
dev_err(dev, "[%s] " format, __func__, ## arg)
|
|
|
|
#define chan_err(d40c, format, arg...) \
|
|
d40_err(chan2dev(d40c), format, ## arg)
|
|
|
|
static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
|
|
int lli_len)
|
|
{
|
|
bool is_log = chan_is_logical(d40c);
|
|
u32 align;
|
|
void *base;
|
|
|
|
if (is_log)
|
|
align = sizeof(struct d40_log_lli);
|
|
else
|
|
align = sizeof(struct d40_phy_lli);
|
|
|
|
if (lli_len == 1) {
|
|
base = d40d->lli_pool.pre_alloc_lli;
|
|
d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
|
|
d40d->lli_pool.base = NULL;
|
|
} else {
|
|
d40d->lli_pool.size = lli_len * 2 * align;
|
|
|
|
base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
|
|
d40d->lli_pool.base = base;
|
|
|
|
if (d40d->lli_pool.base == NULL)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (is_log) {
|
|
d40d->lli_log.src = PTR_ALIGN(base, align);
|
|
d40d->lli_log.dst = d40d->lli_log.src + lli_len;
|
|
|
|
d40d->lli_pool.dma_addr = 0;
|
|
} else {
|
|
d40d->lli_phy.src = PTR_ALIGN(base, align);
|
|
d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
|
|
|
|
d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
|
|
d40d->lli_phy.src,
|
|
d40d->lli_pool.size,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(d40c->base->dev,
|
|
d40d->lli_pool.dma_addr)) {
|
|
kfree(d40d->lli_pool.base);
|
|
d40d->lli_pool.base = NULL;
|
|
d40d->lli_pool.dma_addr = 0;
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
|
|
{
|
|
if (d40d->lli_pool.dma_addr)
|
|
dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
|
|
d40d->lli_pool.size, DMA_TO_DEVICE);
|
|
|
|
kfree(d40d->lli_pool.base);
|
|
d40d->lli_pool.base = NULL;
|
|
d40d->lli_pool.size = 0;
|
|
d40d->lli_log.src = NULL;
|
|
d40d->lli_log.dst = NULL;
|
|
d40d->lli_phy.src = NULL;
|
|
d40d->lli_phy.dst = NULL;
|
|
}
|
|
|
|
static int d40_lcla_alloc_one(struct d40_chan *d40c,
|
|
struct d40_desc *d40d)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
int ret = -EINVAL;
|
|
int p;
|
|
|
|
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
|
|
|
|
/*
|
|
* Allocate both src and dst at the same time, therefore the half
|
|
* start on 1 since 0 can't be used since zero is used as end marker.
|
|
*/
|
|
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
|
|
if (!d40c->base->lcla_pool.alloc_map[p + i]) {
|
|
d40c->base->lcla_pool.alloc_map[p + i] = d40d;
|
|
d40d->lcla_alloc++;
|
|
ret = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int d40_lcla_free_all(struct d40_chan *d40c,
|
|
struct d40_desc *d40d)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
int ret = -EINVAL;
|
|
|
|
if (chan_is_physical(d40c))
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
|
|
if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
|
|
D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
|
|
d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
|
|
D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
|
|
d40d->lcla_alloc--;
|
|
if (d40d->lcla_alloc == 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
static void d40_desc_remove(struct d40_desc *d40d)
|
|
{
|
|
list_del(&d40d->node);
|
|
}
|
|
|
|
static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *desc = NULL;
|
|
|
|
if (!list_empty(&d40c->client)) {
|
|
struct d40_desc *d;
|
|
struct d40_desc *_d;
|
|
|
|
list_for_each_entry_safe(d, _d, &d40c->client, node) {
|
|
if (async_tx_test_ack(&d->txd)) {
|
|
d40_desc_remove(d);
|
|
desc = d;
|
|
memset(desc, 0, sizeof(*desc));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!desc)
|
|
desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
|
|
|
|
if (desc)
|
|
INIT_LIST_HEAD(&desc->node);
|
|
|
|
return desc;
|
|
}
|
|
|
|
static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
|
|
{
|
|
|
|
d40_pool_lli_free(d40c, d40d);
|
|
d40_lcla_free_all(d40c, d40d);
|
|
kmem_cache_free(d40c->base->desc_slab, d40d);
|
|
}
|
|
|
|
static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
|
|
{
|
|
list_add_tail(&desc->node, &d40c->active);
|
|
}
|
|
|
|
static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
|
|
{
|
|
struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
|
|
struct d40_phy_lli *lli_src = desc->lli_phy.src;
|
|
void __iomem *base = chan_base(chan);
|
|
|
|
writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
|
|
writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
|
|
writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
|
|
writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
|
|
|
|
writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
|
|
writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
|
|
writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
|
|
writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
|
|
}
|
|
|
|
static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
|
|
{
|
|
struct d40_lcla_pool *pool = &chan->base->lcla_pool;
|
|
struct d40_log_lli_bidir *lli = &desc->lli_log;
|
|
int lli_current = desc->lli_current;
|
|
int lli_len = desc->lli_len;
|
|
bool cyclic = desc->cyclic;
|
|
int curr_lcla = -EINVAL;
|
|
int first_lcla = 0;
|
|
bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
|
|
bool linkback;
|
|
|
|
/*
|
|
* We may have partially running cyclic transfers, in case we did't get
|
|
* enough LCLA entries.
|
|
*/
|
|
linkback = cyclic && lli_current == 0;
|
|
|
|
/*
|
|
* For linkback, we need one LCLA even with only one link, because we
|
|
* can't link back to the one in LCPA space
|
|
*/
|
|
if (linkback || (lli_len - lli_current > 1)) {
|
|
curr_lcla = d40_lcla_alloc_one(chan, desc);
|
|
first_lcla = curr_lcla;
|
|
}
|
|
|
|
/*
|
|
* For linkback, we normally load the LCPA in the loop since we need to
|
|
* link it to the second LCLA and not the first. However, if we
|
|
* couldn't even get a first LCLA, then we have to run in LCPA and
|
|
* reload manually.
|
|
*/
|
|
if (!linkback || curr_lcla == -EINVAL) {
|
|
unsigned int flags = 0;
|
|
|
|
if (curr_lcla == -EINVAL)
|
|
flags |= LLI_TERM_INT;
|
|
|
|
d40_log_lli_lcpa_write(chan->lcpa,
|
|
&lli->dst[lli_current],
|
|
&lli->src[lli_current],
|
|
curr_lcla,
|
|
flags);
|
|
lli_current++;
|
|
}
|
|
|
|
if (curr_lcla < 0)
|
|
goto out;
|
|
|
|
for (; lli_current < lli_len; lli_current++) {
|
|
unsigned int lcla_offset = chan->phy_chan->num * 1024 +
|
|
8 * curr_lcla * 2;
|
|
struct d40_log_lli *lcla = pool->base + lcla_offset;
|
|
unsigned int flags = 0;
|
|
int next_lcla;
|
|
|
|
if (lli_current + 1 < lli_len)
|
|
next_lcla = d40_lcla_alloc_one(chan, desc);
|
|
else
|
|
next_lcla = linkback ? first_lcla : -EINVAL;
|
|
|
|
if (cyclic || next_lcla == -EINVAL)
|
|
flags |= LLI_TERM_INT;
|
|
|
|
if (linkback && curr_lcla == first_lcla) {
|
|
/* First link goes in both LCPA and LCLA */
|
|
d40_log_lli_lcpa_write(chan->lcpa,
|
|
&lli->dst[lli_current],
|
|
&lli->src[lli_current],
|
|
next_lcla, flags);
|
|
}
|
|
|
|
/*
|
|
* One unused LCLA in the cyclic case if the very first
|
|
* next_lcla fails...
|
|
*/
|
|
d40_log_lli_lcla_write(lcla,
|
|
&lli->dst[lli_current],
|
|
&lli->src[lli_current],
|
|
next_lcla, flags);
|
|
|
|
/*
|
|
* Cache maintenance is not needed if lcla is
|
|
* mapped in esram
|
|
*/
|
|
if (!use_esram_lcla) {
|
|
dma_sync_single_range_for_device(chan->base->dev,
|
|
pool->dma_addr, lcla_offset,
|
|
2 * sizeof(struct d40_log_lli),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
curr_lcla = next_lcla;
|
|
|
|
if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
|
|
lli_current++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
desc->lli_current = lli_current;
|
|
}
|
|
|
|
static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
|
|
{
|
|
if (chan_is_physical(d40c)) {
|
|
d40_phy_lli_load(d40c, d40d);
|
|
d40d->lli_current = d40d->lli_len;
|
|
} else
|
|
d40_log_lli_to_lcxa(d40c, d40d);
|
|
}
|
|
|
|
static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d;
|
|
|
|
if (list_empty(&d40c->active))
|
|
return NULL;
|
|
|
|
d = list_first_entry(&d40c->active,
|
|
struct d40_desc,
|
|
node);
|
|
return d;
|
|
}
|
|
|
|
/* remove desc from current queue and add it to the pending_queue */
|
|
static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
|
|
{
|
|
d40_desc_remove(desc);
|
|
desc->is_in_client_list = false;
|
|
list_add_tail(&desc->node, &d40c->pending_queue);
|
|
}
|
|
|
|
static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d;
|
|
|
|
if (list_empty(&d40c->pending_queue))
|
|
return NULL;
|
|
|
|
d = list_first_entry(&d40c->pending_queue,
|
|
struct d40_desc,
|
|
node);
|
|
return d;
|
|
}
|
|
|
|
static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d;
|
|
|
|
if (list_empty(&d40c->queue))
|
|
return NULL;
|
|
|
|
d = list_first_entry(&d40c->queue,
|
|
struct d40_desc,
|
|
node);
|
|
return d;
|
|
}
|
|
|
|
static int d40_psize_2_burst_size(bool is_log, int psize)
|
|
{
|
|
if (is_log) {
|
|
if (psize == STEDMA40_PSIZE_LOG_1)
|
|
return 1;
|
|
} else {
|
|
if (psize == STEDMA40_PSIZE_PHY_1)
|
|
return 1;
|
|
}
|
|
|
|
return 2 << psize;
|
|
}
|
|
|
|
/*
|
|
* The dma only supports transmitting packages up to
|
|
* STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
|
|
* dma elements required to send the entire sg list
|
|
*/
|
|
static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
|
|
{
|
|
int dmalen;
|
|
u32 max_w = max(data_width1, data_width2);
|
|
u32 min_w = min(data_width1, data_width2);
|
|
u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
|
|
|
|
if (seg_max > STEDMA40_MAX_SEG_SIZE)
|
|
seg_max -= (1 << max_w);
|
|
|
|
if (!IS_ALIGNED(size, 1 << max_w))
|
|
return -EINVAL;
|
|
|
|
if (size <= seg_max)
|
|
dmalen = 1;
|
|
else {
|
|
dmalen = size / seg_max;
|
|
if (dmalen * seg_max < size)
|
|
dmalen++;
|
|
}
|
|
return dmalen;
|
|
}
|
|
|
|
static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
|
|
u32 data_width1, u32 data_width2)
|
|
{
|
|
struct scatterlist *sg;
|
|
int i;
|
|
int len = 0;
|
|
int ret;
|
|
|
|
for_each_sg(sgl, sg, sg_len, i) {
|
|
ret = d40_size_2_dmalen(sg_dma_len(sg),
|
|
data_width1, data_width2);
|
|
if (ret < 0)
|
|
return ret;
|
|
len += ret;
|
|
}
|
|
return len;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_PM
|
|
static void dma40_backup(void __iomem *baseaddr, u32 *backup,
|
|
u32 *regaddr, int num, bool save)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
void __iomem *addr = baseaddr + regaddr[i];
|
|
|
|
if (save)
|
|
backup[i] = readl_relaxed(addr);
|
|
else
|
|
writel_relaxed(backup[i], addr);
|
|
}
|
|
}
|
|
|
|
static void d40_save_restore_registers(struct d40_base *base, bool save)
|
|
{
|
|
int i;
|
|
|
|
/* Save/Restore channel specific registers */
|
|
for (i = 0; i < base->num_phy_chans; i++) {
|
|
void __iomem *addr;
|
|
int idx;
|
|
|
|
if (base->phy_res[i].reserved)
|
|
continue;
|
|
|
|
addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
|
|
idx = i * ARRAY_SIZE(d40_backup_regs_chan);
|
|
|
|
dma40_backup(addr, &base->reg_val_backup_chan[idx],
|
|
d40_backup_regs_chan,
|
|
ARRAY_SIZE(d40_backup_regs_chan),
|
|
save);
|
|
}
|
|
|
|
/* Save/Restore global registers */
|
|
dma40_backup(base->virtbase, base->reg_val_backup,
|
|
d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
|
|
save);
|
|
|
|
/* Save/Restore registers only existing on dma40 v3 and later */
|
|
if (base->rev >= 3)
|
|
dma40_backup(base->virtbase, base->reg_val_backup_v3,
|
|
d40_backup_regs_v3,
|
|
ARRAY_SIZE(d40_backup_regs_v3),
|
|
save);
|
|
}
|
|
#else
|
|
static void d40_save_restore_registers(struct d40_base *base, bool save)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int __d40_execute_command_phy(struct d40_chan *d40c,
|
|
enum d40_command command)
|
|
{
|
|
u32 status;
|
|
int i;
|
|
void __iomem *active_reg;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
u32 wmask;
|
|
|
|
if (command == D40_DMA_STOP) {
|
|
ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
spin_lock_irqsave(&d40c->base->execmd_lock, flags);
|
|
|
|
if (d40c->phy_chan->num % 2 == 0)
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
|
|
else
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
|
|
|
|
if (command == D40_DMA_SUSPEND_REQ) {
|
|
status = (readl(active_reg) &
|
|
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
|
|
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
|
|
goto done;
|
|
}
|
|
|
|
wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
|
|
writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
|
|
active_reg);
|
|
|
|
if (command == D40_DMA_SUSPEND_REQ) {
|
|
|
|
for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
|
|
status = (readl(active_reg) &
|
|
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
|
|
cpu_relax();
|
|
/*
|
|
* Reduce the number of bus accesses while
|
|
* waiting for the DMA to suspend.
|
|
*/
|
|
udelay(3);
|
|
|
|
if (status == D40_DMA_STOP ||
|
|
status == D40_DMA_SUSPENDED)
|
|
break;
|
|
}
|
|
|
|
if (i == D40_SUSPEND_MAX_IT) {
|
|
chan_err(d40c,
|
|
"unable to suspend the chl %d (log: %d) status %x\n",
|
|
d40c->phy_chan->num, d40c->log_num,
|
|
status);
|
|
dump_stack();
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
}
|
|
done:
|
|
spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static void d40_term_all(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d40d;
|
|
struct d40_desc *_d;
|
|
|
|
/* Release active descriptors */
|
|
while ((d40d = d40_first_active_get(d40c))) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
}
|
|
|
|
/* Release queued descriptors waiting for transfer */
|
|
while ((d40d = d40_first_queued(d40c))) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
}
|
|
|
|
/* Release pending descriptors */
|
|
while ((d40d = d40_first_pending(d40c))) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
}
|
|
|
|
/* Release client owned descriptors */
|
|
if (!list_empty(&d40c->client))
|
|
list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
}
|
|
|
|
/* Release descriptors in prepare queue */
|
|
if (!list_empty(&d40c->prepare_queue))
|
|
list_for_each_entry_safe(d40d, _d,
|
|
&d40c->prepare_queue, node) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
}
|
|
|
|
d40c->pending_tx = 0;
|
|
}
|
|
|
|
static void __d40_config_set_event(struct d40_chan *d40c,
|
|
enum d40_events event_type, u32 event,
|
|
int reg)
|
|
{
|
|
void __iomem *addr = chan_base(d40c) + reg;
|
|
int tries;
|
|
u32 status;
|
|
|
|
switch (event_type) {
|
|
|
|
case D40_DEACTIVATE_EVENTLINE:
|
|
|
|
writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
|
|
| ~D40_EVENTLINE_MASK(event), addr);
|
|
break;
|
|
|
|
case D40_SUSPEND_REQ_EVENTLINE:
|
|
status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
|
|
D40_EVENTLINE_POS(event);
|
|
|
|
if (status == D40_DEACTIVATE_EVENTLINE ||
|
|
status == D40_SUSPEND_REQ_EVENTLINE)
|
|
break;
|
|
|
|
writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
|
|
| ~D40_EVENTLINE_MASK(event), addr);
|
|
|
|
for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
|
|
|
|
status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
|
|
D40_EVENTLINE_POS(event);
|
|
|
|
cpu_relax();
|
|
/*
|
|
* Reduce the number of bus accesses while
|
|
* waiting for the DMA to suspend.
|
|
*/
|
|
udelay(3);
|
|
|
|
if (status == D40_DEACTIVATE_EVENTLINE)
|
|
break;
|
|
}
|
|
|
|
if (tries == D40_SUSPEND_MAX_IT) {
|
|
chan_err(d40c,
|
|
"unable to stop the event_line chl %d (log: %d)"
|
|
"status %x\n", d40c->phy_chan->num,
|
|
d40c->log_num, status);
|
|
}
|
|
break;
|
|
|
|
case D40_ACTIVATE_EVENTLINE:
|
|
/*
|
|
* The hardware sometimes doesn't register the enable when src and dst
|
|
* event lines are active on the same logical channel. Retry to ensure
|
|
* it does. Usually only one retry is sufficient.
|
|
*/
|
|
tries = 100;
|
|
while (--tries) {
|
|
writel((D40_ACTIVATE_EVENTLINE <<
|
|
D40_EVENTLINE_POS(event)) |
|
|
~D40_EVENTLINE_MASK(event), addr);
|
|
|
|
if (readl(addr) & D40_EVENTLINE_MASK(event))
|
|
break;
|
|
}
|
|
|
|
if (tries != 99)
|
|
dev_dbg(chan2dev(d40c),
|
|
"[%s] workaround enable S%cLNK (%d tries)\n",
|
|
__func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
|
|
100 - tries);
|
|
|
|
WARN_ON(!tries);
|
|
break;
|
|
|
|
case D40_ROUND_EVENTLINE:
|
|
BUG();
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
static void d40_config_set_event(struct d40_chan *d40c,
|
|
enum d40_events event_type)
|
|
{
|
|
/* Enable event line connected to device (or memcpy) */
|
|
if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
|
|
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
|
|
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
|
|
|
|
__d40_config_set_event(d40c, event_type, event,
|
|
D40_CHAN_REG_SSLNK);
|
|
}
|
|
|
|
if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
|
|
u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
|
|
|
|
__d40_config_set_event(d40c, event_type, event,
|
|
D40_CHAN_REG_SDLNK);
|
|
}
|
|
}
|
|
|
|
static u32 d40_chan_has_events(struct d40_chan *d40c)
|
|
{
|
|
void __iomem *chanbase = chan_base(d40c);
|
|
u32 val;
|
|
|
|
val = readl(chanbase + D40_CHAN_REG_SSLNK);
|
|
val |= readl(chanbase + D40_CHAN_REG_SDLNK);
|
|
|
|
return val;
|
|
}
|
|
|
|
static int
|
|
__d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
u32 active_status;
|
|
void __iomem *active_reg;
|
|
|
|
if (d40c->phy_chan->num % 2 == 0)
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
|
|
else
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
|
|
|
|
|
|
spin_lock_irqsave(&d40c->phy_chan->lock, flags);
|
|
|
|
switch (command) {
|
|
case D40_DMA_STOP:
|
|
case D40_DMA_SUSPEND_REQ:
|
|
|
|
active_status = (readl(active_reg) &
|
|
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
|
|
if (active_status == D40_DMA_RUN)
|
|
d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
|
|
else
|
|
d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
|
|
|
|
if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
|
|
ret = __d40_execute_command_phy(d40c, command);
|
|
|
|
break;
|
|
|
|
case D40_DMA_RUN:
|
|
|
|
d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
|
|
ret = __d40_execute_command_phy(d40c, command);
|
|
break;
|
|
|
|
case D40_DMA_SUSPENDED:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static int d40_channel_execute_command(struct d40_chan *d40c,
|
|
enum d40_command command)
|
|
{
|
|
if (chan_is_logical(d40c))
|
|
return __d40_execute_command_log(d40c, command);
|
|
else
|
|
return __d40_execute_command_phy(d40c, command);
|
|
}
|
|
|
|
static u32 d40_get_prmo(struct d40_chan *d40c)
|
|
{
|
|
static const unsigned int phy_map[] = {
|
|
[STEDMA40_PCHAN_BASIC_MODE]
|
|
= D40_DREG_PRMO_PCHAN_BASIC,
|
|
[STEDMA40_PCHAN_MODULO_MODE]
|
|
= D40_DREG_PRMO_PCHAN_MODULO,
|
|
[STEDMA40_PCHAN_DOUBLE_DST_MODE]
|
|
= D40_DREG_PRMO_PCHAN_DOUBLE_DST,
|
|
};
|
|
static const unsigned int log_map[] = {
|
|
[STEDMA40_LCHAN_SRC_PHY_DST_LOG]
|
|
= D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
|
|
[STEDMA40_LCHAN_SRC_LOG_DST_PHY]
|
|
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
|
|
[STEDMA40_LCHAN_SRC_LOG_DST_LOG]
|
|
= D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
|
|
};
|
|
|
|
if (chan_is_physical(d40c))
|
|
return phy_map[d40c->dma_cfg.mode_opt];
|
|
else
|
|
return log_map[d40c->dma_cfg.mode_opt];
|
|
}
|
|
|
|
static void d40_config_write(struct d40_chan *d40c)
|
|
{
|
|
u32 addr_base;
|
|
u32 var;
|
|
|
|
/* Odd addresses are even addresses + 4 */
|
|
addr_base = (d40c->phy_chan->num % 2) * 4;
|
|
/* Setup channel mode to logical or physical */
|
|
var = ((u32)(chan_is_logical(d40c)) + 1) <<
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
|
|
|
|
/* Setup operational mode option register */
|
|
var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
|
|
|
|
writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
|
|
|
|
if (chan_is_logical(d40c)) {
|
|
int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
|
|
& D40_SREG_ELEM_LOG_LIDX_MASK;
|
|
void __iomem *chanbase = chan_base(d40c);
|
|
|
|
/* Set default config for CFG reg */
|
|
writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
|
|
writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
|
|
|
|
/* Set LIDX for lcla */
|
|
writel(lidx, chanbase + D40_CHAN_REG_SSELT);
|
|
writel(lidx, chanbase + D40_CHAN_REG_SDELT);
|
|
|
|
/* Clear LNK which will be used by d40_chan_has_events() */
|
|
writel(0, chanbase + D40_CHAN_REG_SSLNK);
|
|
writel(0, chanbase + D40_CHAN_REG_SDLNK);
|
|
}
|
|
}
|
|
|
|
static u32 d40_residue(struct d40_chan *d40c)
|
|
{
|
|
u32 num_elt;
|
|
|
|
if (chan_is_logical(d40c))
|
|
num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
|
|
>> D40_MEM_LCSP2_ECNT_POS;
|
|
else {
|
|
u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
|
|
num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
|
|
>> D40_SREG_ELEM_PHY_ECNT_POS;
|
|
}
|
|
|
|
return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
|
|
}
|
|
|
|
static bool d40_tx_is_linked(struct d40_chan *d40c)
|
|
{
|
|
bool is_link;
|
|
|
|
if (chan_is_logical(d40c))
|
|
is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
|
|
else
|
|
is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
|
|
& D40_SREG_LNK_PHYS_LNK_MASK;
|
|
|
|
return is_link;
|
|
}
|
|
|
|
static int d40_pause(struct d40_chan *d40c)
|
|
{
|
|
int res = 0;
|
|
unsigned long flags;
|
|
|
|
if (!d40c->busy)
|
|
return 0;
|
|
|
|
pm_runtime_get_sync(d40c->base->dev);
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
|
|
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return res;
|
|
}
|
|
|
|
static int d40_resume(struct d40_chan *d40c)
|
|
{
|
|
int res = 0;
|
|
unsigned long flags;
|
|
|
|
if (!d40c->busy)
|
|
return 0;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
pm_runtime_get_sync(d40c->base->dev);
|
|
|
|
/* If bytes left to transfer or linked tx resume job */
|
|
if (d40_residue(d40c) || d40_tx_is_linked(d40c))
|
|
res = d40_channel_execute_command(d40c, D40_DMA_RUN);
|
|
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return res;
|
|
}
|
|
|
|
static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
|
|
{
|
|
struct d40_chan *d40c = container_of(tx->chan,
|
|
struct d40_chan,
|
|
chan);
|
|
struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
|
|
unsigned long flags;
|
|
dma_cookie_t cookie;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
cookie = dma_cookie_assign(tx);
|
|
d40_desc_queue(d40c, d40d);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
|
|
return cookie;
|
|
}
|
|
|
|
static int d40_start(struct d40_chan *d40c)
|
|
{
|
|
return d40_channel_execute_command(d40c, D40_DMA_RUN);
|
|
}
|
|
|
|
static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d40d;
|
|
int err;
|
|
|
|
/* Start queued jobs, if any */
|
|
d40d = d40_first_queued(d40c);
|
|
|
|
if (d40d != NULL) {
|
|
if (!d40c->busy) {
|
|
d40c->busy = true;
|
|
pm_runtime_get_sync(d40c->base->dev);
|
|
}
|
|
|
|
/* Remove from queue */
|
|
d40_desc_remove(d40d);
|
|
|
|
/* Add to active queue */
|
|
d40_desc_submit(d40c, d40d);
|
|
|
|
/* Initiate DMA job */
|
|
d40_desc_load(d40c, d40d);
|
|
|
|
/* Start dma job */
|
|
err = d40_start(d40c);
|
|
|
|
if (err)
|
|
return NULL;
|
|
}
|
|
|
|
return d40d;
|
|
}
|
|
|
|
/* called from interrupt context */
|
|
static void dma_tc_handle(struct d40_chan *d40c)
|
|
{
|
|
struct d40_desc *d40d;
|
|
|
|
/* Get first active entry from list */
|
|
d40d = d40_first_active_get(d40c);
|
|
|
|
if (d40d == NULL)
|
|
return;
|
|
|
|
if (d40d->cyclic) {
|
|
/*
|
|
* If this was a paritially loaded list, we need to reloaded
|
|
* it, and only when the list is completed. We need to check
|
|
* for done because the interrupt will hit for every link, and
|
|
* not just the last one.
|
|
*/
|
|
if (d40d->lli_current < d40d->lli_len
|
|
&& !d40_tx_is_linked(d40c)
|
|
&& !d40_residue(d40c)) {
|
|
d40_lcla_free_all(d40c, d40d);
|
|
d40_desc_load(d40c, d40d);
|
|
(void) d40_start(d40c);
|
|
|
|
if (d40d->lli_current == d40d->lli_len)
|
|
d40d->lli_current = 0;
|
|
}
|
|
} else {
|
|
d40_lcla_free_all(d40c, d40d);
|
|
|
|
if (d40d->lli_current < d40d->lli_len) {
|
|
d40_desc_load(d40c, d40d);
|
|
/* Start dma job */
|
|
(void) d40_start(d40c);
|
|
return;
|
|
}
|
|
|
|
if (d40_queue_start(d40c) == NULL)
|
|
d40c->busy = false;
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
}
|
|
|
|
d40c->pending_tx++;
|
|
tasklet_schedule(&d40c->tasklet);
|
|
|
|
}
|
|
|
|
static void dma_tasklet(unsigned long data)
|
|
{
|
|
struct d40_chan *d40c = (struct d40_chan *) data;
|
|
struct d40_desc *d40d;
|
|
unsigned long flags;
|
|
dma_async_tx_callback callback;
|
|
void *callback_param;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
/* Get first active entry from list */
|
|
d40d = d40_first_active_get(d40c);
|
|
if (d40d == NULL)
|
|
goto err;
|
|
|
|
if (!d40d->cyclic)
|
|
dma_cookie_complete(&d40d->txd);
|
|
|
|
/*
|
|
* If terminating a channel pending_tx is set to zero.
|
|
* This prevents any finished active jobs to return to the client.
|
|
*/
|
|
if (d40c->pending_tx == 0) {
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return;
|
|
}
|
|
|
|
/* Callback to client */
|
|
callback = d40d->txd.callback;
|
|
callback_param = d40d->txd.callback_param;
|
|
|
|
if (!d40d->cyclic) {
|
|
if (async_tx_test_ack(&d40d->txd)) {
|
|
d40_desc_remove(d40d);
|
|
d40_desc_free(d40c, d40d);
|
|
} else {
|
|
if (!d40d->is_in_client_list) {
|
|
d40_desc_remove(d40d);
|
|
d40_lcla_free_all(d40c, d40d);
|
|
list_add_tail(&d40d->node, &d40c->client);
|
|
d40d->is_in_client_list = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
d40c->pending_tx--;
|
|
|
|
if (d40c->pending_tx)
|
|
tasklet_schedule(&d40c->tasklet);
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
|
|
if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
|
|
callback(callback_param);
|
|
|
|
return;
|
|
|
|
err:
|
|
/* Rescue manouver if receiving double interrupts */
|
|
if (d40c->pending_tx > 0)
|
|
d40c->pending_tx--;
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
}
|
|
|
|
static irqreturn_t d40_handle_interrupt(int irq, void *data)
|
|
{
|
|
static const struct d40_interrupt_lookup il[] = {
|
|
{D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
|
|
{D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
|
|
{D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
|
|
{D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
|
|
{D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
|
|
{D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
|
|
{D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
|
|
{D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
|
|
{D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
|
|
{D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
|
|
};
|
|
|
|
int i;
|
|
u32 regs[ARRAY_SIZE(il)];
|
|
u32 idx;
|
|
u32 row;
|
|
long chan = -1;
|
|
struct d40_chan *d40c;
|
|
unsigned long flags;
|
|
struct d40_base *base = data;
|
|
|
|
spin_lock_irqsave(&base->interrupt_lock, flags);
|
|
|
|
/* Read interrupt status of both logical and physical channels */
|
|
for (i = 0; i < ARRAY_SIZE(il); i++)
|
|
regs[i] = readl(base->virtbase + il[i].src);
|
|
|
|
for (;;) {
|
|
|
|
chan = find_next_bit((unsigned long *)regs,
|
|
BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
|
|
|
|
/* No more set bits found? */
|
|
if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
|
|
break;
|
|
|
|
row = chan / BITS_PER_LONG;
|
|
idx = chan & (BITS_PER_LONG - 1);
|
|
|
|
/* ACK interrupt */
|
|
writel(1 << idx, base->virtbase + il[row].clr);
|
|
|
|
if (il[row].offset == D40_PHY_CHAN)
|
|
d40c = base->lookup_phy_chans[idx];
|
|
else
|
|
d40c = base->lookup_log_chans[il[row].offset + idx];
|
|
spin_lock(&d40c->lock);
|
|
|
|
if (!il[row].is_error)
|
|
dma_tc_handle(d40c);
|
|
else
|
|
d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
|
|
chan, il[row].offset, idx);
|
|
|
|
spin_unlock(&d40c->lock);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&base->interrupt_lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int d40_validate_conf(struct d40_chan *d40c,
|
|
struct stedma40_chan_cfg *conf)
|
|
{
|
|
int res = 0;
|
|
u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
|
|
u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
|
|
bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
|
|
|
|
if (!conf->dir) {
|
|
chan_err(d40c, "Invalid direction.\n");
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
|
|
d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
|
|
d40c->runtime_addr == 0) {
|
|
|
|
chan_err(d40c, "Invalid TX channel address (%d)\n",
|
|
conf->dst_dev_type);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
|
|
d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
|
|
d40c->runtime_addr == 0) {
|
|
chan_err(d40c, "Invalid RX channel address (%d)\n",
|
|
conf->src_dev_type);
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
|
|
dst_event_group == STEDMA40_DEV_DST_MEMORY) {
|
|
chan_err(d40c, "Invalid dst\n");
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
|
|
src_event_group == STEDMA40_DEV_SRC_MEMORY) {
|
|
chan_err(d40c, "Invalid src\n");
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
|
|
dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
|
|
chan_err(d40c, "No event line\n");
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
|
|
(src_event_group != dst_event_group)) {
|
|
chan_err(d40c, "Invalid event group\n");
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
|
|
/*
|
|
* DMAC HW supports it. Will be added to this driver,
|
|
* in case any dma client requires it.
|
|
*/
|
|
chan_err(d40c, "periph to periph not supported\n");
|
|
res = -EINVAL;
|
|
}
|
|
|
|
if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
|
|
(1 << conf->src_info.data_width) !=
|
|
d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
|
|
(1 << conf->dst_info.data_width)) {
|
|
/*
|
|
* The DMAC hardware only supports
|
|
* src (burst x width) == dst (burst x width)
|
|
*/
|
|
|
|
chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
|
|
res = -EINVAL;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static bool d40_alloc_mask_set(struct d40_phy_res *phy,
|
|
bool is_src, int log_event_line, bool is_log,
|
|
bool *first_user)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&phy->lock, flags);
|
|
|
|
*first_user = ((phy->allocated_src | phy->allocated_dst)
|
|
== D40_ALLOC_FREE);
|
|
|
|
if (!is_log) {
|
|
/* Physical interrupts are masked per physical full channel */
|
|
if (phy->allocated_src == D40_ALLOC_FREE &&
|
|
phy->allocated_dst == D40_ALLOC_FREE) {
|
|
phy->allocated_dst = D40_ALLOC_PHY;
|
|
phy->allocated_src = D40_ALLOC_PHY;
|
|
goto found;
|
|
} else
|
|
goto not_found;
|
|
}
|
|
|
|
/* Logical channel */
|
|
if (is_src) {
|
|
if (phy->allocated_src == D40_ALLOC_PHY)
|
|
goto not_found;
|
|
|
|
if (phy->allocated_src == D40_ALLOC_FREE)
|
|
phy->allocated_src = D40_ALLOC_LOG_FREE;
|
|
|
|
if (!(phy->allocated_src & (1 << log_event_line))) {
|
|
phy->allocated_src |= 1 << log_event_line;
|
|
goto found;
|
|
} else
|
|
goto not_found;
|
|
} else {
|
|
if (phy->allocated_dst == D40_ALLOC_PHY)
|
|
goto not_found;
|
|
|
|
if (phy->allocated_dst == D40_ALLOC_FREE)
|
|
phy->allocated_dst = D40_ALLOC_LOG_FREE;
|
|
|
|
if (!(phy->allocated_dst & (1 << log_event_line))) {
|
|
phy->allocated_dst |= 1 << log_event_line;
|
|
goto found;
|
|
} else
|
|
goto not_found;
|
|
}
|
|
|
|
not_found:
|
|
spin_unlock_irqrestore(&phy->lock, flags);
|
|
return false;
|
|
found:
|
|
spin_unlock_irqrestore(&phy->lock, flags);
|
|
return true;
|
|
}
|
|
|
|
static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
|
|
int log_event_line)
|
|
{
|
|
unsigned long flags;
|
|
bool is_free = false;
|
|
|
|
spin_lock_irqsave(&phy->lock, flags);
|
|
if (!log_event_line) {
|
|
phy->allocated_dst = D40_ALLOC_FREE;
|
|
phy->allocated_src = D40_ALLOC_FREE;
|
|
is_free = true;
|
|
goto out;
|
|
}
|
|
|
|
/* Logical channel */
|
|
if (is_src) {
|
|
phy->allocated_src &= ~(1 << log_event_line);
|
|
if (phy->allocated_src == D40_ALLOC_LOG_FREE)
|
|
phy->allocated_src = D40_ALLOC_FREE;
|
|
} else {
|
|
phy->allocated_dst &= ~(1 << log_event_line);
|
|
if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
|
|
phy->allocated_dst = D40_ALLOC_FREE;
|
|
}
|
|
|
|
is_free = ((phy->allocated_src | phy->allocated_dst) ==
|
|
D40_ALLOC_FREE);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&phy->lock, flags);
|
|
|
|
return is_free;
|
|
}
|
|
|
|
static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
|
|
{
|
|
int dev_type;
|
|
int event_group;
|
|
int event_line;
|
|
struct d40_phy_res *phys;
|
|
int i;
|
|
int j;
|
|
int log_num;
|
|
bool is_src;
|
|
bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
|
|
|
|
phys = d40c->base->phy_res;
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
|
|
dev_type = d40c->dma_cfg.src_dev_type;
|
|
log_num = 2 * dev_type;
|
|
is_src = true;
|
|
} else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
|
|
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
/* dst event lines are used for logical memcpy */
|
|
dev_type = d40c->dma_cfg.dst_dev_type;
|
|
log_num = 2 * dev_type + 1;
|
|
is_src = false;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
event_group = D40_TYPE_TO_GROUP(dev_type);
|
|
event_line = D40_TYPE_TO_EVENT(dev_type);
|
|
|
|
if (!is_log) {
|
|
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
/* Find physical half channel */
|
|
for (i = 0; i < d40c->base->num_phy_chans; i++) {
|
|
|
|
if (d40_alloc_mask_set(&phys[i], is_src,
|
|
0, is_log,
|
|
first_phy_user))
|
|
goto found_phy;
|
|
}
|
|
} else
|
|
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
|
|
int phy_num = j + event_group * 2;
|
|
for (i = phy_num; i < phy_num + 2; i++) {
|
|
if (d40_alloc_mask_set(&phys[i],
|
|
is_src,
|
|
0,
|
|
is_log,
|
|
first_phy_user))
|
|
goto found_phy;
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
found_phy:
|
|
d40c->phy_chan = &phys[i];
|
|
d40c->log_num = D40_PHY_CHAN;
|
|
goto out;
|
|
}
|
|
if (dev_type == -1)
|
|
return -EINVAL;
|
|
|
|
/* Find logical channel */
|
|
for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
|
|
int phy_num = j + event_group * 2;
|
|
|
|
if (d40c->dma_cfg.use_fixed_channel) {
|
|
i = d40c->dma_cfg.phy_channel;
|
|
|
|
if ((i != phy_num) && (i != phy_num + 1)) {
|
|
dev_err(chan2dev(d40c),
|
|
"invalid fixed phy channel %d\n", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (d40_alloc_mask_set(&phys[i], is_src, event_line,
|
|
is_log, first_phy_user))
|
|
goto found_log;
|
|
|
|
dev_err(chan2dev(d40c),
|
|
"could not allocate fixed phy channel %d\n", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Spread logical channels across all available physical rather
|
|
* than pack every logical channel at the first available phy
|
|
* channels.
|
|
*/
|
|
if (is_src) {
|
|
for (i = phy_num; i < phy_num + 2; i++) {
|
|
if (d40_alloc_mask_set(&phys[i], is_src,
|
|
event_line, is_log,
|
|
first_phy_user))
|
|
goto found_log;
|
|
}
|
|
} else {
|
|
for (i = phy_num + 1; i >= phy_num; i--) {
|
|
if (d40_alloc_mask_set(&phys[i], is_src,
|
|
event_line, is_log,
|
|
first_phy_user))
|
|
goto found_log;
|
|
}
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
|
|
found_log:
|
|
d40c->phy_chan = &phys[i];
|
|
d40c->log_num = log_num;
|
|
out:
|
|
|
|
if (is_log)
|
|
d40c->base->lookup_log_chans[d40c->log_num] = d40c;
|
|
else
|
|
d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
static int d40_config_memcpy(struct d40_chan *d40c)
|
|
{
|
|
dma_cap_mask_t cap = d40c->chan.device->cap_mask;
|
|
|
|
if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
|
|
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
|
|
d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
|
|
d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
|
|
memcpy[d40c->chan.chan_id];
|
|
|
|
} else if (dma_has_cap(DMA_MEMCPY, cap) &&
|
|
dma_has_cap(DMA_SLAVE, cap)) {
|
|
d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
|
|
} else {
|
|
chan_err(d40c, "No memcpy\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int d40_free_dma(struct d40_chan *d40c)
|
|
{
|
|
|
|
int res = 0;
|
|
u32 event;
|
|
struct d40_phy_res *phy = d40c->phy_chan;
|
|
bool is_src;
|
|
|
|
/* Terminate all queued and active transfers */
|
|
d40_term_all(d40c);
|
|
|
|
if (phy == NULL) {
|
|
chan_err(d40c, "phy == null\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (phy->allocated_src == D40_ALLOC_FREE &&
|
|
phy->allocated_dst == D40_ALLOC_FREE) {
|
|
chan_err(d40c, "channel already free\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
|
|
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
|
|
is_src = false;
|
|
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
|
|
is_src = true;
|
|
} else {
|
|
chan_err(d40c, "Unknown direction\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pm_runtime_get_sync(d40c->base->dev);
|
|
res = d40_channel_execute_command(d40c, D40_DMA_STOP);
|
|
if (res) {
|
|
chan_err(d40c, "stop failed\n");
|
|
goto out;
|
|
}
|
|
|
|
d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
|
|
|
|
if (chan_is_logical(d40c))
|
|
d40c->base->lookup_log_chans[d40c->log_num] = NULL;
|
|
else
|
|
d40c->base->lookup_phy_chans[phy->num] = NULL;
|
|
|
|
if (d40c->busy) {
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
}
|
|
|
|
d40c->busy = false;
|
|
d40c->phy_chan = NULL;
|
|
d40c->configured = false;
|
|
out:
|
|
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
return res;
|
|
}
|
|
|
|
static bool d40_is_paused(struct d40_chan *d40c)
|
|
{
|
|
void __iomem *chanbase = chan_base(d40c);
|
|
bool is_paused = false;
|
|
unsigned long flags;
|
|
void __iomem *active_reg;
|
|
u32 status;
|
|
u32 event;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
if (chan_is_physical(d40c)) {
|
|
if (d40c->phy_chan->num % 2 == 0)
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
|
|
else
|
|
active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
|
|
|
|
status = (readl(active_reg) &
|
|
D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
|
|
D40_CHAN_POS(d40c->phy_chan->num);
|
|
if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
|
|
is_paused = true;
|
|
|
|
goto _exit;
|
|
}
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
|
|
d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
|
|
status = readl(chanbase + D40_CHAN_REG_SDLNK);
|
|
} else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
|
|
event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
|
|
status = readl(chanbase + D40_CHAN_REG_SSLNK);
|
|
} else {
|
|
chan_err(d40c, "Unknown direction\n");
|
|
goto _exit;
|
|
}
|
|
|
|
status = (status & D40_EVENTLINE_MASK(event)) >>
|
|
D40_EVENTLINE_POS(event);
|
|
|
|
if (status != D40_DMA_RUN)
|
|
is_paused = true;
|
|
_exit:
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return is_paused;
|
|
|
|
}
|
|
|
|
|
|
static u32 stedma40_residue(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
u32 bytes_left;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
bytes_left = d40_residue(d40c);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
|
|
return bytes_left;
|
|
}
|
|
|
|
static int
|
|
d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
|
|
struct scatterlist *sg_src, struct scatterlist *sg_dst,
|
|
unsigned int sg_len, dma_addr_t src_dev_addr,
|
|
dma_addr_t dst_dev_addr)
|
|
{
|
|
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
|
|
struct stedma40_half_channel_info *src_info = &cfg->src_info;
|
|
struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
|
|
int ret;
|
|
|
|
ret = d40_log_sg_to_lli(sg_src, sg_len,
|
|
src_dev_addr,
|
|
desc->lli_log.src,
|
|
chan->log_def.lcsp1,
|
|
src_info->data_width,
|
|
dst_info->data_width);
|
|
|
|
ret = d40_log_sg_to_lli(sg_dst, sg_len,
|
|
dst_dev_addr,
|
|
desc->lli_log.dst,
|
|
chan->log_def.lcsp3,
|
|
dst_info->data_width,
|
|
src_info->data_width);
|
|
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
static int
|
|
d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
|
|
struct scatterlist *sg_src, struct scatterlist *sg_dst,
|
|
unsigned int sg_len, dma_addr_t src_dev_addr,
|
|
dma_addr_t dst_dev_addr)
|
|
{
|
|
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
|
|
struct stedma40_half_channel_info *src_info = &cfg->src_info;
|
|
struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
|
|
unsigned long flags = 0;
|
|
int ret;
|
|
|
|
if (desc->cyclic)
|
|
flags |= LLI_CYCLIC | LLI_TERM_INT;
|
|
|
|
ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
|
|
desc->lli_phy.src,
|
|
virt_to_phys(desc->lli_phy.src),
|
|
chan->src_def_cfg,
|
|
src_info, dst_info, flags);
|
|
|
|
ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
|
|
desc->lli_phy.dst,
|
|
virt_to_phys(desc->lli_phy.dst),
|
|
chan->dst_def_cfg,
|
|
dst_info, src_info, flags);
|
|
|
|
dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
|
|
desc->lli_pool.size, DMA_TO_DEVICE);
|
|
|
|
return ret < 0 ? ret : 0;
|
|
}
|
|
|
|
|
|
static struct d40_desc *
|
|
d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
|
|
unsigned int sg_len, unsigned long dma_flags)
|
|
{
|
|
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
|
|
struct d40_desc *desc;
|
|
int ret;
|
|
|
|
desc = d40_desc_get(chan);
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
|
|
cfg->dst_info.data_width);
|
|
if (desc->lli_len < 0) {
|
|
chan_err(chan, "Unaligned size\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
|
|
if (ret < 0) {
|
|
chan_err(chan, "Could not allocate lli\n");
|
|
goto err;
|
|
}
|
|
|
|
|
|
desc->lli_current = 0;
|
|
desc->txd.flags = dma_flags;
|
|
desc->txd.tx_submit = d40_tx_submit;
|
|
|
|
dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
|
|
|
|
return desc;
|
|
|
|
err:
|
|
d40_desc_free(chan, desc);
|
|
return NULL;
|
|
}
|
|
|
|
static dma_addr_t
|
|
d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
|
|
{
|
|
struct stedma40_platform_data *plat = chan->base->plat_data;
|
|
struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
|
|
dma_addr_t addr = 0;
|
|
|
|
if (chan->runtime_addr)
|
|
return chan->runtime_addr;
|
|
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
addr = plat->dev_rx[cfg->src_dev_type];
|
|
else if (direction == DMA_MEM_TO_DEV)
|
|
addr = plat->dev_tx[cfg->dst_dev_type];
|
|
|
|
return addr;
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
|
|
struct scatterlist *sg_dst, unsigned int sg_len,
|
|
enum dma_transfer_direction direction, unsigned long dma_flags)
|
|
{
|
|
struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
|
|
dma_addr_t src_dev_addr = 0;
|
|
dma_addr_t dst_dev_addr = 0;
|
|
struct d40_desc *desc;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!chan->phy_chan) {
|
|
chan_err(chan, "Cannot prepare unallocated channel\n");
|
|
return NULL;
|
|
}
|
|
|
|
|
|
spin_lock_irqsave(&chan->lock, flags);
|
|
|
|
desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
|
|
if (desc == NULL)
|
|
goto err;
|
|
|
|
if (sg_next(&sg_src[sg_len - 1]) == sg_src)
|
|
desc->cyclic = true;
|
|
|
|
if (direction != DMA_TRANS_NONE) {
|
|
dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
|
|
|
|
if (direction == DMA_DEV_TO_MEM)
|
|
src_dev_addr = dev_addr;
|
|
else if (direction == DMA_MEM_TO_DEV)
|
|
dst_dev_addr = dev_addr;
|
|
}
|
|
|
|
if (chan_is_logical(chan))
|
|
ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
|
|
sg_len, src_dev_addr, dst_dev_addr);
|
|
else
|
|
ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
|
|
sg_len, src_dev_addr, dst_dev_addr);
|
|
|
|
if (ret) {
|
|
chan_err(chan, "Failed to prepare %s sg job: %d\n",
|
|
chan_is_logical(chan) ? "log" : "phy", ret);
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* add descriptor to the prepare queue in order to be able
|
|
* to free them later in terminate_all
|
|
*/
|
|
list_add_tail(&desc->node, &chan->prepare_queue);
|
|
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
|
|
return &desc->txd;
|
|
|
|
err:
|
|
if (desc)
|
|
d40_desc_free(chan, desc);
|
|
spin_unlock_irqrestore(&chan->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
bool stedma40_filter(struct dma_chan *chan, void *data)
|
|
{
|
|
struct stedma40_chan_cfg *info = data;
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
int err;
|
|
|
|
if (data) {
|
|
err = d40_validate_conf(d40c, info);
|
|
if (!err)
|
|
d40c->dma_cfg = *info;
|
|
} else
|
|
err = d40_config_memcpy(d40c);
|
|
|
|
if (!err)
|
|
d40c->configured = true;
|
|
|
|
return err == 0;
|
|
}
|
|
EXPORT_SYMBOL(stedma40_filter);
|
|
|
|
static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
|
|
{
|
|
bool realtime = d40c->dma_cfg.realtime;
|
|
bool highprio = d40c->dma_cfg.high_priority;
|
|
u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
|
|
u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
|
|
u32 event = D40_TYPE_TO_EVENT(dev_type);
|
|
u32 group = D40_TYPE_TO_GROUP(dev_type);
|
|
u32 bit = 1 << event;
|
|
|
|
/* Destination event lines are stored in the upper halfword */
|
|
if (!src)
|
|
bit <<= 16;
|
|
|
|
writel(bit, d40c->base->virtbase + prioreg + group * 4);
|
|
writel(bit, d40c->base->virtbase + rtreg + group * 4);
|
|
}
|
|
|
|
static void d40_set_prio_realtime(struct d40_chan *d40c)
|
|
{
|
|
if (d40c->base->rev < 3)
|
|
return;
|
|
|
|
if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
|
|
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
|
|
__d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
|
|
|
|
if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
|
|
(d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
|
|
__d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
|
|
}
|
|
|
|
/* DMA ENGINE functions */
|
|
static int d40_alloc_chan_resources(struct dma_chan *chan)
|
|
{
|
|
int err;
|
|
unsigned long flags;
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
bool is_free_phy;
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
dma_cookie_init(chan);
|
|
|
|
/* If no dma configuration is set use default configuration (memcpy) */
|
|
if (!d40c->configured) {
|
|
err = d40_config_memcpy(d40c);
|
|
if (err) {
|
|
chan_err(d40c, "Failed to configure memcpy channel\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
err = d40_allocate_channel(d40c, &is_free_phy);
|
|
if (err) {
|
|
chan_err(d40c, "Failed to allocate channel\n");
|
|
d40c->configured = false;
|
|
goto fail;
|
|
}
|
|
|
|
pm_runtime_get_sync(d40c->base->dev);
|
|
/* Fill in basic CFG register values */
|
|
d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
|
|
&d40c->dst_def_cfg, chan_is_logical(d40c));
|
|
|
|
d40_set_prio_realtime(d40c);
|
|
|
|
if (chan_is_logical(d40c)) {
|
|
d40_log_cfg(&d40c->dma_cfg,
|
|
&d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
|
|
|
|
if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
|
|
d40c->lcpa = d40c->base->lcpa_base +
|
|
d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
|
|
else
|
|
d40c->lcpa = d40c->base->lcpa_base +
|
|
d40c->dma_cfg.dst_dev_type *
|
|
D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
|
|
}
|
|
|
|
dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
|
|
chan_is_logical(d40c) ? "logical" : "physical",
|
|
d40c->phy_chan->num,
|
|
d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
|
|
|
|
|
|
/*
|
|
* Only write channel configuration to the DMA if the physical
|
|
* resource is free. In case of multiple logical channels
|
|
* on the same physical resource, only the first write is necessary.
|
|
*/
|
|
if (is_free_phy)
|
|
d40_config_write(d40c);
|
|
fail:
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
return err;
|
|
}
|
|
|
|
static void d40_free_chan_resources(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c =
|
|
container_of(chan, struct d40_chan, chan);
|
|
int err;
|
|
unsigned long flags;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
chan_err(d40c, "Cannot free unallocated channel\n");
|
|
return;
|
|
}
|
|
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
err = d40_free_dma(d40c);
|
|
|
|
if (err)
|
|
chan_err(d40c, "Failed to free channel\n");
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
|
|
dma_addr_t dst,
|
|
dma_addr_t src,
|
|
size_t size,
|
|
unsigned long dma_flags)
|
|
{
|
|
struct scatterlist dst_sg;
|
|
struct scatterlist src_sg;
|
|
|
|
sg_init_table(&dst_sg, 1);
|
|
sg_init_table(&src_sg, 1);
|
|
|
|
sg_dma_address(&dst_sg) = dst;
|
|
sg_dma_address(&src_sg) = src;
|
|
|
|
sg_dma_len(&dst_sg) = size;
|
|
sg_dma_len(&src_sg) = size;
|
|
|
|
return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
d40_prep_memcpy_sg(struct dma_chan *chan,
|
|
struct scatterlist *dst_sg, unsigned int dst_nents,
|
|
struct scatterlist *src_sg, unsigned int src_nents,
|
|
unsigned long dma_flags)
|
|
{
|
|
if (dst_nents != src_nents)
|
|
return NULL;
|
|
|
|
return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
|
|
struct scatterlist *sgl,
|
|
unsigned int sg_len,
|
|
enum dma_transfer_direction direction,
|
|
unsigned long dma_flags,
|
|
void *context)
|
|
{
|
|
if (direction != DMA_DEV_TO_MEM && direction != DMA_MEM_TO_DEV)
|
|
return NULL;
|
|
|
|
return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
|
|
size_t buf_len, size_t period_len,
|
|
enum dma_transfer_direction direction, unsigned long flags,
|
|
void *context)
|
|
{
|
|
unsigned int periods = buf_len / period_len;
|
|
struct dma_async_tx_descriptor *txd;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
|
|
for (i = 0; i < periods; i++) {
|
|
sg_dma_address(&sg[i]) = dma_addr;
|
|
sg_dma_len(&sg[i]) = period_len;
|
|
dma_addr += period_len;
|
|
}
|
|
|
|
sg[periods].offset = 0;
|
|
sg_dma_len(&sg[periods]) = 0;
|
|
sg[periods].page_link =
|
|
((unsigned long)sg | 0x01) & ~0x02;
|
|
|
|
txd = d40_prep_sg(chan, sg, sg, periods, direction,
|
|
DMA_PREP_INTERRUPT);
|
|
|
|
kfree(sg);
|
|
|
|
return txd;
|
|
}
|
|
|
|
static enum dma_status d40_tx_status(struct dma_chan *chan,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
enum dma_status ret;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
chan_err(d40c, "Cannot read status of unallocated channel\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = dma_cookie_status(chan, cookie, txstate);
|
|
if (ret != DMA_SUCCESS)
|
|
dma_set_residue(txstate, stedma40_residue(chan));
|
|
|
|
if (d40_is_paused(d40c))
|
|
ret = DMA_PAUSED;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void d40_issue_pending(struct dma_chan *chan)
|
|
{
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
unsigned long flags;
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
chan_err(d40c, "Channel is not allocated!\n");
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
|
|
|
|
/* Busy means that queued jobs are already being processed */
|
|
if (!d40c->busy)
|
|
(void) d40_queue_start(d40c);
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
}
|
|
|
|
static void d40_terminate_all(struct dma_chan *chan)
|
|
{
|
|
unsigned long flags;
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&d40c->lock, flags);
|
|
|
|
pm_runtime_get_sync(d40c->base->dev);
|
|
ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
|
|
if (ret)
|
|
chan_err(d40c, "Failed to stop channel\n");
|
|
|
|
d40_term_all(d40c);
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
if (d40c->busy) {
|
|
pm_runtime_mark_last_busy(d40c->base->dev);
|
|
pm_runtime_put_autosuspend(d40c->base->dev);
|
|
}
|
|
d40c->busy = false;
|
|
|
|
spin_unlock_irqrestore(&d40c->lock, flags);
|
|
}
|
|
|
|
static int
|
|
dma40_config_to_halfchannel(struct d40_chan *d40c,
|
|
struct stedma40_half_channel_info *info,
|
|
enum dma_slave_buswidth width,
|
|
u32 maxburst)
|
|
{
|
|
enum stedma40_periph_data_width addr_width;
|
|
int psize;
|
|
|
|
switch (width) {
|
|
case DMA_SLAVE_BUSWIDTH_1_BYTE:
|
|
addr_width = STEDMA40_BYTE_WIDTH;
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_2_BYTES:
|
|
addr_width = STEDMA40_HALFWORD_WIDTH;
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_4_BYTES:
|
|
addr_width = STEDMA40_WORD_WIDTH;
|
|
break;
|
|
case DMA_SLAVE_BUSWIDTH_8_BYTES:
|
|
addr_width = STEDMA40_DOUBLEWORD_WIDTH;
|
|
break;
|
|
default:
|
|
dev_err(d40c->base->dev,
|
|
"illegal peripheral address width "
|
|
"requested (%d)\n",
|
|
width);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (chan_is_logical(d40c)) {
|
|
if (maxburst >= 16)
|
|
psize = STEDMA40_PSIZE_LOG_16;
|
|
else if (maxburst >= 8)
|
|
psize = STEDMA40_PSIZE_LOG_8;
|
|
else if (maxburst >= 4)
|
|
psize = STEDMA40_PSIZE_LOG_4;
|
|
else
|
|
psize = STEDMA40_PSIZE_LOG_1;
|
|
} else {
|
|
if (maxburst >= 16)
|
|
psize = STEDMA40_PSIZE_PHY_16;
|
|
else if (maxburst >= 8)
|
|
psize = STEDMA40_PSIZE_PHY_8;
|
|
else if (maxburst >= 4)
|
|
psize = STEDMA40_PSIZE_PHY_4;
|
|
else
|
|
psize = STEDMA40_PSIZE_PHY_1;
|
|
}
|
|
|
|
info->data_width = addr_width;
|
|
info->psize = psize;
|
|
info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Runtime reconfiguration extension */
|
|
static int d40_set_runtime_config(struct dma_chan *chan,
|
|
struct dma_slave_config *config)
|
|
{
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
|
|
enum dma_slave_buswidth src_addr_width, dst_addr_width;
|
|
dma_addr_t config_addr;
|
|
u32 src_maxburst, dst_maxburst;
|
|
int ret;
|
|
|
|
src_addr_width = config->src_addr_width;
|
|
src_maxburst = config->src_maxburst;
|
|
dst_addr_width = config->dst_addr_width;
|
|
dst_maxburst = config->dst_maxburst;
|
|
|
|
if (config->direction == DMA_DEV_TO_MEM) {
|
|
dma_addr_t dev_addr_rx =
|
|
d40c->base->plat_data->dev_rx[cfg->src_dev_type];
|
|
|
|
config_addr = config->src_addr;
|
|
if (dev_addr_rx)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel has a pre-wired RX address %08x "
|
|
"overriding with %08x\n",
|
|
dev_addr_rx, config_addr);
|
|
if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel was not configured for peripheral "
|
|
"to memory transfer (%d) overriding\n",
|
|
cfg->dir);
|
|
cfg->dir = STEDMA40_PERIPH_TO_MEM;
|
|
|
|
/* Configure the memory side */
|
|
if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
|
|
dst_addr_width = src_addr_width;
|
|
if (dst_maxburst == 0)
|
|
dst_maxburst = src_maxburst;
|
|
|
|
} else if (config->direction == DMA_MEM_TO_DEV) {
|
|
dma_addr_t dev_addr_tx =
|
|
d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
|
|
|
|
config_addr = config->dst_addr;
|
|
if (dev_addr_tx)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel has a pre-wired TX address %08x "
|
|
"overriding with %08x\n",
|
|
dev_addr_tx, config_addr);
|
|
if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
|
|
dev_dbg(d40c->base->dev,
|
|
"channel was not configured for memory "
|
|
"to peripheral transfer (%d) overriding\n",
|
|
cfg->dir);
|
|
cfg->dir = STEDMA40_MEM_TO_PERIPH;
|
|
|
|
/* Configure the memory side */
|
|
if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
|
|
src_addr_width = dst_addr_width;
|
|
if (src_maxburst == 0)
|
|
src_maxburst = dst_maxburst;
|
|
} else {
|
|
dev_err(d40c->base->dev,
|
|
"unrecognized channel direction %d\n",
|
|
config->direction);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
|
|
dev_err(d40c->base->dev,
|
|
"src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
|
|
src_maxburst,
|
|
src_addr_width,
|
|
dst_maxburst,
|
|
dst_addr_width);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
|
|
src_addr_width,
|
|
src_maxburst);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
|
|
dst_addr_width,
|
|
dst_maxburst);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Fill in register values */
|
|
if (chan_is_logical(d40c))
|
|
d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
|
|
else
|
|
d40_phy_cfg(cfg, &d40c->src_def_cfg,
|
|
&d40c->dst_def_cfg, false);
|
|
|
|
/* These settings will take precedence later */
|
|
d40c->runtime_addr = config_addr;
|
|
d40c->runtime_direction = config->direction;
|
|
dev_dbg(d40c->base->dev,
|
|
"configured channel %s for %s, data width %d/%d, "
|
|
"maxburst %d/%d elements, LE, no flow control\n",
|
|
dma_chan_name(chan),
|
|
(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
|
|
src_addr_width, dst_addr_width,
|
|
src_maxburst, dst_maxburst);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
|
|
|
|
if (d40c->phy_chan == NULL) {
|
|
chan_err(d40c, "Channel is not allocated!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case DMA_TERMINATE_ALL:
|
|
d40_terminate_all(chan);
|
|
return 0;
|
|
case DMA_PAUSE:
|
|
return d40_pause(d40c);
|
|
case DMA_RESUME:
|
|
return d40_resume(d40c);
|
|
case DMA_SLAVE_CONFIG:
|
|
return d40_set_runtime_config(chan,
|
|
(struct dma_slave_config *) arg);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Other commands are unimplemented */
|
|
return -ENXIO;
|
|
}
|
|
|
|
/* Initialization functions */
|
|
|
|
static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
|
|
struct d40_chan *chans, int offset,
|
|
int num_chans)
|
|
{
|
|
int i = 0;
|
|
struct d40_chan *d40c;
|
|
|
|
INIT_LIST_HEAD(&dma->channels);
|
|
|
|
for (i = offset; i < offset + num_chans; i++) {
|
|
d40c = &chans[i];
|
|
d40c->base = base;
|
|
d40c->chan.device = dma;
|
|
|
|
spin_lock_init(&d40c->lock);
|
|
|
|
d40c->log_num = D40_PHY_CHAN;
|
|
|
|
INIT_LIST_HEAD(&d40c->active);
|
|
INIT_LIST_HEAD(&d40c->queue);
|
|
INIT_LIST_HEAD(&d40c->pending_queue);
|
|
INIT_LIST_HEAD(&d40c->client);
|
|
INIT_LIST_HEAD(&d40c->prepare_queue);
|
|
|
|
tasklet_init(&d40c->tasklet, dma_tasklet,
|
|
(unsigned long) d40c);
|
|
|
|
list_add_tail(&d40c->chan.device_node,
|
|
&dma->channels);
|
|
}
|
|
}
|
|
|
|
static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
|
|
{
|
|
if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
|
|
dev->device_prep_slave_sg = d40_prep_slave_sg;
|
|
|
|
if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
|
|
dev->device_prep_dma_memcpy = d40_prep_memcpy;
|
|
|
|
/*
|
|
* This controller can only access address at even
|
|
* 32bit boundaries, i.e. 2^2
|
|
*/
|
|
dev->copy_align = 2;
|
|
}
|
|
|
|
if (dma_has_cap(DMA_SG, dev->cap_mask))
|
|
dev->device_prep_dma_sg = d40_prep_memcpy_sg;
|
|
|
|
if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
|
|
dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
|
|
|
|
dev->device_alloc_chan_resources = d40_alloc_chan_resources;
|
|
dev->device_free_chan_resources = d40_free_chan_resources;
|
|
dev->device_issue_pending = d40_issue_pending;
|
|
dev->device_tx_status = d40_tx_status;
|
|
dev->device_control = d40_control;
|
|
dev->dev = base->dev;
|
|
}
|
|
|
|
static int __init d40_dmaengine_init(struct d40_base *base,
|
|
int num_reserved_chans)
|
|
{
|
|
int err ;
|
|
|
|
d40_chan_init(base, &base->dma_slave, base->log_chans,
|
|
0, base->num_log_chans);
|
|
|
|
dma_cap_zero(base->dma_slave.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
|
|
|
|
d40_ops_init(base, &base->dma_slave);
|
|
|
|
err = dma_async_device_register(&base->dma_slave);
|
|
|
|
if (err) {
|
|
d40_err(base->dev, "Failed to register slave channels\n");
|
|
goto failure1;
|
|
}
|
|
|
|
d40_chan_init(base, &base->dma_memcpy, base->log_chans,
|
|
base->num_log_chans, base->plat_data->memcpy_len);
|
|
|
|
dma_cap_zero(base->dma_memcpy.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
|
|
dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
|
|
|
|
d40_ops_init(base, &base->dma_memcpy);
|
|
|
|
err = dma_async_device_register(&base->dma_memcpy);
|
|
|
|
if (err) {
|
|
d40_err(base->dev,
|
|
"Failed to regsiter memcpy only channels\n");
|
|
goto failure2;
|
|
}
|
|
|
|
d40_chan_init(base, &base->dma_both, base->phy_chans,
|
|
0, num_reserved_chans);
|
|
|
|
dma_cap_zero(base->dma_both.cap_mask);
|
|
dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
|
|
dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
|
|
dma_cap_set(DMA_SG, base->dma_both.cap_mask);
|
|
dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
|
|
|
|
d40_ops_init(base, &base->dma_both);
|
|
err = dma_async_device_register(&base->dma_both);
|
|
|
|
if (err) {
|
|
d40_err(base->dev,
|
|
"Failed to register logical and physical capable channels\n");
|
|
goto failure3;
|
|
}
|
|
return 0;
|
|
failure3:
|
|
dma_async_device_unregister(&base->dma_memcpy);
|
|
failure2:
|
|
dma_async_device_unregister(&base->dma_slave);
|
|
failure1:
|
|
return err;
|
|
}
|
|
|
|
/* Suspend resume functionality */
|
|
#ifdef CONFIG_PM
|
|
static int dma40_pm_suspend(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct d40_base *base = platform_get_drvdata(pdev);
|
|
int ret = 0;
|
|
if (!pm_runtime_suspended(dev))
|
|
return -EBUSY;
|
|
|
|
if (base->lcpa_regulator)
|
|
ret = regulator_disable(base->lcpa_regulator);
|
|
return ret;
|
|
}
|
|
|
|
static int dma40_runtime_suspend(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct d40_base *base = platform_get_drvdata(pdev);
|
|
|
|
d40_save_restore_registers(base, true);
|
|
|
|
/* Don't disable/enable clocks for v1 due to HW bugs */
|
|
if (base->rev != 1)
|
|
writel_relaxed(base->gcc_pwr_off_mask,
|
|
base->virtbase + D40_DREG_GCC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dma40_runtime_resume(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct d40_base *base = platform_get_drvdata(pdev);
|
|
|
|
if (base->initialized)
|
|
d40_save_restore_registers(base, false);
|
|
|
|
writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
|
|
base->virtbase + D40_DREG_GCC);
|
|
return 0;
|
|
}
|
|
|
|
static int dma40_resume(struct device *dev)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev);
|
|
struct d40_base *base = platform_get_drvdata(pdev);
|
|
int ret = 0;
|
|
|
|
if (base->lcpa_regulator)
|
|
ret = regulator_enable(base->lcpa_regulator);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct dev_pm_ops dma40_pm_ops = {
|
|
.suspend = dma40_pm_suspend,
|
|
.runtime_suspend = dma40_runtime_suspend,
|
|
.runtime_resume = dma40_runtime_resume,
|
|
.resume = dma40_resume,
|
|
};
|
|
#define DMA40_PM_OPS (&dma40_pm_ops)
|
|
#else
|
|
#define DMA40_PM_OPS NULL
|
|
#endif
|
|
|
|
/* Initialization functions. */
|
|
|
|
static int __init d40_phy_res_init(struct d40_base *base)
|
|
{
|
|
int i;
|
|
int num_phy_chans_avail = 0;
|
|
u32 val[2];
|
|
int odd_even_bit = -2;
|
|
int gcc = D40_DREG_GCC_ENA;
|
|
|
|
val[0] = readl(base->virtbase + D40_DREG_PRSME);
|
|
val[1] = readl(base->virtbase + D40_DREG_PRSMO);
|
|
|
|
for (i = 0; i < base->num_phy_chans; i++) {
|
|
base->phy_res[i].num = i;
|
|
odd_even_bit += 2 * ((i % 2) == 0);
|
|
if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
|
|
/* Mark security only channels as occupied */
|
|
base->phy_res[i].allocated_src = D40_ALLOC_PHY;
|
|
base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
|
|
base->phy_res[i].reserved = true;
|
|
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
|
|
D40_DREG_GCC_SRC);
|
|
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
|
|
D40_DREG_GCC_DST);
|
|
|
|
|
|
} else {
|
|
base->phy_res[i].allocated_src = D40_ALLOC_FREE;
|
|
base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
|
|
base->phy_res[i].reserved = false;
|
|
num_phy_chans_avail++;
|
|
}
|
|
spin_lock_init(&base->phy_res[i].lock);
|
|
}
|
|
|
|
/* Mark disabled channels as occupied */
|
|
for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
|
|
int chan = base->plat_data->disabled_channels[i];
|
|
|
|
base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
|
|
base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
|
|
base->phy_res[chan].reserved = true;
|
|
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
|
|
D40_DREG_GCC_SRC);
|
|
gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
|
|
D40_DREG_GCC_DST);
|
|
num_phy_chans_avail--;
|
|
}
|
|
|
|
dev_info(base->dev, "%d of %d physical DMA channels available\n",
|
|
num_phy_chans_avail, base->num_phy_chans);
|
|
|
|
/* Verify settings extended vs standard */
|
|
val[0] = readl(base->virtbase + D40_DREG_PRTYP);
|
|
|
|
for (i = 0; i < base->num_phy_chans; i++) {
|
|
|
|
if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
|
|
(val[0] & 0x3) != 1)
|
|
dev_info(base->dev,
|
|
"[%s] INFO: channel %d is misconfigured (%d)\n",
|
|
__func__, i, val[0] & 0x3);
|
|
|
|
val[0] = val[0] >> 2;
|
|
}
|
|
|
|
/*
|
|
* To keep things simple, Enable all clocks initially.
|
|
* The clocks will get managed later post channel allocation.
|
|
* The clocks for the event lines on which reserved channels exists
|
|
* are not managed here.
|
|
*/
|
|
writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
|
|
base->gcc_pwr_off_mask = gcc;
|
|
|
|
return num_phy_chans_avail;
|
|
}
|
|
|
|
static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
|
|
{
|
|
struct stedma40_platform_data *plat_data;
|
|
struct clk *clk = NULL;
|
|
void __iomem *virtbase = NULL;
|
|
struct resource *res = NULL;
|
|
struct d40_base *base = NULL;
|
|
int num_log_chans = 0;
|
|
int num_phy_chans;
|
|
int clk_ret = -EINVAL;
|
|
int i;
|
|
u32 pid;
|
|
u32 cid;
|
|
u8 rev;
|
|
|
|
clk = clk_get(&pdev->dev, NULL);
|
|
if (IS_ERR(clk)) {
|
|
d40_err(&pdev->dev, "No matching clock found\n");
|
|
goto failure;
|
|
}
|
|
|
|
clk_ret = clk_prepare_enable(clk);
|
|
if (clk_ret) {
|
|
d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
|
|
goto failure;
|
|
}
|
|
|
|
/* Get IO for DMAC base address */
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
|
|
if (!res)
|
|
goto failure;
|
|
|
|
if (request_mem_region(res->start, resource_size(res),
|
|
D40_NAME " I/O base") == NULL)
|
|
goto failure;
|
|
|
|
virtbase = ioremap(res->start, resource_size(res));
|
|
if (!virtbase)
|
|
goto failure;
|
|
|
|
/* This is just a regular AMBA PrimeCell ID actually */
|
|
for (pid = 0, i = 0; i < 4; i++)
|
|
pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
|
|
& 255) << (i * 8);
|
|
for (cid = 0, i = 0; i < 4; i++)
|
|
cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
|
|
& 255) << (i * 8);
|
|
|
|
if (cid != AMBA_CID) {
|
|
d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
|
|
goto failure;
|
|
}
|
|
if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
|
|
d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
|
|
AMBA_MANF_BITS(pid),
|
|
AMBA_VENDOR_ST);
|
|
goto failure;
|
|
}
|
|
/*
|
|
* HW revision:
|
|
* DB8500ed has revision 0
|
|
* ? has revision 1
|
|
* DB8500v1 has revision 2
|
|
* DB8500v2 has revision 3
|
|
*/
|
|
rev = AMBA_REV_BITS(pid);
|
|
|
|
/* The number of physical channels on this HW */
|
|
num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
|
|
|
|
dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
|
|
rev, res->start);
|
|
|
|
if (rev < 2) {
|
|
d40_err(&pdev->dev, "hardware revision: %d is not supported",
|
|
rev);
|
|
goto failure;
|
|
}
|
|
|
|
plat_data = pdev->dev.platform_data;
|
|
|
|
/* Count the number of logical channels in use */
|
|
for (i = 0; i < plat_data->dev_len; i++)
|
|
if (plat_data->dev_rx[i] != 0)
|
|
num_log_chans++;
|
|
|
|
for (i = 0; i < plat_data->dev_len; i++)
|
|
if (plat_data->dev_tx[i] != 0)
|
|
num_log_chans++;
|
|
|
|
base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
|
|
(num_phy_chans + num_log_chans + plat_data->memcpy_len) *
|
|
sizeof(struct d40_chan), GFP_KERNEL);
|
|
|
|
if (base == NULL) {
|
|
d40_err(&pdev->dev, "Out of memory\n");
|
|
goto failure;
|
|
}
|
|
|
|
base->rev = rev;
|
|
base->clk = clk;
|
|
base->num_phy_chans = num_phy_chans;
|
|
base->num_log_chans = num_log_chans;
|
|
base->phy_start = res->start;
|
|
base->phy_size = resource_size(res);
|
|
base->virtbase = virtbase;
|
|
base->plat_data = plat_data;
|
|
base->dev = &pdev->dev;
|
|
base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
|
|
base->log_chans = &base->phy_chans[num_phy_chans];
|
|
|
|
base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
|
|
GFP_KERNEL);
|
|
if (!base->phy_res)
|
|
goto failure;
|
|
|
|
base->lookup_phy_chans = kzalloc(num_phy_chans *
|
|
sizeof(struct d40_chan *),
|
|
GFP_KERNEL);
|
|
if (!base->lookup_phy_chans)
|
|
goto failure;
|
|
|
|
if (num_log_chans + plat_data->memcpy_len) {
|
|
/*
|
|
* The max number of logical channels are event lines for all
|
|
* src devices and dst devices
|
|
*/
|
|
base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
|
|
sizeof(struct d40_chan *),
|
|
GFP_KERNEL);
|
|
if (!base->lookup_log_chans)
|
|
goto failure;
|
|
}
|
|
|
|
base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
|
|
sizeof(d40_backup_regs_chan),
|
|
GFP_KERNEL);
|
|
if (!base->reg_val_backup_chan)
|
|
goto failure;
|
|
|
|
base->lcla_pool.alloc_map =
|
|
kzalloc(num_phy_chans * sizeof(struct d40_desc *)
|
|
* D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
|
|
if (!base->lcla_pool.alloc_map)
|
|
goto failure;
|
|
|
|
base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
|
|
0, SLAB_HWCACHE_ALIGN,
|
|
NULL);
|
|
if (base->desc_slab == NULL)
|
|
goto failure;
|
|
|
|
return base;
|
|
|
|
failure:
|
|
if (!clk_ret)
|
|
clk_disable_unprepare(clk);
|
|
if (!IS_ERR(clk))
|
|
clk_put(clk);
|
|
if (virtbase)
|
|
iounmap(virtbase);
|
|
if (res)
|
|
release_mem_region(res->start,
|
|
resource_size(res));
|
|
if (virtbase)
|
|
iounmap(virtbase);
|
|
|
|
if (base) {
|
|
kfree(base->lcla_pool.alloc_map);
|
|
kfree(base->reg_val_backup_chan);
|
|
kfree(base->lookup_log_chans);
|
|
kfree(base->lookup_phy_chans);
|
|
kfree(base->phy_res);
|
|
kfree(base);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void __init d40_hw_init(struct d40_base *base)
|
|
{
|
|
|
|
static struct d40_reg_val dma_init_reg[] = {
|
|
/* Clock every part of the DMA block from start */
|
|
{ .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
|
|
|
|
/* Interrupts on all logical channels */
|
|
{ .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
|
|
{ .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
|
|
};
|
|
int i;
|
|
u32 prmseo[2] = {0, 0};
|
|
u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
|
|
u32 pcmis = 0;
|
|
u32 pcicr = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
|
|
writel(dma_init_reg[i].val,
|
|
base->virtbase + dma_init_reg[i].reg);
|
|
|
|
/* Configure all our dma channels to default settings */
|
|
for (i = 0; i < base->num_phy_chans; i++) {
|
|
|
|
activeo[i % 2] = activeo[i % 2] << 2;
|
|
|
|
if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
|
|
== D40_ALLOC_PHY) {
|
|
activeo[i % 2] |= 3;
|
|
continue;
|
|
}
|
|
|
|
/* Enable interrupt # */
|
|
pcmis = (pcmis << 1) | 1;
|
|
|
|
/* Clear interrupt # */
|
|
pcicr = (pcicr << 1) | 1;
|
|
|
|
/* Set channel to physical mode */
|
|
prmseo[i % 2] = prmseo[i % 2] << 2;
|
|
prmseo[i % 2] |= 1;
|
|
|
|
}
|
|
|
|
writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
|
|
writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
|
|
writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
|
|
writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
|
|
|
|
/* Write which interrupt to enable */
|
|
writel(pcmis, base->virtbase + D40_DREG_PCMIS);
|
|
|
|
/* Write which interrupt to clear */
|
|
writel(pcicr, base->virtbase + D40_DREG_PCICR);
|
|
|
|
}
|
|
|
|
static int __init d40_lcla_allocate(struct d40_base *base)
|
|
{
|
|
struct d40_lcla_pool *pool = &base->lcla_pool;
|
|
unsigned long *page_list;
|
|
int i, j;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
|
|
* To full fill this hardware requirement without wasting 256 kb
|
|
* we allocate pages until we get an aligned one.
|
|
*/
|
|
page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
|
|
GFP_KERNEL);
|
|
|
|
if (!page_list) {
|
|
ret = -ENOMEM;
|
|
goto failure;
|
|
}
|
|
|
|
/* Calculating how many pages that are required */
|
|
base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
|
|
|
|
for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
|
|
page_list[i] = __get_free_pages(GFP_KERNEL,
|
|
base->lcla_pool.pages);
|
|
if (!page_list[i]) {
|
|
|
|
d40_err(base->dev, "Failed to allocate %d pages.\n",
|
|
base->lcla_pool.pages);
|
|
|
|
for (j = 0; j < i; j++)
|
|
free_pages(page_list[j], base->lcla_pool.pages);
|
|
goto failure;
|
|
}
|
|
|
|
if ((virt_to_phys((void *)page_list[i]) &
|
|
(LCLA_ALIGNMENT - 1)) == 0)
|
|
break;
|
|
}
|
|
|
|
for (j = 0; j < i; j++)
|
|
free_pages(page_list[j], base->lcla_pool.pages);
|
|
|
|
if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
|
|
base->lcla_pool.base = (void *)page_list[i];
|
|
} else {
|
|
/*
|
|
* After many attempts and no succees with finding the correct
|
|
* alignment, try with allocating a big buffer.
|
|
*/
|
|
dev_warn(base->dev,
|
|
"[%s] Failed to get %d pages @ 18 bit align.\n",
|
|
__func__, base->lcla_pool.pages);
|
|
base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
|
|
base->num_phy_chans +
|
|
LCLA_ALIGNMENT,
|
|
GFP_KERNEL);
|
|
if (!base->lcla_pool.base_unaligned) {
|
|
ret = -ENOMEM;
|
|
goto failure;
|
|
}
|
|
|
|
base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
|
|
LCLA_ALIGNMENT);
|
|
}
|
|
|
|
pool->dma_addr = dma_map_single(base->dev, pool->base,
|
|
SZ_1K * base->num_phy_chans,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(base->dev, pool->dma_addr)) {
|
|
pool->dma_addr = 0;
|
|
ret = -ENOMEM;
|
|
goto failure;
|
|
}
|
|
|
|
writel(virt_to_phys(base->lcla_pool.base),
|
|
base->virtbase + D40_DREG_LCLA);
|
|
failure:
|
|
kfree(page_list);
|
|
return ret;
|
|
}
|
|
|
|
static int __init d40_probe(struct platform_device *pdev)
|
|
{
|
|
int err;
|
|
int ret = -ENOENT;
|
|
struct d40_base *base;
|
|
struct resource *res = NULL;
|
|
int num_reserved_chans;
|
|
u32 val;
|
|
|
|
base = d40_hw_detect_init(pdev);
|
|
|
|
if (!base)
|
|
goto failure;
|
|
|
|
num_reserved_chans = d40_phy_res_init(base);
|
|
|
|
platform_set_drvdata(pdev, base);
|
|
|
|
spin_lock_init(&base->interrupt_lock);
|
|
spin_lock_init(&base->execmd_lock);
|
|
|
|
/* Get IO for logical channel parameter address */
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
|
|
if (!res) {
|
|
ret = -ENOENT;
|
|
d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
|
|
goto failure;
|
|
}
|
|
base->lcpa_size = resource_size(res);
|
|
base->phy_lcpa = res->start;
|
|
|
|
if (request_mem_region(res->start, resource_size(res),
|
|
D40_NAME " I/O lcpa") == NULL) {
|
|
ret = -EBUSY;
|
|
d40_err(&pdev->dev,
|
|
"Failed to request LCPA region 0x%x-0x%x\n",
|
|
res->start, res->end);
|
|
goto failure;
|
|
}
|
|
|
|
/* We make use of ESRAM memory for this. */
|
|
val = readl(base->virtbase + D40_DREG_LCPA);
|
|
if (res->start != val && val != 0) {
|
|
dev_warn(&pdev->dev,
|
|
"[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
|
|
__func__, val, res->start);
|
|
} else
|
|
writel(res->start, base->virtbase + D40_DREG_LCPA);
|
|
|
|
base->lcpa_base = ioremap(res->start, resource_size(res));
|
|
if (!base->lcpa_base) {
|
|
ret = -ENOMEM;
|
|
d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
|
|
goto failure;
|
|
}
|
|
/* If lcla has to be located in ESRAM we don't need to allocate */
|
|
if (base->plat_data->use_esram_lcla) {
|
|
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
"lcla_esram");
|
|
if (!res) {
|
|
ret = -ENOENT;
|
|
d40_err(&pdev->dev,
|
|
"No \"lcla_esram\" memory resource\n");
|
|
goto failure;
|
|
}
|
|
base->lcla_pool.base = ioremap(res->start,
|
|
resource_size(res));
|
|
if (!base->lcla_pool.base) {
|
|
ret = -ENOMEM;
|
|
d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
|
|
goto failure;
|
|
}
|
|
writel(res->start, base->virtbase + D40_DREG_LCLA);
|
|
|
|
} else {
|
|
ret = d40_lcla_allocate(base);
|
|
if (ret) {
|
|
d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
|
|
goto failure;
|
|
}
|
|
}
|
|
|
|
spin_lock_init(&base->lcla_pool.lock);
|
|
|
|
base->irq = platform_get_irq(pdev, 0);
|
|
|
|
ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
|
|
if (ret) {
|
|
d40_err(&pdev->dev, "No IRQ defined\n");
|
|
goto failure;
|
|
}
|
|
|
|
pm_runtime_irq_safe(base->dev);
|
|
pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
|
|
pm_runtime_use_autosuspend(base->dev);
|
|
pm_runtime_enable(base->dev);
|
|
pm_runtime_resume(base->dev);
|
|
|
|
if (base->plat_data->use_esram_lcla) {
|
|
|
|
base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
|
|
if (IS_ERR(base->lcpa_regulator)) {
|
|
d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
|
|
base->lcpa_regulator = NULL;
|
|
goto failure;
|
|
}
|
|
|
|
ret = regulator_enable(base->lcpa_regulator);
|
|
if (ret) {
|
|
d40_err(&pdev->dev,
|
|
"Failed to enable lcpa_regulator\n");
|
|
regulator_put(base->lcpa_regulator);
|
|
base->lcpa_regulator = NULL;
|
|
goto failure;
|
|
}
|
|
}
|
|
|
|
base->initialized = true;
|
|
err = d40_dmaengine_init(base, num_reserved_chans);
|
|
if (err)
|
|
goto failure;
|
|
|
|
d40_hw_init(base);
|
|
|
|
dev_info(base->dev, "initialized\n");
|
|
return 0;
|
|
|
|
failure:
|
|
if (base) {
|
|
if (base->desc_slab)
|
|
kmem_cache_destroy(base->desc_slab);
|
|
if (base->virtbase)
|
|
iounmap(base->virtbase);
|
|
|
|
if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
|
|
iounmap(base->lcla_pool.base);
|
|
base->lcla_pool.base = NULL;
|
|
}
|
|
|
|
if (base->lcla_pool.dma_addr)
|
|
dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
|
|
SZ_1K * base->num_phy_chans,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
|
|
free_pages((unsigned long)base->lcla_pool.base,
|
|
base->lcla_pool.pages);
|
|
|
|
kfree(base->lcla_pool.base_unaligned);
|
|
|
|
if (base->phy_lcpa)
|
|
release_mem_region(base->phy_lcpa,
|
|
base->lcpa_size);
|
|
if (base->phy_start)
|
|
release_mem_region(base->phy_start,
|
|
base->phy_size);
|
|
if (base->clk) {
|
|
clk_disable(base->clk);
|
|
clk_put(base->clk);
|
|
}
|
|
|
|
if (base->lcpa_regulator) {
|
|
regulator_disable(base->lcpa_regulator);
|
|
regulator_put(base->lcpa_regulator);
|
|
}
|
|
|
|
kfree(base->lcla_pool.alloc_map);
|
|
kfree(base->lookup_log_chans);
|
|
kfree(base->lookup_phy_chans);
|
|
kfree(base->phy_res);
|
|
kfree(base);
|
|
}
|
|
|
|
d40_err(&pdev->dev, "probe failed\n");
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver d40_driver = {
|
|
.driver = {
|
|
.owner = THIS_MODULE,
|
|
.name = D40_NAME,
|
|
.pm = DMA40_PM_OPS,
|
|
},
|
|
};
|
|
|
|
static int __init stedma40_init(void)
|
|
{
|
|
return platform_driver_probe(&d40_driver, d40_probe);
|
|
}
|
|
subsys_initcall(stedma40_init);
|