linux_dsm_epyc7002/security/selinux/ss/ebitmap.h
Joshua Brindle 42345b68c2 selinux: default_range glblub implementation
A policy developer can now specify glblub as a default_range default and
the computed transition will be the intersection of the mls range of
the two contexts.

The glb (greatest lower bound) lub (lowest upper bound) of a range is calculated
as the greater of the low sensitivities and the lower of the high sensitivities
and the and of each category bitmap.

This can be used by MLS solution developers to compute a context that satisfies,
for example, the range of a network interface and the range of a user logging in.

Some examples are:

User Permitted Range | Network Device Label | Computed Label
---------------------|----------------------|----------------
s0-s1:c0.c12         | s0                   | s0
s0-s1:c0.c12         | s0-s1:c0.c1023       | s0-s1:c0.c12
s0-s4:c0.c512        | s1-s1:c0.c1023       | s1-s1:c0.c512
s0-s15:c0,c2         | s4-s6:c0.c128        | s4-s6:c0,c2
s0-s4                | s2-s6                | s2-s4
s0-s4                | s5-s8                | INVALID
s5-s8                | s0-s4                | INVALID

Signed-off-by: Joshua Brindle <joshua.brindle@crunchydata.com>
[PM: subject lines and checkpatch.pl fixes]
Signed-off-by: Paul Moore <paul@paul-moore.com>
2019-10-07 19:01:35 -04:00

154 lines
4.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* An extensible bitmap is a bitmap that supports an
* arbitrary number of bits. Extensible bitmaps are
* used to represent sets of values, such as types,
* roles, categories, and classes.
*
* Each extensible bitmap is implemented as a linked
* list of bitmap nodes, where each bitmap node has
* an explicitly specified starting bit position within
* the total bitmap.
*
* Author : Stephen Smalley, <sds@tycho.nsa.gov>
*/
#ifndef _SS_EBITMAP_H_
#define _SS_EBITMAP_H_
#include <net/netlabel.h>
#ifdef CONFIG_64BIT
#define EBITMAP_NODE_SIZE 64
#else
#define EBITMAP_NODE_SIZE 32
#endif
#define EBITMAP_UNIT_NUMS ((EBITMAP_NODE_SIZE-sizeof(void *)-sizeof(u32))\
/ sizeof(unsigned long))
#define EBITMAP_UNIT_SIZE BITS_PER_LONG
#define EBITMAP_SIZE (EBITMAP_UNIT_NUMS * EBITMAP_UNIT_SIZE)
#define EBITMAP_BIT 1ULL
#define EBITMAP_SHIFT_UNIT_SIZE(x) \
(((x) >> EBITMAP_UNIT_SIZE / 2) >> EBITMAP_UNIT_SIZE / 2)
struct ebitmap_node {
struct ebitmap_node *next;
unsigned long maps[EBITMAP_UNIT_NUMS];
u32 startbit;
};
struct ebitmap {
struct ebitmap_node *node; /* first node in the bitmap */
u32 highbit; /* highest position in the total bitmap */
};
#define ebitmap_length(e) ((e)->highbit)
static inline unsigned int ebitmap_start_positive(struct ebitmap *e,
struct ebitmap_node **n)
{
unsigned int ofs;
for (*n = e->node; *n; *n = (*n)->next) {
ofs = find_first_bit((*n)->maps, EBITMAP_SIZE);
if (ofs < EBITMAP_SIZE)
return (*n)->startbit + ofs;
}
return ebitmap_length(e);
}
static inline void ebitmap_init(struct ebitmap *e)
{
memset(e, 0, sizeof(*e));
}
static inline unsigned int ebitmap_next_positive(struct ebitmap *e,
struct ebitmap_node **n,
unsigned int bit)
{
unsigned int ofs;
ofs = find_next_bit((*n)->maps, EBITMAP_SIZE, bit - (*n)->startbit + 1);
if (ofs < EBITMAP_SIZE)
return ofs + (*n)->startbit;
for (*n = (*n)->next; *n; *n = (*n)->next) {
ofs = find_first_bit((*n)->maps, EBITMAP_SIZE);
if (ofs < EBITMAP_SIZE)
return ofs + (*n)->startbit;
}
return ebitmap_length(e);
}
#define EBITMAP_NODE_INDEX(node, bit) \
(((bit) - (node)->startbit) / EBITMAP_UNIT_SIZE)
#define EBITMAP_NODE_OFFSET(node, bit) \
(((bit) - (node)->startbit) % EBITMAP_UNIT_SIZE)
static inline int ebitmap_node_get_bit(struct ebitmap_node *n,
unsigned int bit)
{
unsigned int index = EBITMAP_NODE_INDEX(n, bit);
unsigned int ofs = EBITMAP_NODE_OFFSET(n, bit);
BUG_ON(index >= EBITMAP_UNIT_NUMS);
if ((n->maps[index] & (EBITMAP_BIT << ofs)))
return 1;
return 0;
}
static inline void ebitmap_node_set_bit(struct ebitmap_node *n,
unsigned int bit)
{
unsigned int index = EBITMAP_NODE_INDEX(n, bit);
unsigned int ofs = EBITMAP_NODE_OFFSET(n, bit);
BUG_ON(index >= EBITMAP_UNIT_NUMS);
n->maps[index] |= (EBITMAP_BIT << ofs);
}
static inline void ebitmap_node_clr_bit(struct ebitmap_node *n,
unsigned int bit)
{
unsigned int index = EBITMAP_NODE_INDEX(n, bit);
unsigned int ofs = EBITMAP_NODE_OFFSET(n, bit);
BUG_ON(index >= EBITMAP_UNIT_NUMS);
n->maps[index] &= ~(EBITMAP_BIT << ofs);
}
#define ebitmap_for_each_positive_bit(e, n, bit) \
for (bit = ebitmap_start_positive(e, &n); \
bit < ebitmap_length(e); \
bit = ebitmap_next_positive(e, &n, bit)) \
int ebitmap_cmp(struct ebitmap *e1, struct ebitmap *e2);
int ebitmap_cpy(struct ebitmap *dst, struct ebitmap *src);
int ebitmap_and(struct ebitmap *dst, struct ebitmap *e1, struct ebitmap *e2);
int ebitmap_contains(struct ebitmap *e1, struct ebitmap *e2, u32 last_e2bit);
int ebitmap_get_bit(struct ebitmap *e, unsigned long bit);
int ebitmap_set_bit(struct ebitmap *e, unsigned long bit, int value);
void ebitmap_destroy(struct ebitmap *e);
int ebitmap_read(struct ebitmap *e, void *fp);
int ebitmap_write(struct ebitmap *e, void *fp);
#ifdef CONFIG_NETLABEL
int ebitmap_netlbl_export(struct ebitmap *ebmap,
struct netlbl_lsm_catmap **catmap);
int ebitmap_netlbl_import(struct ebitmap *ebmap,
struct netlbl_lsm_catmap *catmap);
#else
static inline int ebitmap_netlbl_export(struct ebitmap *ebmap,
struct netlbl_lsm_catmap **catmap)
{
return -ENOMEM;
}
static inline int ebitmap_netlbl_import(struct ebitmap *ebmap,
struct netlbl_lsm_catmap *catmap)
{
return -ENOMEM;
}
#endif
#endif /* _SS_EBITMAP_H_ */