mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 02:45:26 +07:00
1b63edd6ec
In fast open the sender unncessarily reduces the space available for data in SYN by 12 bytes. This is because in the sender incorrectly reserves space for TS option twice in tcp_send_syn_data(): tcp_mtu_to_mss() already accounts for TS option space. But it further reserves MAX_TCP_OPTION_SPACE when computing the payload space. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
3248 lines
94 KiB
C
3248 lines
94 KiB
C
/*
|
|
* INET An implementation of the TCP/IP protocol suite for the LINUX
|
|
* operating system. INET is implemented using the BSD Socket
|
|
* interface as the means of communication with the user level.
|
|
*
|
|
* Implementation of the Transmission Control Protocol(TCP).
|
|
*
|
|
* Authors: Ross Biro
|
|
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
|
|
* Mark Evans, <evansmp@uhura.aston.ac.uk>
|
|
* Corey Minyard <wf-rch!minyard@relay.EU.net>
|
|
* Florian La Roche, <flla@stud.uni-sb.de>
|
|
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
|
|
* Linus Torvalds, <torvalds@cs.helsinki.fi>
|
|
* Alan Cox, <gw4pts@gw4pts.ampr.org>
|
|
* Matthew Dillon, <dillon@apollo.west.oic.com>
|
|
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
|
|
* Jorge Cwik, <jorge@laser.satlink.net>
|
|
*/
|
|
|
|
/*
|
|
* Changes: Pedro Roque : Retransmit queue handled by TCP.
|
|
* : Fragmentation on mtu decrease
|
|
* : Segment collapse on retransmit
|
|
* : AF independence
|
|
*
|
|
* Linus Torvalds : send_delayed_ack
|
|
* David S. Miller : Charge memory using the right skb
|
|
* during syn/ack processing.
|
|
* David S. Miller : Output engine completely rewritten.
|
|
* Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
|
|
* Cacophonix Gaul : draft-minshall-nagle-01
|
|
* J Hadi Salim : ECN support
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "TCP: " fmt
|
|
|
|
#include <net/tcp.h>
|
|
|
|
#include <linux/compiler.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/module.h>
|
|
|
|
/* People can turn this off for buggy TCP's found in printers etc. */
|
|
int sysctl_tcp_retrans_collapse __read_mostly = 1;
|
|
|
|
/* People can turn this on to work with those rare, broken TCPs that
|
|
* interpret the window field as a signed quantity.
|
|
*/
|
|
int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
|
|
|
|
/* Default TSQ limit of two TSO segments */
|
|
int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
|
|
|
|
/* This limits the percentage of the congestion window which we
|
|
* will allow a single TSO frame to consume. Building TSO frames
|
|
* which are too large can cause TCP streams to be bursty.
|
|
*/
|
|
int sysctl_tcp_tso_win_divisor __read_mostly = 3;
|
|
|
|
int sysctl_tcp_mtu_probing __read_mostly = 0;
|
|
int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
|
|
|
|
/* By default, RFC2861 behavior. */
|
|
int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
|
|
|
|
int sysctl_tcp_cookie_size __read_mostly = 0; /* TCP_COOKIE_MAX */
|
|
EXPORT_SYMBOL_GPL(sysctl_tcp_cookie_size);
|
|
|
|
static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
|
|
int push_one, gfp_t gfp);
|
|
|
|
/* Account for new data that has been sent to the network. */
|
|
static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
unsigned int prior_packets = tp->packets_out;
|
|
|
|
tcp_advance_send_head(sk, skb);
|
|
tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
|
|
|
|
/* Don't override Nagle indefinitely with F-RTO */
|
|
if (tp->frto_counter == 2)
|
|
tp->frto_counter = 3;
|
|
|
|
tp->packets_out += tcp_skb_pcount(skb);
|
|
if (!prior_packets || tp->early_retrans_delayed)
|
|
tcp_rearm_rto(sk);
|
|
}
|
|
|
|
/* SND.NXT, if window was not shrunk.
|
|
* If window has been shrunk, what should we make? It is not clear at all.
|
|
* Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
|
|
* Anything in between SND.UNA...SND.UNA+SND.WND also can be already
|
|
* invalid. OK, let's make this for now:
|
|
*/
|
|
static inline __u32 tcp_acceptable_seq(const struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (!before(tcp_wnd_end(tp), tp->snd_nxt))
|
|
return tp->snd_nxt;
|
|
else
|
|
return tcp_wnd_end(tp);
|
|
}
|
|
|
|
/* Calculate mss to advertise in SYN segment.
|
|
* RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
|
|
*
|
|
* 1. It is independent of path mtu.
|
|
* 2. Ideally, it is maximal possible segment size i.e. 65535-40.
|
|
* 3. For IPv4 it is reasonable to calculate it from maximal MTU of
|
|
* attached devices, because some buggy hosts are confused by
|
|
* large MSS.
|
|
* 4. We do not make 3, we advertise MSS, calculated from first
|
|
* hop device mtu, but allow to raise it to ip_rt_min_advmss.
|
|
* This may be overridden via information stored in routing table.
|
|
* 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
|
|
* probably even Jumbo".
|
|
*/
|
|
static __u16 tcp_advertise_mss(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
const struct dst_entry *dst = __sk_dst_get(sk);
|
|
int mss = tp->advmss;
|
|
|
|
if (dst) {
|
|
unsigned int metric = dst_metric_advmss(dst);
|
|
|
|
if (metric < mss) {
|
|
mss = metric;
|
|
tp->advmss = mss;
|
|
}
|
|
}
|
|
|
|
return (__u16)mss;
|
|
}
|
|
|
|
/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
|
|
* This is the first part of cwnd validation mechanism. */
|
|
static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
s32 delta = tcp_time_stamp - tp->lsndtime;
|
|
u32 restart_cwnd = tcp_init_cwnd(tp, dst);
|
|
u32 cwnd = tp->snd_cwnd;
|
|
|
|
tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
|
|
|
|
tp->snd_ssthresh = tcp_current_ssthresh(sk);
|
|
restart_cwnd = min(restart_cwnd, cwnd);
|
|
|
|
while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
|
|
cwnd >>= 1;
|
|
tp->snd_cwnd = max(cwnd, restart_cwnd);
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
|
tp->snd_cwnd_used = 0;
|
|
}
|
|
|
|
/* Congestion state accounting after a packet has been sent. */
|
|
static void tcp_event_data_sent(struct tcp_sock *tp,
|
|
struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
const u32 now = tcp_time_stamp;
|
|
|
|
if (sysctl_tcp_slow_start_after_idle &&
|
|
(!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
|
|
tcp_cwnd_restart(sk, __sk_dst_get(sk));
|
|
|
|
tp->lsndtime = now;
|
|
|
|
/* If it is a reply for ato after last received
|
|
* packet, enter pingpong mode.
|
|
*/
|
|
if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
|
|
icsk->icsk_ack.pingpong = 1;
|
|
}
|
|
|
|
/* Account for an ACK we sent. */
|
|
static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
|
|
{
|
|
tcp_dec_quickack_mode(sk, pkts);
|
|
inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
|
|
}
|
|
|
|
/* Determine a window scaling and initial window to offer.
|
|
* Based on the assumption that the given amount of space
|
|
* will be offered. Store the results in the tp structure.
|
|
* NOTE: for smooth operation initial space offering should
|
|
* be a multiple of mss if possible. We assume here that mss >= 1.
|
|
* This MUST be enforced by all callers.
|
|
*/
|
|
void tcp_select_initial_window(int __space, __u32 mss,
|
|
__u32 *rcv_wnd, __u32 *window_clamp,
|
|
int wscale_ok, __u8 *rcv_wscale,
|
|
__u32 init_rcv_wnd)
|
|
{
|
|
unsigned int space = (__space < 0 ? 0 : __space);
|
|
|
|
/* If no clamp set the clamp to the max possible scaled window */
|
|
if (*window_clamp == 0)
|
|
(*window_clamp) = (65535 << 14);
|
|
space = min(*window_clamp, space);
|
|
|
|
/* Quantize space offering to a multiple of mss if possible. */
|
|
if (space > mss)
|
|
space = (space / mss) * mss;
|
|
|
|
/* NOTE: offering an initial window larger than 32767
|
|
* will break some buggy TCP stacks. If the admin tells us
|
|
* it is likely we could be speaking with such a buggy stack
|
|
* we will truncate our initial window offering to 32K-1
|
|
* unless the remote has sent us a window scaling option,
|
|
* which we interpret as a sign the remote TCP is not
|
|
* misinterpreting the window field as a signed quantity.
|
|
*/
|
|
if (sysctl_tcp_workaround_signed_windows)
|
|
(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
|
|
else
|
|
(*rcv_wnd) = space;
|
|
|
|
(*rcv_wscale) = 0;
|
|
if (wscale_ok) {
|
|
/* Set window scaling on max possible window
|
|
* See RFC1323 for an explanation of the limit to 14
|
|
*/
|
|
space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
|
|
space = min_t(u32, space, *window_clamp);
|
|
while (space > 65535 && (*rcv_wscale) < 14) {
|
|
space >>= 1;
|
|
(*rcv_wscale)++;
|
|
}
|
|
}
|
|
|
|
/* Set initial window to a value enough for senders starting with
|
|
* initial congestion window of TCP_DEFAULT_INIT_RCVWND. Place
|
|
* a limit on the initial window when mss is larger than 1460.
|
|
*/
|
|
if (mss > (1 << *rcv_wscale)) {
|
|
int init_cwnd = TCP_DEFAULT_INIT_RCVWND;
|
|
if (mss > 1460)
|
|
init_cwnd =
|
|
max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
|
|
/* when initializing use the value from init_rcv_wnd
|
|
* rather than the default from above
|
|
*/
|
|
if (init_rcv_wnd)
|
|
*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
|
|
else
|
|
*rcv_wnd = min(*rcv_wnd, init_cwnd * mss);
|
|
}
|
|
|
|
/* Set the clamp no higher than max representable value */
|
|
(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
|
|
}
|
|
EXPORT_SYMBOL(tcp_select_initial_window);
|
|
|
|
/* Chose a new window to advertise, update state in tcp_sock for the
|
|
* socket, and return result with RFC1323 scaling applied. The return
|
|
* value can be stuffed directly into th->window for an outgoing
|
|
* frame.
|
|
*/
|
|
static u16 tcp_select_window(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 cur_win = tcp_receive_window(tp);
|
|
u32 new_win = __tcp_select_window(sk);
|
|
|
|
/* Never shrink the offered window */
|
|
if (new_win < cur_win) {
|
|
/* Danger Will Robinson!
|
|
* Don't update rcv_wup/rcv_wnd here or else
|
|
* we will not be able to advertise a zero
|
|
* window in time. --DaveM
|
|
*
|
|
* Relax Will Robinson.
|
|
*/
|
|
new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
|
|
}
|
|
tp->rcv_wnd = new_win;
|
|
tp->rcv_wup = tp->rcv_nxt;
|
|
|
|
/* Make sure we do not exceed the maximum possible
|
|
* scaled window.
|
|
*/
|
|
if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
|
|
new_win = min(new_win, MAX_TCP_WINDOW);
|
|
else
|
|
new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
|
|
|
|
/* RFC1323 scaling applied */
|
|
new_win >>= tp->rx_opt.rcv_wscale;
|
|
|
|
/* If we advertise zero window, disable fast path. */
|
|
if (new_win == 0)
|
|
tp->pred_flags = 0;
|
|
|
|
return new_win;
|
|
}
|
|
|
|
/* Packet ECN state for a SYN-ACK */
|
|
static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
|
|
{
|
|
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
|
|
if (!(tp->ecn_flags & TCP_ECN_OK))
|
|
TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
|
|
}
|
|
|
|
/* Packet ECN state for a SYN. */
|
|
static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
tp->ecn_flags = 0;
|
|
if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
|
|
TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
|
|
tp->ecn_flags = TCP_ECN_OK;
|
|
}
|
|
}
|
|
|
|
static __inline__ void
|
|
TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
|
|
{
|
|
if (inet_rsk(req)->ecn_ok)
|
|
th->ece = 1;
|
|
}
|
|
|
|
/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
|
|
* be sent.
|
|
*/
|
|
static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
|
|
int tcp_header_len)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (tp->ecn_flags & TCP_ECN_OK) {
|
|
/* Not-retransmitted data segment: set ECT and inject CWR. */
|
|
if (skb->len != tcp_header_len &&
|
|
!before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
|
|
INET_ECN_xmit(sk);
|
|
if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
|
|
tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
|
|
tcp_hdr(skb)->cwr = 1;
|
|
skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
|
|
}
|
|
} else {
|
|
/* ACK or retransmitted segment: clear ECT|CE */
|
|
INET_ECN_dontxmit(sk);
|
|
}
|
|
if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
|
|
tcp_hdr(skb)->ece = 1;
|
|
}
|
|
}
|
|
|
|
/* Constructs common control bits of non-data skb. If SYN/FIN is present,
|
|
* auto increment end seqno.
|
|
*/
|
|
static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
|
|
{
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
skb->csum = 0;
|
|
|
|
TCP_SKB_CB(skb)->tcp_flags = flags;
|
|
TCP_SKB_CB(skb)->sacked = 0;
|
|
|
|
skb_shinfo(skb)->gso_segs = 1;
|
|
skb_shinfo(skb)->gso_size = 0;
|
|
skb_shinfo(skb)->gso_type = 0;
|
|
|
|
TCP_SKB_CB(skb)->seq = seq;
|
|
if (flags & (TCPHDR_SYN | TCPHDR_FIN))
|
|
seq++;
|
|
TCP_SKB_CB(skb)->end_seq = seq;
|
|
}
|
|
|
|
static inline bool tcp_urg_mode(const struct tcp_sock *tp)
|
|
{
|
|
return tp->snd_una != tp->snd_up;
|
|
}
|
|
|
|
#define OPTION_SACK_ADVERTISE (1 << 0)
|
|
#define OPTION_TS (1 << 1)
|
|
#define OPTION_MD5 (1 << 2)
|
|
#define OPTION_WSCALE (1 << 3)
|
|
#define OPTION_COOKIE_EXTENSION (1 << 4)
|
|
#define OPTION_FAST_OPEN_COOKIE (1 << 8)
|
|
|
|
struct tcp_out_options {
|
|
u16 options; /* bit field of OPTION_* */
|
|
u16 mss; /* 0 to disable */
|
|
u8 ws; /* window scale, 0 to disable */
|
|
u8 num_sack_blocks; /* number of SACK blocks to include */
|
|
u8 hash_size; /* bytes in hash_location */
|
|
__u8 *hash_location; /* temporary pointer, overloaded */
|
|
__u32 tsval, tsecr; /* need to include OPTION_TS */
|
|
struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
|
|
};
|
|
|
|
/* The sysctl int routines are generic, so check consistency here.
|
|
*/
|
|
static u8 tcp_cookie_size_check(u8 desired)
|
|
{
|
|
int cookie_size;
|
|
|
|
if (desired > 0)
|
|
/* previously specified */
|
|
return desired;
|
|
|
|
cookie_size = ACCESS_ONCE(sysctl_tcp_cookie_size);
|
|
if (cookie_size <= 0)
|
|
/* no default specified */
|
|
return 0;
|
|
|
|
if (cookie_size <= TCP_COOKIE_MIN)
|
|
/* value too small, specify minimum */
|
|
return TCP_COOKIE_MIN;
|
|
|
|
if (cookie_size >= TCP_COOKIE_MAX)
|
|
/* value too large, specify maximum */
|
|
return TCP_COOKIE_MAX;
|
|
|
|
if (cookie_size & 1)
|
|
/* 8-bit multiple, illegal, fix it */
|
|
cookie_size++;
|
|
|
|
return (u8)cookie_size;
|
|
}
|
|
|
|
/* Write previously computed TCP options to the packet.
|
|
*
|
|
* Beware: Something in the Internet is very sensitive to the ordering of
|
|
* TCP options, we learned this through the hard way, so be careful here.
|
|
* Luckily we can at least blame others for their non-compliance but from
|
|
* inter-operatibility perspective it seems that we're somewhat stuck with
|
|
* the ordering which we have been using if we want to keep working with
|
|
* those broken things (not that it currently hurts anybody as there isn't
|
|
* particular reason why the ordering would need to be changed).
|
|
*
|
|
* At least SACK_PERM as the first option is known to lead to a disaster
|
|
* (but it may well be that other scenarios fail similarly).
|
|
*/
|
|
static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
|
|
struct tcp_out_options *opts)
|
|
{
|
|
u16 options = opts->options; /* mungable copy */
|
|
|
|
/* Having both authentication and cookies for security is redundant,
|
|
* and there's certainly not enough room. Instead, the cookie-less
|
|
* extension variant is proposed.
|
|
*
|
|
* Consider the pessimal case with authentication. The options
|
|
* could look like:
|
|
* COOKIE|MD5(20) + MSS(4) + SACK|TS(12) + WSCALE(4) == 40
|
|
*/
|
|
if (unlikely(OPTION_MD5 & options)) {
|
|
if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
|
|
*ptr++ = htonl((TCPOPT_COOKIE << 24) |
|
|
(TCPOLEN_COOKIE_BASE << 16) |
|
|
(TCPOPT_MD5SIG << 8) |
|
|
TCPOLEN_MD5SIG);
|
|
} else {
|
|
*ptr++ = htonl((TCPOPT_NOP << 24) |
|
|
(TCPOPT_NOP << 16) |
|
|
(TCPOPT_MD5SIG << 8) |
|
|
TCPOLEN_MD5SIG);
|
|
}
|
|
options &= ~OPTION_COOKIE_EXTENSION;
|
|
/* overload cookie hash location */
|
|
opts->hash_location = (__u8 *)ptr;
|
|
ptr += 4;
|
|
}
|
|
|
|
if (unlikely(opts->mss)) {
|
|
*ptr++ = htonl((TCPOPT_MSS << 24) |
|
|
(TCPOLEN_MSS << 16) |
|
|
opts->mss);
|
|
}
|
|
|
|
if (likely(OPTION_TS & options)) {
|
|
if (unlikely(OPTION_SACK_ADVERTISE & options)) {
|
|
*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
|
|
(TCPOLEN_SACK_PERM << 16) |
|
|
(TCPOPT_TIMESTAMP << 8) |
|
|
TCPOLEN_TIMESTAMP);
|
|
options &= ~OPTION_SACK_ADVERTISE;
|
|
} else {
|
|
*ptr++ = htonl((TCPOPT_NOP << 24) |
|
|
(TCPOPT_NOP << 16) |
|
|
(TCPOPT_TIMESTAMP << 8) |
|
|
TCPOLEN_TIMESTAMP);
|
|
}
|
|
*ptr++ = htonl(opts->tsval);
|
|
*ptr++ = htonl(opts->tsecr);
|
|
}
|
|
|
|
/* Specification requires after timestamp, so do it now.
|
|
*
|
|
* Consider the pessimal case without authentication. The options
|
|
* could look like:
|
|
* MSS(4) + SACK|TS(12) + COOKIE(20) + WSCALE(4) == 40
|
|
*/
|
|
if (unlikely(OPTION_COOKIE_EXTENSION & options)) {
|
|
__u8 *cookie_copy = opts->hash_location;
|
|
u8 cookie_size = opts->hash_size;
|
|
|
|
/* 8-bit multiple handled in tcp_cookie_size_check() above,
|
|
* and elsewhere.
|
|
*/
|
|
if (0x2 & cookie_size) {
|
|
__u8 *p = (__u8 *)ptr;
|
|
|
|
/* 16-bit multiple */
|
|
*p++ = TCPOPT_COOKIE;
|
|
*p++ = TCPOLEN_COOKIE_BASE + cookie_size;
|
|
*p++ = *cookie_copy++;
|
|
*p++ = *cookie_copy++;
|
|
ptr++;
|
|
cookie_size -= 2;
|
|
} else {
|
|
/* 32-bit multiple */
|
|
*ptr++ = htonl(((TCPOPT_NOP << 24) |
|
|
(TCPOPT_NOP << 16) |
|
|
(TCPOPT_COOKIE << 8) |
|
|
TCPOLEN_COOKIE_BASE) +
|
|
cookie_size);
|
|
}
|
|
|
|
if (cookie_size > 0) {
|
|
memcpy(ptr, cookie_copy, cookie_size);
|
|
ptr += (cookie_size / 4);
|
|
}
|
|
}
|
|
|
|
if (unlikely(OPTION_SACK_ADVERTISE & options)) {
|
|
*ptr++ = htonl((TCPOPT_NOP << 24) |
|
|
(TCPOPT_NOP << 16) |
|
|
(TCPOPT_SACK_PERM << 8) |
|
|
TCPOLEN_SACK_PERM);
|
|
}
|
|
|
|
if (unlikely(OPTION_WSCALE & options)) {
|
|
*ptr++ = htonl((TCPOPT_NOP << 24) |
|
|
(TCPOPT_WINDOW << 16) |
|
|
(TCPOLEN_WINDOW << 8) |
|
|
opts->ws);
|
|
}
|
|
|
|
if (unlikely(opts->num_sack_blocks)) {
|
|
struct tcp_sack_block *sp = tp->rx_opt.dsack ?
|
|
tp->duplicate_sack : tp->selective_acks;
|
|
int this_sack;
|
|
|
|
*ptr++ = htonl((TCPOPT_NOP << 24) |
|
|
(TCPOPT_NOP << 16) |
|
|
(TCPOPT_SACK << 8) |
|
|
(TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
|
|
TCPOLEN_SACK_PERBLOCK)));
|
|
|
|
for (this_sack = 0; this_sack < opts->num_sack_blocks;
|
|
++this_sack) {
|
|
*ptr++ = htonl(sp[this_sack].start_seq);
|
|
*ptr++ = htonl(sp[this_sack].end_seq);
|
|
}
|
|
|
|
tp->rx_opt.dsack = 0;
|
|
}
|
|
|
|
if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
|
|
struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
|
|
|
|
*ptr++ = htonl((TCPOPT_EXP << 24) |
|
|
((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
|
|
TCPOPT_FASTOPEN_MAGIC);
|
|
|
|
memcpy(ptr, foc->val, foc->len);
|
|
if ((foc->len & 3) == 2) {
|
|
u8 *align = ((u8 *)ptr) + foc->len;
|
|
align[0] = align[1] = TCPOPT_NOP;
|
|
}
|
|
ptr += (foc->len + 3) >> 2;
|
|
}
|
|
}
|
|
|
|
/* Compute TCP options for SYN packets. This is not the final
|
|
* network wire format yet.
|
|
*/
|
|
static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
|
|
struct tcp_out_options *opts,
|
|
struct tcp_md5sig_key **md5)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct tcp_cookie_values *cvp = tp->cookie_values;
|
|
unsigned int remaining = MAX_TCP_OPTION_SPACE;
|
|
u8 cookie_size = (!tp->rx_opt.cookie_out_never && cvp != NULL) ?
|
|
tcp_cookie_size_check(cvp->cookie_desired) :
|
|
0;
|
|
struct tcp_fastopen_request *fastopen = tp->fastopen_req;
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
*md5 = tp->af_specific->md5_lookup(sk, sk);
|
|
if (*md5) {
|
|
opts->options |= OPTION_MD5;
|
|
remaining -= TCPOLEN_MD5SIG_ALIGNED;
|
|
}
|
|
#else
|
|
*md5 = NULL;
|
|
#endif
|
|
|
|
/* We always get an MSS option. The option bytes which will be seen in
|
|
* normal data packets should timestamps be used, must be in the MSS
|
|
* advertised. But we subtract them from tp->mss_cache so that
|
|
* calculations in tcp_sendmsg are simpler etc. So account for this
|
|
* fact here if necessary. If we don't do this correctly, as a
|
|
* receiver we won't recognize data packets as being full sized when we
|
|
* should, and thus we won't abide by the delayed ACK rules correctly.
|
|
* SACKs don't matter, we never delay an ACK when we have any of those
|
|
* going out. */
|
|
opts->mss = tcp_advertise_mss(sk);
|
|
remaining -= TCPOLEN_MSS_ALIGNED;
|
|
|
|
if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
|
|
opts->options |= OPTION_TS;
|
|
opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
|
|
opts->tsecr = tp->rx_opt.ts_recent;
|
|
remaining -= TCPOLEN_TSTAMP_ALIGNED;
|
|
}
|
|
if (likely(sysctl_tcp_window_scaling)) {
|
|
opts->ws = tp->rx_opt.rcv_wscale;
|
|
opts->options |= OPTION_WSCALE;
|
|
remaining -= TCPOLEN_WSCALE_ALIGNED;
|
|
}
|
|
if (likely(sysctl_tcp_sack)) {
|
|
opts->options |= OPTION_SACK_ADVERTISE;
|
|
if (unlikely(!(OPTION_TS & opts->options)))
|
|
remaining -= TCPOLEN_SACKPERM_ALIGNED;
|
|
}
|
|
|
|
if (fastopen && fastopen->cookie.len >= 0) {
|
|
u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
|
|
need = (need + 3) & ~3U; /* Align to 32 bits */
|
|
if (remaining >= need) {
|
|
opts->options |= OPTION_FAST_OPEN_COOKIE;
|
|
opts->fastopen_cookie = &fastopen->cookie;
|
|
remaining -= need;
|
|
tp->syn_fastopen = 1;
|
|
}
|
|
}
|
|
/* Note that timestamps are required by the specification.
|
|
*
|
|
* Odd numbers of bytes are prohibited by the specification, ensuring
|
|
* that the cookie is 16-bit aligned, and the resulting cookie pair is
|
|
* 32-bit aligned.
|
|
*/
|
|
if (*md5 == NULL &&
|
|
(OPTION_TS & opts->options) &&
|
|
cookie_size > 0) {
|
|
int need = TCPOLEN_COOKIE_BASE + cookie_size;
|
|
|
|
if (0x2 & need) {
|
|
/* 32-bit multiple */
|
|
need += 2; /* NOPs */
|
|
|
|
if (need > remaining) {
|
|
/* try shrinking cookie to fit */
|
|
cookie_size -= 2;
|
|
need -= 4;
|
|
}
|
|
}
|
|
while (need > remaining && TCP_COOKIE_MIN <= cookie_size) {
|
|
cookie_size -= 4;
|
|
need -= 4;
|
|
}
|
|
if (TCP_COOKIE_MIN <= cookie_size) {
|
|
opts->options |= OPTION_COOKIE_EXTENSION;
|
|
opts->hash_location = (__u8 *)&cvp->cookie_pair[0];
|
|
opts->hash_size = cookie_size;
|
|
|
|
/* Remember for future incarnations. */
|
|
cvp->cookie_desired = cookie_size;
|
|
|
|
if (cvp->cookie_desired != cvp->cookie_pair_size) {
|
|
/* Currently use random bytes as a nonce,
|
|
* assuming these are completely unpredictable
|
|
* by hostile users of the same system.
|
|
*/
|
|
get_random_bytes(&cvp->cookie_pair[0],
|
|
cookie_size);
|
|
cvp->cookie_pair_size = cookie_size;
|
|
}
|
|
|
|
remaining -= need;
|
|
}
|
|
}
|
|
return MAX_TCP_OPTION_SPACE - remaining;
|
|
}
|
|
|
|
/* Set up TCP options for SYN-ACKs. */
|
|
static unsigned int tcp_synack_options(struct sock *sk,
|
|
struct request_sock *req,
|
|
unsigned int mss, struct sk_buff *skb,
|
|
struct tcp_out_options *opts,
|
|
struct tcp_md5sig_key **md5,
|
|
struct tcp_extend_values *xvp,
|
|
struct tcp_fastopen_cookie *foc)
|
|
{
|
|
struct inet_request_sock *ireq = inet_rsk(req);
|
|
unsigned int remaining = MAX_TCP_OPTION_SPACE;
|
|
u8 cookie_plus = (xvp != NULL && !xvp->cookie_out_never) ?
|
|
xvp->cookie_plus :
|
|
0;
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
|
|
if (*md5) {
|
|
opts->options |= OPTION_MD5;
|
|
remaining -= TCPOLEN_MD5SIG_ALIGNED;
|
|
|
|
/* We can't fit any SACK blocks in a packet with MD5 + TS
|
|
* options. There was discussion about disabling SACK
|
|
* rather than TS in order to fit in better with old,
|
|
* buggy kernels, but that was deemed to be unnecessary.
|
|
*/
|
|
ireq->tstamp_ok &= !ireq->sack_ok;
|
|
}
|
|
#else
|
|
*md5 = NULL;
|
|
#endif
|
|
|
|
/* We always send an MSS option. */
|
|
opts->mss = mss;
|
|
remaining -= TCPOLEN_MSS_ALIGNED;
|
|
|
|
if (likely(ireq->wscale_ok)) {
|
|
opts->ws = ireq->rcv_wscale;
|
|
opts->options |= OPTION_WSCALE;
|
|
remaining -= TCPOLEN_WSCALE_ALIGNED;
|
|
}
|
|
if (likely(ireq->tstamp_ok)) {
|
|
opts->options |= OPTION_TS;
|
|
opts->tsval = TCP_SKB_CB(skb)->when;
|
|
opts->tsecr = req->ts_recent;
|
|
remaining -= TCPOLEN_TSTAMP_ALIGNED;
|
|
}
|
|
if (likely(ireq->sack_ok)) {
|
|
opts->options |= OPTION_SACK_ADVERTISE;
|
|
if (unlikely(!ireq->tstamp_ok))
|
|
remaining -= TCPOLEN_SACKPERM_ALIGNED;
|
|
}
|
|
if (foc != NULL) {
|
|
u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
|
|
need = (need + 3) & ~3U; /* Align to 32 bits */
|
|
if (remaining >= need) {
|
|
opts->options |= OPTION_FAST_OPEN_COOKIE;
|
|
opts->fastopen_cookie = foc;
|
|
remaining -= need;
|
|
}
|
|
}
|
|
/* Similar rationale to tcp_syn_options() applies here, too.
|
|
* If the <SYN> options fit, the same options should fit now!
|
|
*/
|
|
if (*md5 == NULL &&
|
|
ireq->tstamp_ok &&
|
|
cookie_plus > TCPOLEN_COOKIE_BASE) {
|
|
int need = cookie_plus; /* has TCPOLEN_COOKIE_BASE */
|
|
|
|
if (0x2 & need) {
|
|
/* 32-bit multiple */
|
|
need += 2; /* NOPs */
|
|
}
|
|
if (need <= remaining) {
|
|
opts->options |= OPTION_COOKIE_EXTENSION;
|
|
opts->hash_size = cookie_plus - TCPOLEN_COOKIE_BASE;
|
|
remaining -= need;
|
|
} else {
|
|
/* There's no error return, so flag it. */
|
|
xvp->cookie_out_never = 1; /* true */
|
|
opts->hash_size = 0;
|
|
}
|
|
}
|
|
return MAX_TCP_OPTION_SPACE - remaining;
|
|
}
|
|
|
|
/* Compute TCP options for ESTABLISHED sockets. This is not the
|
|
* final wire format yet.
|
|
*/
|
|
static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
|
|
struct tcp_out_options *opts,
|
|
struct tcp_md5sig_key **md5)
|
|
{
|
|
struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
unsigned int size = 0;
|
|
unsigned int eff_sacks;
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
*md5 = tp->af_specific->md5_lookup(sk, sk);
|
|
if (unlikely(*md5)) {
|
|
opts->options |= OPTION_MD5;
|
|
size += TCPOLEN_MD5SIG_ALIGNED;
|
|
}
|
|
#else
|
|
*md5 = NULL;
|
|
#endif
|
|
|
|
if (likely(tp->rx_opt.tstamp_ok)) {
|
|
opts->options |= OPTION_TS;
|
|
opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
|
|
opts->tsecr = tp->rx_opt.ts_recent;
|
|
size += TCPOLEN_TSTAMP_ALIGNED;
|
|
}
|
|
|
|
eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
|
|
if (unlikely(eff_sacks)) {
|
|
const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
|
|
opts->num_sack_blocks =
|
|
min_t(unsigned int, eff_sacks,
|
|
(remaining - TCPOLEN_SACK_BASE_ALIGNED) /
|
|
TCPOLEN_SACK_PERBLOCK);
|
|
size += TCPOLEN_SACK_BASE_ALIGNED +
|
|
opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
|
|
/* TCP SMALL QUEUES (TSQ)
|
|
*
|
|
* TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
|
|
* to reduce RTT and bufferbloat.
|
|
* We do this using a special skb destructor (tcp_wfree).
|
|
*
|
|
* Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
|
|
* needs to be reallocated in a driver.
|
|
* The invariant being skb->truesize substracted from sk->sk_wmem_alloc
|
|
*
|
|
* Since transmit from skb destructor is forbidden, we use a tasklet
|
|
* to process all sockets that eventually need to send more skbs.
|
|
* We use one tasklet per cpu, with its own queue of sockets.
|
|
*/
|
|
struct tsq_tasklet {
|
|
struct tasklet_struct tasklet;
|
|
struct list_head head; /* queue of tcp sockets */
|
|
};
|
|
static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
|
|
|
|
static void tcp_tsq_handler(struct sock *sk)
|
|
{
|
|
if ((1 << sk->sk_state) &
|
|
(TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
|
|
TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
|
|
tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
|
|
}
|
|
/*
|
|
* One tasklest per cpu tries to send more skbs.
|
|
* We run in tasklet context but need to disable irqs when
|
|
* transfering tsq->head because tcp_wfree() might
|
|
* interrupt us (non NAPI drivers)
|
|
*/
|
|
static void tcp_tasklet_func(unsigned long data)
|
|
{
|
|
struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
|
|
LIST_HEAD(list);
|
|
unsigned long flags;
|
|
struct list_head *q, *n;
|
|
struct tcp_sock *tp;
|
|
struct sock *sk;
|
|
|
|
local_irq_save(flags);
|
|
list_splice_init(&tsq->head, &list);
|
|
local_irq_restore(flags);
|
|
|
|
list_for_each_safe(q, n, &list) {
|
|
tp = list_entry(q, struct tcp_sock, tsq_node);
|
|
list_del(&tp->tsq_node);
|
|
|
|
sk = (struct sock *)tp;
|
|
bh_lock_sock(sk);
|
|
|
|
if (!sock_owned_by_user(sk)) {
|
|
tcp_tsq_handler(sk);
|
|
} else {
|
|
/* defer the work to tcp_release_cb() */
|
|
set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
|
|
}
|
|
bh_unlock_sock(sk);
|
|
|
|
clear_bit(TSQ_QUEUED, &tp->tsq_flags);
|
|
sk_free(sk);
|
|
}
|
|
}
|
|
|
|
#define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
|
|
(1UL << TCP_WRITE_TIMER_DEFERRED) | \
|
|
(1UL << TCP_DELACK_TIMER_DEFERRED) | \
|
|
(1UL << TCP_MTU_REDUCED_DEFERRED))
|
|
/**
|
|
* tcp_release_cb - tcp release_sock() callback
|
|
* @sk: socket
|
|
*
|
|
* called from release_sock() to perform protocol dependent
|
|
* actions before socket release.
|
|
*/
|
|
void tcp_release_cb(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
unsigned long flags, nflags;
|
|
|
|
/* perform an atomic operation only if at least one flag is set */
|
|
do {
|
|
flags = tp->tsq_flags;
|
|
if (!(flags & TCP_DEFERRED_ALL))
|
|
return;
|
|
nflags = flags & ~TCP_DEFERRED_ALL;
|
|
} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
|
|
|
|
if (flags & (1UL << TCP_TSQ_DEFERRED))
|
|
tcp_tsq_handler(sk);
|
|
|
|
if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
|
|
tcp_write_timer_handler(sk);
|
|
__sock_put(sk);
|
|
}
|
|
if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
|
|
tcp_delack_timer_handler(sk);
|
|
__sock_put(sk);
|
|
}
|
|
if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
|
|
sk->sk_prot->mtu_reduced(sk);
|
|
__sock_put(sk);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(tcp_release_cb);
|
|
|
|
void __init tcp_tasklet_init(void)
|
|
{
|
|
int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
|
|
|
|
INIT_LIST_HEAD(&tsq->head);
|
|
tasklet_init(&tsq->tasklet,
|
|
tcp_tasklet_func,
|
|
(unsigned long)tsq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write buffer destructor automatically called from kfree_skb.
|
|
* We cant xmit new skbs from this context, as we might already
|
|
* hold qdisc lock.
|
|
*/
|
|
static void tcp_wfree(struct sk_buff *skb)
|
|
{
|
|
struct sock *sk = skb->sk;
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
|
|
!test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
|
|
unsigned long flags;
|
|
struct tsq_tasklet *tsq;
|
|
|
|
/* Keep a ref on socket.
|
|
* This last ref will be released in tcp_tasklet_func()
|
|
*/
|
|
atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
|
|
|
|
/* queue this socket to tasklet queue */
|
|
local_irq_save(flags);
|
|
tsq = &__get_cpu_var(tsq_tasklet);
|
|
list_add(&tp->tsq_node, &tsq->head);
|
|
tasklet_schedule(&tsq->tasklet);
|
|
local_irq_restore(flags);
|
|
} else {
|
|
sock_wfree(skb);
|
|
}
|
|
}
|
|
|
|
/* This routine actually transmits TCP packets queued in by
|
|
* tcp_do_sendmsg(). This is used by both the initial
|
|
* transmission and possible later retransmissions.
|
|
* All SKB's seen here are completely headerless. It is our
|
|
* job to build the TCP header, and pass the packet down to
|
|
* IP so it can do the same plus pass the packet off to the
|
|
* device.
|
|
*
|
|
* We are working here with either a clone of the original
|
|
* SKB, or a fresh unique copy made by the retransmit engine.
|
|
*/
|
|
static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
|
|
gfp_t gfp_mask)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct inet_sock *inet;
|
|
struct tcp_sock *tp;
|
|
struct tcp_skb_cb *tcb;
|
|
struct tcp_out_options opts;
|
|
unsigned int tcp_options_size, tcp_header_size;
|
|
struct tcp_md5sig_key *md5;
|
|
struct tcphdr *th;
|
|
int err;
|
|
|
|
BUG_ON(!skb || !tcp_skb_pcount(skb));
|
|
|
|
/* If congestion control is doing timestamping, we must
|
|
* take such a timestamp before we potentially clone/copy.
|
|
*/
|
|
if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
|
|
__net_timestamp(skb);
|
|
|
|
if (likely(clone_it)) {
|
|
if (unlikely(skb_cloned(skb)))
|
|
skb = pskb_copy(skb, gfp_mask);
|
|
else
|
|
skb = skb_clone(skb, gfp_mask);
|
|
if (unlikely(!skb))
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
inet = inet_sk(sk);
|
|
tp = tcp_sk(sk);
|
|
tcb = TCP_SKB_CB(skb);
|
|
memset(&opts, 0, sizeof(opts));
|
|
|
|
if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
|
|
tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
|
|
else
|
|
tcp_options_size = tcp_established_options(sk, skb, &opts,
|
|
&md5);
|
|
tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
|
|
|
|
if (tcp_packets_in_flight(tp) == 0) {
|
|
tcp_ca_event(sk, CA_EVENT_TX_START);
|
|
skb->ooo_okay = 1;
|
|
} else
|
|
skb->ooo_okay = 0;
|
|
|
|
skb_push(skb, tcp_header_size);
|
|
skb_reset_transport_header(skb);
|
|
|
|
skb_orphan(skb);
|
|
skb->sk = sk;
|
|
skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
|
|
tcp_wfree : sock_wfree;
|
|
atomic_add(skb->truesize, &sk->sk_wmem_alloc);
|
|
|
|
/* Build TCP header and checksum it. */
|
|
th = tcp_hdr(skb);
|
|
th->source = inet->inet_sport;
|
|
th->dest = inet->inet_dport;
|
|
th->seq = htonl(tcb->seq);
|
|
th->ack_seq = htonl(tp->rcv_nxt);
|
|
*(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
|
|
tcb->tcp_flags);
|
|
|
|
if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
|
|
/* RFC1323: The window in SYN & SYN/ACK segments
|
|
* is never scaled.
|
|
*/
|
|
th->window = htons(min(tp->rcv_wnd, 65535U));
|
|
} else {
|
|
th->window = htons(tcp_select_window(sk));
|
|
}
|
|
th->check = 0;
|
|
th->urg_ptr = 0;
|
|
|
|
/* The urg_mode check is necessary during a below snd_una win probe */
|
|
if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
|
|
if (before(tp->snd_up, tcb->seq + 0x10000)) {
|
|
th->urg_ptr = htons(tp->snd_up - tcb->seq);
|
|
th->urg = 1;
|
|
} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
|
|
th->urg_ptr = htons(0xFFFF);
|
|
th->urg = 1;
|
|
}
|
|
}
|
|
|
|
tcp_options_write((__be32 *)(th + 1), tp, &opts);
|
|
if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
|
|
TCP_ECN_send(sk, skb, tcp_header_size);
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
/* Calculate the MD5 hash, as we have all we need now */
|
|
if (md5) {
|
|
sk_nocaps_add(sk, NETIF_F_GSO_MASK);
|
|
tp->af_specific->calc_md5_hash(opts.hash_location,
|
|
md5, sk, NULL, skb);
|
|
}
|
|
#endif
|
|
|
|
icsk->icsk_af_ops->send_check(sk, skb);
|
|
|
|
if (likely(tcb->tcp_flags & TCPHDR_ACK))
|
|
tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
|
|
|
|
if (skb->len != tcp_header_size)
|
|
tcp_event_data_sent(tp, sk);
|
|
|
|
if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
|
|
TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
|
|
tcp_skb_pcount(skb));
|
|
|
|
err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
|
|
if (likely(err <= 0))
|
|
return err;
|
|
|
|
tcp_enter_cwr(sk, 1);
|
|
|
|
return net_xmit_eval(err);
|
|
}
|
|
|
|
/* This routine just queues the buffer for sending.
|
|
*
|
|
* NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
|
|
* otherwise socket can stall.
|
|
*/
|
|
static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
/* Advance write_seq and place onto the write_queue. */
|
|
tp->write_seq = TCP_SKB_CB(skb)->end_seq;
|
|
skb_header_release(skb);
|
|
tcp_add_write_queue_tail(sk, skb);
|
|
sk->sk_wmem_queued += skb->truesize;
|
|
sk_mem_charge(sk, skb->truesize);
|
|
}
|
|
|
|
/* Initialize TSO segments for a packet. */
|
|
static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
|
|
unsigned int mss_now)
|
|
{
|
|
if (skb->len <= mss_now || !sk_can_gso(sk) ||
|
|
skb->ip_summed == CHECKSUM_NONE) {
|
|
/* Avoid the costly divide in the normal
|
|
* non-TSO case.
|
|
*/
|
|
skb_shinfo(skb)->gso_segs = 1;
|
|
skb_shinfo(skb)->gso_size = 0;
|
|
skb_shinfo(skb)->gso_type = 0;
|
|
} else {
|
|
skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
|
|
skb_shinfo(skb)->gso_size = mss_now;
|
|
skb_shinfo(skb)->gso_type = sk->sk_gso_type;
|
|
}
|
|
}
|
|
|
|
/* When a modification to fackets out becomes necessary, we need to check
|
|
* skb is counted to fackets_out or not.
|
|
*/
|
|
static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
|
|
int decr)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (!tp->sacked_out || tcp_is_reno(tp))
|
|
return;
|
|
|
|
if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
|
|
tp->fackets_out -= decr;
|
|
}
|
|
|
|
/* Pcount in the middle of the write queue got changed, we need to do various
|
|
* tweaks to fix counters
|
|
*/
|
|
static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
tp->packets_out -= decr;
|
|
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
|
|
tp->sacked_out -= decr;
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
|
|
tp->retrans_out -= decr;
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
|
|
tp->lost_out -= decr;
|
|
|
|
/* Reno case is special. Sigh... */
|
|
if (tcp_is_reno(tp) && decr > 0)
|
|
tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
|
|
|
|
tcp_adjust_fackets_out(sk, skb, decr);
|
|
|
|
if (tp->lost_skb_hint &&
|
|
before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
|
|
(tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
|
|
tp->lost_cnt_hint -= decr;
|
|
|
|
tcp_verify_left_out(tp);
|
|
}
|
|
|
|
/* Function to create two new TCP segments. Shrinks the given segment
|
|
* to the specified size and appends a new segment with the rest of the
|
|
* packet to the list. This won't be called frequently, I hope.
|
|
* Remember, these are still headerless SKBs at this point.
|
|
*/
|
|
int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
|
|
unsigned int mss_now)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *buff;
|
|
int nsize, old_factor;
|
|
int nlen;
|
|
u8 flags;
|
|
|
|
if (WARN_ON(len > skb->len))
|
|
return -EINVAL;
|
|
|
|
nsize = skb_headlen(skb) - len;
|
|
if (nsize < 0)
|
|
nsize = 0;
|
|
|
|
if (skb_cloned(skb) &&
|
|
skb_is_nonlinear(skb) &&
|
|
pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
|
|
return -ENOMEM;
|
|
|
|
/* Get a new skb... force flag on. */
|
|
buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
|
|
if (buff == NULL)
|
|
return -ENOMEM; /* We'll just try again later. */
|
|
|
|
sk->sk_wmem_queued += buff->truesize;
|
|
sk_mem_charge(sk, buff->truesize);
|
|
nlen = skb->len - len - nsize;
|
|
buff->truesize += nlen;
|
|
skb->truesize -= nlen;
|
|
|
|
/* Correct the sequence numbers. */
|
|
TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
|
|
TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
|
|
TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
|
|
|
|
/* PSH and FIN should only be set in the second packet. */
|
|
flags = TCP_SKB_CB(skb)->tcp_flags;
|
|
TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
|
|
TCP_SKB_CB(buff)->tcp_flags = flags;
|
|
TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
|
|
|
|
if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
|
|
/* Copy and checksum data tail into the new buffer. */
|
|
buff->csum = csum_partial_copy_nocheck(skb->data + len,
|
|
skb_put(buff, nsize),
|
|
nsize, 0);
|
|
|
|
skb_trim(skb, len);
|
|
|
|
skb->csum = csum_block_sub(skb->csum, buff->csum, len);
|
|
} else {
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
skb_split(skb, buff, len);
|
|
}
|
|
|
|
buff->ip_summed = skb->ip_summed;
|
|
|
|
/* Looks stupid, but our code really uses when of
|
|
* skbs, which it never sent before. --ANK
|
|
*/
|
|
TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
|
|
buff->tstamp = skb->tstamp;
|
|
|
|
old_factor = tcp_skb_pcount(skb);
|
|
|
|
/* Fix up tso_factor for both original and new SKB. */
|
|
tcp_set_skb_tso_segs(sk, skb, mss_now);
|
|
tcp_set_skb_tso_segs(sk, buff, mss_now);
|
|
|
|
/* If this packet has been sent out already, we must
|
|
* adjust the various packet counters.
|
|
*/
|
|
if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
|
|
int diff = old_factor - tcp_skb_pcount(skb) -
|
|
tcp_skb_pcount(buff);
|
|
|
|
if (diff)
|
|
tcp_adjust_pcount(sk, skb, diff);
|
|
}
|
|
|
|
/* Link BUFF into the send queue. */
|
|
skb_header_release(buff);
|
|
tcp_insert_write_queue_after(skb, buff, sk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
|
|
* eventually). The difference is that pulled data not copied, but
|
|
* immediately discarded.
|
|
*/
|
|
static void __pskb_trim_head(struct sk_buff *skb, int len)
|
|
{
|
|
int i, k, eat;
|
|
|
|
eat = min_t(int, len, skb_headlen(skb));
|
|
if (eat) {
|
|
__skb_pull(skb, eat);
|
|
skb->avail_size -= eat;
|
|
len -= eat;
|
|
if (!len)
|
|
return;
|
|
}
|
|
eat = len;
|
|
k = 0;
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
|
|
|
|
if (size <= eat) {
|
|
skb_frag_unref(skb, i);
|
|
eat -= size;
|
|
} else {
|
|
skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
|
|
if (eat) {
|
|
skb_shinfo(skb)->frags[k].page_offset += eat;
|
|
skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
|
|
eat = 0;
|
|
}
|
|
k++;
|
|
}
|
|
}
|
|
skb_shinfo(skb)->nr_frags = k;
|
|
|
|
skb_reset_tail_pointer(skb);
|
|
skb->data_len -= len;
|
|
skb->len = skb->data_len;
|
|
}
|
|
|
|
/* Remove acked data from a packet in the transmit queue. */
|
|
int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
|
|
{
|
|
if (skb_unclone(skb, GFP_ATOMIC))
|
|
return -ENOMEM;
|
|
|
|
__pskb_trim_head(skb, len);
|
|
|
|
TCP_SKB_CB(skb)->seq += len;
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
|
|
skb->truesize -= len;
|
|
sk->sk_wmem_queued -= len;
|
|
sk_mem_uncharge(sk, len);
|
|
sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
|
|
|
|
/* Any change of skb->len requires recalculation of tso factor. */
|
|
if (tcp_skb_pcount(skb) > 1)
|
|
tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Calculate MSS not accounting any TCP options. */
|
|
static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
int mss_now;
|
|
|
|
/* Calculate base mss without TCP options:
|
|
It is MMS_S - sizeof(tcphdr) of rfc1122
|
|
*/
|
|
mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
|
|
|
|
/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
|
|
if (icsk->icsk_af_ops->net_frag_header_len) {
|
|
const struct dst_entry *dst = __sk_dst_get(sk);
|
|
|
|
if (dst && dst_allfrag(dst))
|
|
mss_now -= icsk->icsk_af_ops->net_frag_header_len;
|
|
}
|
|
|
|
/* Clamp it (mss_clamp does not include tcp options) */
|
|
if (mss_now > tp->rx_opt.mss_clamp)
|
|
mss_now = tp->rx_opt.mss_clamp;
|
|
|
|
/* Now subtract optional transport overhead */
|
|
mss_now -= icsk->icsk_ext_hdr_len;
|
|
|
|
/* Then reserve room for full set of TCP options and 8 bytes of data */
|
|
if (mss_now < 48)
|
|
mss_now = 48;
|
|
return mss_now;
|
|
}
|
|
|
|
/* Calculate MSS. Not accounting for SACKs here. */
|
|
int tcp_mtu_to_mss(struct sock *sk, int pmtu)
|
|
{
|
|
/* Subtract TCP options size, not including SACKs */
|
|
return __tcp_mtu_to_mss(sk, pmtu) -
|
|
(tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
|
|
}
|
|
|
|
/* Inverse of above */
|
|
int tcp_mss_to_mtu(struct sock *sk, int mss)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
int mtu;
|
|
|
|
mtu = mss +
|
|
tp->tcp_header_len +
|
|
icsk->icsk_ext_hdr_len +
|
|
icsk->icsk_af_ops->net_header_len;
|
|
|
|
/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
|
|
if (icsk->icsk_af_ops->net_frag_header_len) {
|
|
const struct dst_entry *dst = __sk_dst_get(sk);
|
|
|
|
if (dst && dst_allfrag(dst))
|
|
mtu += icsk->icsk_af_ops->net_frag_header_len;
|
|
}
|
|
return mtu;
|
|
}
|
|
|
|
/* MTU probing init per socket */
|
|
void tcp_mtup_init(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
|
|
icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
|
|
icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
|
|
icsk->icsk_af_ops->net_header_len;
|
|
icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
|
|
icsk->icsk_mtup.probe_size = 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_mtup_init);
|
|
|
|
/* This function synchronize snd mss to current pmtu/exthdr set.
|
|
|
|
tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
|
|
for TCP options, but includes only bare TCP header.
|
|
|
|
tp->rx_opt.mss_clamp is mss negotiated at connection setup.
|
|
It is minimum of user_mss and mss received with SYN.
|
|
It also does not include TCP options.
|
|
|
|
inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
|
|
|
|
tp->mss_cache is current effective sending mss, including
|
|
all tcp options except for SACKs. It is evaluated,
|
|
taking into account current pmtu, but never exceeds
|
|
tp->rx_opt.mss_clamp.
|
|
|
|
NOTE1. rfc1122 clearly states that advertised MSS
|
|
DOES NOT include either tcp or ip options.
|
|
|
|
NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
|
|
are READ ONLY outside this function. --ANK (980731)
|
|
*/
|
|
unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
int mss_now;
|
|
|
|
if (icsk->icsk_mtup.search_high > pmtu)
|
|
icsk->icsk_mtup.search_high = pmtu;
|
|
|
|
mss_now = tcp_mtu_to_mss(sk, pmtu);
|
|
mss_now = tcp_bound_to_half_wnd(tp, mss_now);
|
|
|
|
/* And store cached results */
|
|
icsk->icsk_pmtu_cookie = pmtu;
|
|
if (icsk->icsk_mtup.enabled)
|
|
mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
|
|
tp->mss_cache = mss_now;
|
|
|
|
return mss_now;
|
|
}
|
|
EXPORT_SYMBOL(tcp_sync_mss);
|
|
|
|
/* Compute the current effective MSS, taking SACKs and IP options,
|
|
* and even PMTU discovery events into account.
|
|
*/
|
|
unsigned int tcp_current_mss(struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
const struct dst_entry *dst = __sk_dst_get(sk);
|
|
u32 mss_now;
|
|
unsigned int header_len;
|
|
struct tcp_out_options opts;
|
|
struct tcp_md5sig_key *md5;
|
|
|
|
mss_now = tp->mss_cache;
|
|
|
|
if (dst) {
|
|
u32 mtu = dst_mtu(dst);
|
|
if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
|
|
mss_now = tcp_sync_mss(sk, mtu);
|
|
}
|
|
|
|
header_len = tcp_established_options(sk, NULL, &opts, &md5) +
|
|
sizeof(struct tcphdr);
|
|
/* The mss_cache is sized based on tp->tcp_header_len, which assumes
|
|
* some common options. If this is an odd packet (because we have SACK
|
|
* blocks etc) then our calculated header_len will be different, and
|
|
* we have to adjust mss_now correspondingly */
|
|
if (header_len != tp->tcp_header_len) {
|
|
int delta = (int) header_len - tp->tcp_header_len;
|
|
mss_now -= delta;
|
|
}
|
|
|
|
return mss_now;
|
|
}
|
|
|
|
/* Congestion window validation. (RFC2861) */
|
|
static void tcp_cwnd_validate(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
if (tp->packets_out >= tp->snd_cwnd) {
|
|
/* Network is feed fully. */
|
|
tp->snd_cwnd_used = 0;
|
|
tp->snd_cwnd_stamp = tcp_time_stamp;
|
|
} else {
|
|
/* Network starves. */
|
|
if (tp->packets_out > tp->snd_cwnd_used)
|
|
tp->snd_cwnd_used = tp->packets_out;
|
|
|
|
if (sysctl_tcp_slow_start_after_idle &&
|
|
(s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
|
|
tcp_cwnd_application_limited(sk);
|
|
}
|
|
}
|
|
|
|
/* Returns the portion of skb which can be sent right away without
|
|
* introducing MSS oddities to segment boundaries. In rare cases where
|
|
* mss_now != mss_cache, we will request caller to create a small skb
|
|
* per input skb which could be mostly avoided here (if desired).
|
|
*
|
|
* We explicitly want to create a request for splitting write queue tail
|
|
* to a small skb for Nagle purposes while avoiding unnecessary modulos,
|
|
* thus all the complexity (cwnd_len is always MSS multiple which we
|
|
* return whenever allowed by the other factors). Basically we need the
|
|
* modulo only when the receiver window alone is the limiting factor or
|
|
* when we would be allowed to send the split-due-to-Nagle skb fully.
|
|
*/
|
|
static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
|
|
unsigned int mss_now, unsigned int max_segs)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
u32 needed, window, max_len;
|
|
|
|
window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
|
|
max_len = mss_now * max_segs;
|
|
|
|
if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
|
|
return max_len;
|
|
|
|
needed = min(skb->len, window);
|
|
|
|
if (max_len <= needed)
|
|
return max_len;
|
|
|
|
return needed - needed % mss_now;
|
|
}
|
|
|
|
/* Can at least one segment of SKB be sent right now, according to the
|
|
* congestion window rules? If so, return how many segments are allowed.
|
|
*/
|
|
static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
|
|
const struct sk_buff *skb)
|
|
{
|
|
u32 in_flight, cwnd;
|
|
|
|
/* Don't be strict about the congestion window for the final FIN. */
|
|
if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
|
|
tcp_skb_pcount(skb) == 1)
|
|
return 1;
|
|
|
|
in_flight = tcp_packets_in_flight(tp);
|
|
cwnd = tp->snd_cwnd;
|
|
if (in_flight < cwnd)
|
|
return (cwnd - in_flight);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize TSO state of a skb.
|
|
* This must be invoked the first time we consider transmitting
|
|
* SKB onto the wire.
|
|
*/
|
|
static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
|
|
unsigned int mss_now)
|
|
{
|
|
int tso_segs = tcp_skb_pcount(skb);
|
|
|
|
if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
|
|
tcp_set_skb_tso_segs(sk, skb, mss_now);
|
|
tso_segs = tcp_skb_pcount(skb);
|
|
}
|
|
return tso_segs;
|
|
}
|
|
|
|
/* Minshall's variant of the Nagle send check. */
|
|
static inline bool tcp_minshall_check(const struct tcp_sock *tp)
|
|
{
|
|
return after(tp->snd_sml, tp->snd_una) &&
|
|
!after(tp->snd_sml, tp->snd_nxt);
|
|
}
|
|
|
|
/* Return false, if packet can be sent now without violation Nagle's rules:
|
|
* 1. It is full sized.
|
|
* 2. Or it contains FIN. (already checked by caller)
|
|
* 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
|
|
* 4. Or TCP_CORK is not set, and all sent packets are ACKed.
|
|
* With Minshall's modification: all sent small packets are ACKed.
|
|
*/
|
|
static inline bool tcp_nagle_check(const struct tcp_sock *tp,
|
|
const struct sk_buff *skb,
|
|
unsigned int mss_now, int nonagle)
|
|
{
|
|
return skb->len < mss_now &&
|
|
((nonagle & TCP_NAGLE_CORK) ||
|
|
(!nonagle && tp->packets_out && tcp_minshall_check(tp)));
|
|
}
|
|
|
|
/* Return true if the Nagle test allows this packet to be
|
|
* sent now.
|
|
*/
|
|
static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
|
|
unsigned int cur_mss, int nonagle)
|
|
{
|
|
/* Nagle rule does not apply to frames, which sit in the middle of the
|
|
* write_queue (they have no chances to get new data).
|
|
*
|
|
* This is implemented in the callers, where they modify the 'nonagle'
|
|
* argument based upon the location of SKB in the send queue.
|
|
*/
|
|
if (nonagle & TCP_NAGLE_PUSH)
|
|
return true;
|
|
|
|
/* Don't use the nagle rule for urgent data (or for the final FIN).
|
|
* Nagle can be ignored during F-RTO too (see RFC4138).
|
|
*/
|
|
if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
|
|
(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
|
|
return true;
|
|
|
|
if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Does at least the first segment of SKB fit into the send window? */
|
|
static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
|
|
const struct sk_buff *skb,
|
|
unsigned int cur_mss)
|
|
{
|
|
u32 end_seq = TCP_SKB_CB(skb)->end_seq;
|
|
|
|
if (skb->len > cur_mss)
|
|
end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
|
|
|
|
return !after(end_seq, tcp_wnd_end(tp));
|
|
}
|
|
|
|
/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
|
|
* should be put on the wire right now. If so, it returns the number of
|
|
* packets allowed by the congestion window.
|
|
*/
|
|
static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
|
|
unsigned int cur_mss, int nonagle)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
unsigned int cwnd_quota;
|
|
|
|
tcp_init_tso_segs(sk, skb, cur_mss);
|
|
|
|
if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
|
|
return 0;
|
|
|
|
cwnd_quota = tcp_cwnd_test(tp, skb);
|
|
if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
|
|
cwnd_quota = 0;
|
|
|
|
return cwnd_quota;
|
|
}
|
|
|
|
/* Test if sending is allowed right now. */
|
|
bool tcp_may_send_now(struct sock *sk)
|
|
{
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb = tcp_send_head(sk);
|
|
|
|
return skb &&
|
|
tcp_snd_test(sk, skb, tcp_current_mss(sk),
|
|
(tcp_skb_is_last(sk, skb) ?
|
|
tp->nonagle : TCP_NAGLE_PUSH));
|
|
}
|
|
|
|
/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
|
|
* which is put after SKB on the list. It is very much like
|
|
* tcp_fragment() except that it may make several kinds of assumptions
|
|
* in order to speed up the splitting operation. In particular, we
|
|
* know that all the data is in scatter-gather pages, and that the
|
|
* packet has never been sent out before (and thus is not cloned).
|
|
*/
|
|
static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
|
|
unsigned int mss_now, gfp_t gfp)
|
|
{
|
|
struct sk_buff *buff;
|
|
int nlen = skb->len - len;
|
|
u8 flags;
|
|
|
|
/* All of a TSO frame must be composed of paged data. */
|
|
if (skb->len != skb->data_len)
|
|
return tcp_fragment(sk, skb, len, mss_now);
|
|
|
|
buff = sk_stream_alloc_skb(sk, 0, gfp);
|
|
if (unlikely(buff == NULL))
|
|
return -ENOMEM;
|
|
|
|
sk->sk_wmem_queued += buff->truesize;
|
|
sk_mem_charge(sk, buff->truesize);
|
|
buff->truesize += nlen;
|
|
skb->truesize -= nlen;
|
|
|
|
/* Correct the sequence numbers. */
|
|
TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
|
|
TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
|
|
TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
|
|
|
|
/* PSH and FIN should only be set in the second packet. */
|
|
flags = TCP_SKB_CB(skb)->tcp_flags;
|
|
TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
|
|
TCP_SKB_CB(buff)->tcp_flags = flags;
|
|
|
|
/* This packet was never sent out yet, so no SACK bits. */
|
|
TCP_SKB_CB(buff)->sacked = 0;
|
|
|
|
buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
|
|
skb_split(skb, buff, len);
|
|
|
|
/* Fix up tso_factor for both original and new SKB. */
|
|
tcp_set_skb_tso_segs(sk, skb, mss_now);
|
|
tcp_set_skb_tso_segs(sk, buff, mss_now);
|
|
|
|
/* Link BUFF into the send queue. */
|
|
skb_header_release(buff);
|
|
tcp_insert_write_queue_after(skb, buff, sk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Try to defer sending, if possible, in order to minimize the amount
|
|
* of TSO splitting we do. View it as a kind of TSO Nagle test.
|
|
*
|
|
* This algorithm is from John Heffner.
|
|
*/
|
|
static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
u32 send_win, cong_win, limit, in_flight;
|
|
int win_divisor;
|
|
|
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
|
|
goto send_now;
|
|
|
|
if (icsk->icsk_ca_state != TCP_CA_Open)
|
|
goto send_now;
|
|
|
|
/* Defer for less than two clock ticks. */
|
|
if (tp->tso_deferred &&
|
|
(((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
|
|
goto send_now;
|
|
|
|
in_flight = tcp_packets_in_flight(tp);
|
|
|
|
BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
|
|
|
|
send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
|
|
|
|
/* From in_flight test above, we know that cwnd > in_flight. */
|
|
cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
|
|
|
|
limit = min(send_win, cong_win);
|
|
|
|
/* If a full-sized TSO skb can be sent, do it. */
|
|
if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
|
|
sk->sk_gso_max_segs * tp->mss_cache))
|
|
goto send_now;
|
|
|
|
/* Middle in queue won't get any more data, full sendable already? */
|
|
if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
|
|
goto send_now;
|
|
|
|
win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
|
|
if (win_divisor) {
|
|
u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
|
|
|
|
/* If at least some fraction of a window is available,
|
|
* just use it.
|
|
*/
|
|
chunk /= win_divisor;
|
|
if (limit >= chunk)
|
|
goto send_now;
|
|
} else {
|
|
/* Different approach, try not to defer past a single
|
|
* ACK. Receiver should ACK every other full sized
|
|
* frame, so if we have space for more than 3 frames
|
|
* then send now.
|
|
*/
|
|
if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
|
|
goto send_now;
|
|
}
|
|
|
|
/* Ok, it looks like it is advisable to defer. */
|
|
tp->tso_deferred = 1 | (jiffies << 1);
|
|
|
|
return true;
|
|
|
|
send_now:
|
|
tp->tso_deferred = 0;
|
|
return false;
|
|
}
|
|
|
|
/* Create a new MTU probe if we are ready.
|
|
* MTU probe is regularly attempting to increase the path MTU by
|
|
* deliberately sending larger packets. This discovers routing
|
|
* changes resulting in larger path MTUs.
|
|
*
|
|
* Returns 0 if we should wait to probe (no cwnd available),
|
|
* 1 if a probe was sent,
|
|
* -1 otherwise
|
|
*/
|
|
static int tcp_mtu_probe(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct sk_buff *skb, *nskb, *next;
|
|
int len;
|
|
int probe_size;
|
|
int size_needed;
|
|
int copy;
|
|
int mss_now;
|
|
|
|
/* Not currently probing/verifying,
|
|
* not in recovery,
|
|
* have enough cwnd, and
|
|
* not SACKing (the variable headers throw things off) */
|
|
if (!icsk->icsk_mtup.enabled ||
|
|
icsk->icsk_mtup.probe_size ||
|
|
inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
|
|
tp->snd_cwnd < 11 ||
|
|
tp->rx_opt.num_sacks || tp->rx_opt.dsack)
|
|
return -1;
|
|
|
|
/* Very simple search strategy: just double the MSS. */
|
|
mss_now = tcp_current_mss(sk);
|
|
probe_size = 2 * tp->mss_cache;
|
|
size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
|
|
if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
|
|
/* TODO: set timer for probe_converge_event */
|
|
return -1;
|
|
}
|
|
|
|
/* Have enough data in the send queue to probe? */
|
|
if (tp->write_seq - tp->snd_nxt < size_needed)
|
|
return -1;
|
|
|
|
if (tp->snd_wnd < size_needed)
|
|
return -1;
|
|
if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
|
|
return 0;
|
|
|
|
/* Do we need to wait to drain cwnd? With none in flight, don't stall */
|
|
if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
|
|
if (!tcp_packets_in_flight(tp))
|
|
return -1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* We're allowed to probe. Build it now. */
|
|
if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
|
|
return -1;
|
|
sk->sk_wmem_queued += nskb->truesize;
|
|
sk_mem_charge(sk, nskb->truesize);
|
|
|
|
skb = tcp_send_head(sk);
|
|
|
|
TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
|
|
TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
|
|
TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
|
|
TCP_SKB_CB(nskb)->sacked = 0;
|
|
nskb->csum = 0;
|
|
nskb->ip_summed = skb->ip_summed;
|
|
|
|
tcp_insert_write_queue_before(nskb, skb, sk);
|
|
|
|
len = 0;
|
|
tcp_for_write_queue_from_safe(skb, next, sk) {
|
|
copy = min_t(int, skb->len, probe_size - len);
|
|
if (nskb->ip_summed)
|
|
skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
|
|
else
|
|
nskb->csum = skb_copy_and_csum_bits(skb, 0,
|
|
skb_put(nskb, copy),
|
|
copy, nskb->csum);
|
|
|
|
if (skb->len <= copy) {
|
|
/* We've eaten all the data from this skb.
|
|
* Throw it away. */
|
|
TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
|
|
tcp_unlink_write_queue(skb, sk);
|
|
sk_wmem_free_skb(sk, skb);
|
|
} else {
|
|
TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
|
|
~(TCPHDR_FIN|TCPHDR_PSH);
|
|
if (!skb_shinfo(skb)->nr_frags) {
|
|
skb_pull(skb, copy);
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
skb->csum = csum_partial(skb->data,
|
|
skb->len, 0);
|
|
} else {
|
|
__pskb_trim_head(skb, copy);
|
|
tcp_set_skb_tso_segs(sk, skb, mss_now);
|
|
}
|
|
TCP_SKB_CB(skb)->seq += copy;
|
|
}
|
|
|
|
len += copy;
|
|
|
|
if (len >= probe_size)
|
|
break;
|
|
}
|
|
tcp_init_tso_segs(sk, nskb, nskb->len);
|
|
|
|
/* We're ready to send. If this fails, the probe will
|
|
* be resegmented into mss-sized pieces by tcp_write_xmit(). */
|
|
TCP_SKB_CB(nskb)->when = tcp_time_stamp;
|
|
if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
|
|
/* Decrement cwnd here because we are sending
|
|
* effectively two packets. */
|
|
tp->snd_cwnd--;
|
|
tcp_event_new_data_sent(sk, nskb);
|
|
|
|
icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
|
|
tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
|
|
tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* This routine writes packets to the network. It advances the
|
|
* send_head. This happens as incoming acks open up the remote
|
|
* window for us.
|
|
*
|
|
* LARGESEND note: !tcp_urg_mode is overkill, only frames between
|
|
* snd_up-64k-mss .. snd_up cannot be large. However, taking into
|
|
* account rare use of URG, this is not a big flaw.
|
|
*
|
|
* Returns true, if no segments are in flight and we have queued segments,
|
|
* but cannot send anything now because of SWS or another problem.
|
|
*/
|
|
static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
|
|
int push_one, gfp_t gfp)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb;
|
|
unsigned int tso_segs, sent_pkts;
|
|
int cwnd_quota;
|
|
int result;
|
|
|
|
sent_pkts = 0;
|
|
|
|
if (!push_one) {
|
|
/* Do MTU probing. */
|
|
result = tcp_mtu_probe(sk);
|
|
if (!result) {
|
|
return false;
|
|
} else if (result > 0) {
|
|
sent_pkts = 1;
|
|
}
|
|
}
|
|
|
|
while ((skb = tcp_send_head(sk))) {
|
|
unsigned int limit;
|
|
|
|
|
|
tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
|
|
BUG_ON(!tso_segs);
|
|
|
|
if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
|
|
goto repair; /* Skip network transmission */
|
|
|
|
cwnd_quota = tcp_cwnd_test(tp, skb);
|
|
if (!cwnd_quota)
|
|
break;
|
|
|
|
if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
|
|
break;
|
|
|
|
if (tso_segs == 1) {
|
|
if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
|
|
(tcp_skb_is_last(sk, skb) ?
|
|
nonagle : TCP_NAGLE_PUSH))))
|
|
break;
|
|
} else {
|
|
if (!push_one && tcp_tso_should_defer(sk, skb))
|
|
break;
|
|
}
|
|
|
|
/* TSQ : sk_wmem_alloc accounts skb truesize,
|
|
* including skb overhead. But thats OK.
|
|
*/
|
|
if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
|
|
set_bit(TSQ_THROTTLED, &tp->tsq_flags);
|
|
break;
|
|
}
|
|
limit = mss_now;
|
|
if (tso_segs > 1 && !tcp_urg_mode(tp))
|
|
limit = tcp_mss_split_point(sk, skb, mss_now,
|
|
min_t(unsigned int,
|
|
cwnd_quota,
|
|
sk->sk_gso_max_segs));
|
|
|
|
if (skb->len > limit &&
|
|
unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
|
|
break;
|
|
|
|
TCP_SKB_CB(skb)->when = tcp_time_stamp;
|
|
|
|
if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
|
|
break;
|
|
|
|
repair:
|
|
/* Advance the send_head. This one is sent out.
|
|
* This call will increment packets_out.
|
|
*/
|
|
tcp_event_new_data_sent(sk, skb);
|
|
|
|
tcp_minshall_update(tp, mss_now, skb);
|
|
sent_pkts += tcp_skb_pcount(skb);
|
|
|
|
if (push_one)
|
|
break;
|
|
}
|
|
|
|
if (likely(sent_pkts)) {
|
|
if (tcp_in_cwnd_reduction(sk))
|
|
tp->prr_out += sent_pkts;
|
|
tcp_cwnd_validate(sk);
|
|
return false;
|
|
}
|
|
return !tp->packets_out && tcp_send_head(sk);
|
|
}
|
|
|
|
/* Push out any pending frames which were held back due to
|
|
* TCP_CORK or attempt at coalescing tiny packets.
|
|
* The socket must be locked by the caller.
|
|
*/
|
|
void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
|
|
int nonagle)
|
|
{
|
|
/* If we are closed, the bytes will have to remain here.
|
|
* In time closedown will finish, we empty the write queue and
|
|
* all will be happy.
|
|
*/
|
|
if (unlikely(sk->sk_state == TCP_CLOSE))
|
|
return;
|
|
|
|
if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
|
|
sk_gfp_atomic(sk, GFP_ATOMIC)))
|
|
tcp_check_probe_timer(sk);
|
|
}
|
|
|
|
/* Send _single_ skb sitting at the send head. This function requires
|
|
* true push pending frames to setup probe timer etc.
|
|
*/
|
|
void tcp_push_one(struct sock *sk, unsigned int mss_now)
|
|
{
|
|
struct sk_buff *skb = tcp_send_head(sk);
|
|
|
|
BUG_ON(!skb || skb->len < mss_now);
|
|
|
|
tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
|
|
}
|
|
|
|
/* This function returns the amount that we can raise the
|
|
* usable window based on the following constraints
|
|
*
|
|
* 1. The window can never be shrunk once it is offered (RFC 793)
|
|
* 2. We limit memory per socket
|
|
*
|
|
* RFC 1122:
|
|
* "the suggested [SWS] avoidance algorithm for the receiver is to keep
|
|
* RECV.NEXT + RCV.WIN fixed until:
|
|
* RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
|
|
*
|
|
* i.e. don't raise the right edge of the window until you can raise
|
|
* it at least MSS bytes.
|
|
*
|
|
* Unfortunately, the recommended algorithm breaks header prediction,
|
|
* since header prediction assumes th->window stays fixed.
|
|
*
|
|
* Strictly speaking, keeping th->window fixed violates the receiver
|
|
* side SWS prevention criteria. The problem is that under this rule
|
|
* a stream of single byte packets will cause the right side of the
|
|
* window to always advance by a single byte.
|
|
*
|
|
* Of course, if the sender implements sender side SWS prevention
|
|
* then this will not be a problem.
|
|
*
|
|
* BSD seems to make the following compromise:
|
|
*
|
|
* If the free space is less than the 1/4 of the maximum
|
|
* space available and the free space is less than 1/2 mss,
|
|
* then set the window to 0.
|
|
* [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
|
|
* Otherwise, just prevent the window from shrinking
|
|
* and from being larger than the largest representable value.
|
|
*
|
|
* This prevents incremental opening of the window in the regime
|
|
* where TCP is limited by the speed of the reader side taking
|
|
* data out of the TCP receive queue. It does nothing about
|
|
* those cases where the window is constrained on the sender side
|
|
* because the pipeline is full.
|
|
*
|
|
* BSD also seems to "accidentally" limit itself to windows that are a
|
|
* multiple of MSS, at least until the free space gets quite small.
|
|
* This would appear to be a side effect of the mbuf implementation.
|
|
* Combining these two algorithms results in the observed behavior
|
|
* of having a fixed window size at almost all times.
|
|
*
|
|
* Below we obtain similar behavior by forcing the offered window to
|
|
* a multiple of the mss when it is feasible to do so.
|
|
*
|
|
* Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
|
|
* Regular options like TIMESTAMP are taken into account.
|
|
*/
|
|
u32 __tcp_select_window(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
/* MSS for the peer's data. Previous versions used mss_clamp
|
|
* here. I don't know if the value based on our guesses
|
|
* of peer's MSS is better for the performance. It's more correct
|
|
* but may be worse for the performance because of rcv_mss
|
|
* fluctuations. --SAW 1998/11/1
|
|
*/
|
|
int mss = icsk->icsk_ack.rcv_mss;
|
|
int free_space = tcp_space(sk);
|
|
int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
|
|
int window;
|
|
|
|
if (mss > full_space)
|
|
mss = full_space;
|
|
|
|
if (free_space < (full_space >> 1)) {
|
|
icsk->icsk_ack.quick = 0;
|
|
|
|
if (sk_under_memory_pressure(sk))
|
|
tp->rcv_ssthresh = min(tp->rcv_ssthresh,
|
|
4U * tp->advmss);
|
|
|
|
if (free_space < mss)
|
|
return 0;
|
|
}
|
|
|
|
if (free_space > tp->rcv_ssthresh)
|
|
free_space = tp->rcv_ssthresh;
|
|
|
|
/* Don't do rounding if we are using window scaling, since the
|
|
* scaled window will not line up with the MSS boundary anyway.
|
|
*/
|
|
window = tp->rcv_wnd;
|
|
if (tp->rx_opt.rcv_wscale) {
|
|
window = free_space;
|
|
|
|
/* Advertise enough space so that it won't get scaled away.
|
|
* Import case: prevent zero window announcement if
|
|
* 1<<rcv_wscale > mss.
|
|
*/
|
|
if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
|
|
window = (((window >> tp->rx_opt.rcv_wscale) + 1)
|
|
<< tp->rx_opt.rcv_wscale);
|
|
} else {
|
|
/* Get the largest window that is a nice multiple of mss.
|
|
* Window clamp already applied above.
|
|
* If our current window offering is within 1 mss of the
|
|
* free space we just keep it. This prevents the divide
|
|
* and multiply from happening most of the time.
|
|
* We also don't do any window rounding when the free space
|
|
* is too small.
|
|
*/
|
|
if (window <= free_space - mss || window > free_space)
|
|
window = (free_space / mss) * mss;
|
|
else if (mss == full_space &&
|
|
free_space > window + (full_space >> 1))
|
|
window = free_space;
|
|
}
|
|
|
|
return window;
|
|
}
|
|
|
|
/* Collapses two adjacent SKB's during retransmission. */
|
|
static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
|
|
int skb_size, next_skb_size;
|
|
|
|
skb_size = skb->len;
|
|
next_skb_size = next_skb->len;
|
|
|
|
BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
|
|
|
|
tcp_highest_sack_combine(sk, next_skb, skb);
|
|
|
|
tcp_unlink_write_queue(next_skb, sk);
|
|
|
|
skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
|
|
next_skb_size);
|
|
|
|
if (next_skb->ip_summed == CHECKSUM_PARTIAL)
|
|
skb->ip_summed = CHECKSUM_PARTIAL;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
|
|
|
|
/* Update sequence range on original skb. */
|
|
TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
|
|
|
|
/* Merge over control information. This moves PSH/FIN etc. over */
|
|
TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
|
|
|
|
/* All done, get rid of second SKB and account for it so
|
|
* packet counting does not break.
|
|
*/
|
|
TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
|
|
|
|
/* changed transmit queue under us so clear hints */
|
|
tcp_clear_retrans_hints_partial(tp);
|
|
if (next_skb == tp->retransmit_skb_hint)
|
|
tp->retransmit_skb_hint = skb;
|
|
|
|
tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
|
|
|
|
sk_wmem_free_skb(sk, next_skb);
|
|
}
|
|
|
|
/* Check if coalescing SKBs is legal. */
|
|
static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
|
|
{
|
|
if (tcp_skb_pcount(skb) > 1)
|
|
return false;
|
|
/* TODO: SACK collapsing could be used to remove this condition */
|
|
if (skb_shinfo(skb)->nr_frags != 0)
|
|
return false;
|
|
if (skb_cloned(skb))
|
|
return false;
|
|
if (skb == tcp_send_head(sk))
|
|
return false;
|
|
/* Some heurestics for collapsing over SACK'd could be invented */
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Collapse packets in the retransmit queue to make to create
|
|
* less packets on the wire. This is only done on retransmission.
|
|
*/
|
|
static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
|
|
int space)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb = to, *tmp;
|
|
bool first = true;
|
|
|
|
if (!sysctl_tcp_retrans_collapse)
|
|
return;
|
|
if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
|
|
return;
|
|
|
|
tcp_for_write_queue_from_safe(skb, tmp, sk) {
|
|
if (!tcp_can_collapse(sk, skb))
|
|
break;
|
|
|
|
space -= skb->len;
|
|
|
|
if (first) {
|
|
first = false;
|
|
continue;
|
|
}
|
|
|
|
if (space < 0)
|
|
break;
|
|
/* Punt if not enough space exists in the first SKB for
|
|
* the data in the second
|
|
*/
|
|
if (skb->len > skb_availroom(to))
|
|
break;
|
|
|
|
if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
|
|
break;
|
|
|
|
tcp_collapse_retrans(sk, to);
|
|
}
|
|
}
|
|
|
|
/* This retransmits one SKB. Policy decisions and retransmit queue
|
|
* state updates are done by the caller. Returns non-zero if an
|
|
* error occurred which prevented the send.
|
|
*/
|
|
int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
unsigned int cur_mss;
|
|
|
|
/* Inconslusive MTU probe */
|
|
if (icsk->icsk_mtup.probe_size) {
|
|
icsk->icsk_mtup.probe_size = 0;
|
|
}
|
|
|
|
/* Do not sent more than we queued. 1/4 is reserved for possible
|
|
* copying overhead: fragmentation, tunneling, mangling etc.
|
|
*/
|
|
if (atomic_read(&sk->sk_wmem_alloc) >
|
|
min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
|
|
return -EAGAIN;
|
|
|
|
if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
|
|
if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
|
|
BUG();
|
|
if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
|
|
return -EHOSTUNREACH; /* Routing failure or similar. */
|
|
|
|
cur_mss = tcp_current_mss(sk);
|
|
|
|
/* If receiver has shrunk his window, and skb is out of
|
|
* new window, do not retransmit it. The exception is the
|
|
* case, when window is shrunk to zero. In this case
|
|
* our retransmit serves as a zero window probe.
|
|
*/
|
|
if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
|
|
TCP_SKB_CB(skb)->seq != tp->snd_una)
|
|
return -EAGAIN;
|
|
|
|
if (skb->len > cur_mss) {
|
|
if (tcp_fragment(sk, skb, cur_mss, cur_mss))
|
|
return -ENOMEM; /* We'll try again later. */
|
|
} else {
|
|
int oldpcount = tcp_skb_pcount(skb);
|
|
|
|
if (unlikely(oldpcount > 1)) {
|
|
tcp_init_tso_segs(sk, skb, cur_mss);
|
|
tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
|
|
}
|
|
}
|
|
|
|
tcp_retrans_try_collapse(sk, skb, cur_mss);
|
|
|
|
/* Some Solaris stacks overoptimize and ignore the FIN on a
|
|
* retransmit when old data is attached. So strip it off
|
|
* since it is cheap to do so and saves bytes on the network.
|
|
*/
|
|
if (skb->len > 0 &&
|
|
(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
|
|
tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
|
|
if (!pskb_trim(skb, 0)) {
|
|
/* Reuse, even though it does some unnecessary work */
|
|
tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
|
|
TCP_SKB_CB(skb)->tcp_flags);
|
|
skb->ip_summed = CHECKSUM_NONE;
|
|
}
|
|
}
|
|
|
|
/* Make a copy, if the first transmission SKB clone we made
|
|
* is still in somebody's hands, else make a clone.
|
|
*/
|
|
TCP_SKB_CB(skb)->when = tcp_time_stamp;
|
|
|
|
/* make sure skb->data is aligned on arches that require it */
|
|
if (unlikely(NET_IP_ALIGN && ((unsigned long)skb->data & 3))) {
|
|
struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
|
|
GFP_ATOMIC);
|
|
return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
|
|
-ENOBUFS;
|
|
} else {
|
|
return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
|
|
}
|
|
}
|
|
|
|
int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int err = __tcp_retransmit_skb(sk, skb);
|
|
|
|
if (err == 0) {
|
|
/* Update global TCP statistics. */
|
|
TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
|
|
|
|
tp->total_retrans++;
|
|
|
|
#if FASTRETRANS_DEBUG > 0
|
|
if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
|
|
net_dbg_ratelimited("retrans_out leaked\n");
|
|
}
|
|
#endif
|
|
if (!tp->retrans_out)
|
|
tp->lost_retrans_low = tp->snd_nxt;
|
|
TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
|
|
tp->retrans_out += tcp_skb_pcount(skb);
|
|
|
|
/* Save stamp of the first retransmit. */
|
|
if (!tp->retrans_stamp)
|
|
tp->retrans_stamp = TCP_SKB_CB(skb)->when;
|
|
|
|
tp->undo_retrans += tcp_skb_pcount(skb);
|
|
|
|
/* snd_nxt is stored to detect loss of retransmitted segment,
|
|
* see tcp_input.c tcp_sacktag_write_queue().
|
|
*/
|
|
TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Check if we forward retransmits are possible in the current
|
|
* window/congestion state.
|
|
*/
|
|
static bool tcp_can_forward_retransmit(struct sock *sk)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
|
|
/* Forward retransmissions are possible only during Recovery. */
|
|
if (icsk->icsk_ca_state != TCP_CA_Recovery)
|
|
return false;
|
|
|
|
/* No forward retransmissions in Reno are possible. */
|
|
if (tcp_is_reno(tp))
|
|
return false;
|
|
|
|
/* Yeah, we have to make difficult choice between forward transmission
|
|
* and retransmission... Both ways have their merits...
|
|
*
|
|
* For now we do not retransmit anything, while we have some new
|
|
* segments to send. In the other cases, follow rule 3 for
|
|
* NextSeg() specified in RFC3517.
|
|
*/
|
|
|
|
if (tcp_may_send_now(sk))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This gets called after a retransmit timeout, and the initially
|
|
* retransmitted data is acknowledged. It tries to continue
|
|
* resending the rest of the retransmit queue, until either
|
|
* we've sent it all or the congestion window limit is reached.
|
|
* If doing SACK, the first ACK which comes back for a timeout
|
|
* based retransmit packet might feed us FACK information again.
|
|
* If so, we use it to avoid unnecessarily retransmissions.
|
|
*/
|
|
void tcp_xmit_retransmit_queue(struct sock *sk)
|
|
{
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb;
|
|
struct sk_buff *hole = NULL;
|
|
u32 last_lost;
|
|
int mib_idx;
|
|
int fwd_rexmitting = 0;
|
|
|
|
if (!tp->packets_out)
|
|
return;
|
|
|
|
if (!tp->lost_out)
|
|
tp->retransmit_high = tp->snd_una;
|
|
|
|
if (tp->retransmit_skb_hint) {
|
|
skb = tp->retransmit_skb_hint;
|
|
last_lost = TCP_SKB_CB(skb)->end_seq;
|
|
if (after(last_lost, tp->retransmit_high))
|
|
last_lost = tp->retransmit_high;
|
|
} else {
|
|
skb = tcp_write_queue_head(sk);
|
|
last_lost = tp->snd_una;
|
|
}
|
|
|
|
tcp_for_write_queue_from(skb, sk) {
|
|
__u8 sacked = TCP_SKB_CB(skb)->sacked;
|
|
|
|
if (skb == tcp_send_head(sk))
|
|
break;
|
|
/* we could do better than to assign each time */
|
|
if (hole == NULL)
|
|
tp->retransmit_skb_hint = skb;
|
|
|
|
/* Assume this retransmit will generate
|
|
* only one packet for congestion window
|
|
* calculation purposes. This works because
|
|
* tcp_retransmit_skb() will chop up the
|
|
* packet to be MSS sized and all the
|
|
* packet counting works out.
|
|
*/
|
|
if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
|
|
return;
|
|
|
|
if (fwd_rexmitting) {
|
|
begin_fwd:
|
|
if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
|
|
break;
|
|
mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
|
|
|
|
} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
|
|
tp->retransmit_high = last_lost;
|
|
if (!tcp_can_forward_retransmit(sk))
|
|
break;
|
|
/* Backtrack if necessary to non-L'ed skb */
|
|
if (hole != NULL) {
|
|
skb = hole;
|
|
hole = NULL;
|
|
}
|
|
fwd_rexmitting = 1;
|
|
goto begin_fwd;
|
|
|
|
} else if (!(sacked & TCPCB_LOST)) {
|
|
if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
|
|
hole = skb;
|
|
continue;
|
|
|
|
} else {
|
|
last_lost = TCP_SKB_CB(skb)->end_seq;
|
|
if (icsk->icsk_ca_state != TCP_CA_Loss)
|
|
mib_idx = LINUX_MIB_TCPFASTRETRANS;
|
|
else
|
|
mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
|
|
}
|
|
|
|
if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
|
|
continue;
|
|
|
|
if (tcp_retransmit_skb(sk, skb)) {
|
|
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
|
|
return;
|
|
}
|
|
NET_INC_STATS_BH(sock_net(sk), mib_idx);
|
|
|
|
if (tcp_in_cwnd_reduction(sk))
|
|
tp->prr_out += tcp_skb_pcount(skb);
|
|
|
|
if (skb == tcp_write_queue_head(sk))
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
|
inet_csk(sk)->icsk_rto,
|
|
TCP_RTO_MAX);
|
|
}
|
|
}
|
|
|
|
/* Send a fin. The caller locks the socket for us. This cannot be
|
|
* allowed to fail queueing a FIN frame under any circumstances.
|
|
*/
|
|
void tcp_send_fin(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb = tcp_write_queue_tail(sk);
|
|
int mss_now;
|
|
|
|
/* Optimization, tack on the FIN if we have a queue of
|
|
* unsent frames. But be careful about outgoing SACKS
|
|
* and IP options.
|
|
*/
|
|
mss_now = tcp_current_mss(sk);
|
|
|
|
if (tcp_send_head(sk) != NULL) {
|
|
TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
|
|
TCP_SKB_CB(skb)->end_seq++;
|
|
tp->write_seq++;
|
|
} else {
|
|
/* Socket is locked, keep trying until memory is available. */
|
|
for (;;) {
|
|
skb = alloc_skb_fclone(MAX_TCP_HEADER,
|
|
sk->sk_allocation);
|
|
if (skb)
|
|
break;
|
|
yield();
|
|
}
|
|
|
|
/* Reserve space for headers and prepare control bits. */
|
|
skb_reserve(skb, MAX_TCP_HEADER);
|
|
/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
|
|
tcp_init_nondata_skb(skb, tp->write_seq,
|
|
TCPHDR_ACK | TCPHDR_FIN);
|
|
tcp_queue_skb(sk, skb);
|
|
}
|
|
__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
|
|
}
|
|
|
|
/* We get here when a process closes a file descriptor (either due to
|
|
* an explicit close() or as a byproduct of exit()'ing) and there
|
|
* was unread data in the receive queue. This behavior is recommended
|
|
* by RFC 2525, section 2.17. -DaveM
|
|
*/
|
|
void tcp_send_active_reset(struct sock *sk, gfp_t priority)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
/* NOTE: No TCP options attached and we never retransmit this. */
|
|
skb = alloc_skb(MAX_TCP_HEADER, priority);
|
|
if (!skb) {
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
|
|
return;
|
|
}
|
|
|
|
/* Reserve space for headers and prepare control bits. */
|
|
skb_reserve(skb, MAX_TCP_HEADER);
|
|
tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
|
|
TCPHDR_ACK | TCPHDR_RST);
|
|
/* Send it off. */
|
|
TCP_SKB_CB(skb)->when = tcp_time_stamp;
|
|
if (tcp_transmit_skb(sk, skb, 0, priority))
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
|
|
|
|
TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
|
|
}
|
|
|
|
/* Send a crossed SYN-ACK during socket establishment.
|
|
* WARNING: This routine must only be called when we have already sent
|
|
* a SYN packet that crossed the incoming SYN that caused this routine
|
|
* to get called. If this assumption fails then the initial rcv_wnd
|
|
* and rcv_wscale values will not be correct.
|
|
*/
|
|
int tcp_send_synack(struct sock *sk)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
skb = tcp_write_queue_head(sk);
|
|
if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
|
|
pr_debug("%s: wrong queue state\n", __func__);
|
|
return -EFAULT;
|
|
}
|
|
if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
|
|
if (skb_cloned(skb)) {
|
|
struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
|
|
if (nskb == NULL)
|
|
return -ENOMEM;
|
|
tcp_unlink_write_queue(skb, sk);
|
|
skb_header_release(nskb);
|
|
__tcp_add_write_queue_head(sk, nskb);
|
|
sk_wmem_free_skb(sk, skb);
|
|
sk->sk_wmem_queued += nskb->truesize;
|
|
sk_mem_charge(sk, nskb->truesize);
|
|
skb = nskb;
|
|
}
|
|
|
|
TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
|
|
TCP_ECN_send_synack(tcp_sk(sk), skb);
|
|
}
|
|
TCP_SKB_CB(skb)->when = tcp_time_stamp;
|
|
return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
|
|
}
|
|
|
|
/**
|
|
* tcp_make_synack - Prepare a SYN-ACK.
|
|
* sk: listener socket
|
|
* dst: dst entry attached to the SYNACK
|
|
* req: request_sock pointer
|
|
* rvp: request_values pointer
|
|
*
|
|
* Allocate one skb and build a SYNACK packet.
|
|
* @dst is consumed : Caller should not use it again.
|
|
*/
|
|
struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
|
|
struct request_sock *req,
|
|
struct request_values *rvp,
|
|
struct tcp_fastopen_cookie *foc)
|
|
{
|
|
struct tcp_out_options opts;
|
|
struct tcp_extend_values *xvp = tcp_xv(rvp);
|
|
struct inet_request_sock *ireq = inet_rsk(req);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
const struct tcp_cookie_values *cvp = tp->cookie_values;
|
|
struct tcphdr *th;
|
|
struct sk_buff *skb;
|
|
struct tcp_md5sig_key *md5;
|
|
int tcp_header_size;
|
|
int mss;
|
|
int s_data_desired = 0;
|
|
|
|
if (cvp != NULL && cvp->s_data_constant && cvp->s_data_desired)
|
|
s_data_desired = cvp->s_data_desired;
|
|
skb = alloc_skb(MAX_TCP_HEADER + 15 + s_data_desired,
|
|
sk_gfp_atomic(sk, GFP_ATOMIC));
|
|
if (unlikely(!skb)) {
|
|
dst_release(dst);
|
|
return NULL;
|
|
}
|
|
/* Reserve space for headers. */
|
|
skb_reserve(skb, MAX_TCP_HEADER);
|
|
|
|
skb_dst_set(skb, dst);
|
|
|
|
mss = dst_metric_advmss(dst);
|
|
if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
|
|
mss = tp->rx_opt.user_mss;
|
|
|
|
if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
|
|
__u8 rcv_wscale;
|
|
/* Set this up on the first call only */
|
|
req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
|
|
|
|
/* limit the window selection if the user enforce a smaller rx buffer */
|
|
if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
|
|
(req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
|
|
req->window_clamp = tcp_full_space(sk);
|
|
|
|
/* tcp_full_space because it is guaranteed to be the first packet */
|
|
tcp_select_initial_window(tcp_full_space(sk),
|
|
mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
|
|
&req->rcv_wnd,
|
|
&req->window_clamp,
|
|
ireq->wscale_ok,
|
|
&rcv_wscale,
|
|
dst_metric(dst, RTAX_INITRWND));
|
|
ireq->rcv_wscale = rcv_wscale;
|
|
}
|
|
|
|
memset(&opts, 0, sizeof(opts));
|
|
#ifdef CONFIG_SYN_COOKIES
|
|
if (unlikely(req->cookie_ts))
|
|
TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
|
|
else
|
|
#endif
|
|
TCP_SKB_CB(skb)->when = tcp_time_stamp;
|
|
tcp_header_size = tcp_synack_options(sk, req, mss,
|
|
skb, &opts, &md5, xvp, foc)
|
|
+ sizeof(*th);
|
|
|
|
skb_push(skb, tcp_header_size);
|
|
skb_reset_transport_header(skb);
|
|
|
|
th = tcp_hdr(skb);
|
|
memset(th, 0, sizeof(struct tcphdr));
|
|
th->syn = 1;
|
|
th->ack = 1;
|
|
TCP_ECN_make_synack(req, th);
|
|
th->source = ireq->loc_port;
|
|
th->dest = ireq->rmt_port;
|
|
/* Setting of flags are superfluous here for callers (and ECE is
|
|
* not even correctly set)
|
|
*/
|
|
tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
|
|
TCPHDR_SYN | TCPHDR_ACK);
|
|
|
|
if (OPTION_COOKIE_EXTENSION & opts.options) {
|
|
if (s_data_desired) {
|
|
u8 *buf = skb_put(skb, s_data_desired);
|
|
|
|
/* copy data directly from the listening socket. */
|
|
memcpy(buf, cvp->s_data_payload, s_data_desired);
|
|
TCP_SKB_CB(skb)->end_seq += s_data_desired;
|
|
}
|
|
|
|
if (opts.hash_size > 0) {
|
|
__u32 workspace[SHA_WORKSPACE_WORDS];
|
|
u32 *mess = &xvp->cookie_bakery[COOKIE_DIGEST_WORDS];
|
|
u32 *tail = &mess[COOKIE_MESSAGE_WORDS-1];
|
|
|
|
/* Secret recipe depends on the Timestamp, (future)
|
|
* Sequence and Acknowledgment Numbers, Initiator
|
|
* Cookie, and others handled by IP variant caller.
|
|
*/
|
|
*tail-- ^= opts.tsval;
|
|
*tail-- ^= tcp_rsk(req)->rcv_isn + 1;
|
|
*tail-- ^= TCP_SKB_CB(skb)->seq + 1;
|
|
|
|
/* recommended */
|
|
*tail-- ^= (((__force u32)th->dest << 16) | (__force u32)th->source);
|
|
*tail-- ^= (u32)(unsigned long)cvp; /* per sockopt */
|
|
|
|
sha_transform((__u32 *)&xvp->cookie_bakery[0],
|
|
(char *)mess,
|
|
&workspace[0]);
|
|
opts.hash_location =
|
|
(__u8 *)&xvp->cookie_bakery[0];
|
|
}
|
|
}
|
|
|
|
th->seq = htonl(TCP_SKB_CB(skb)->seq);
|
|
/* XXX data is queued and acked as is. No buffer/window check */
|
|
th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
|
|
|
|
/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
|
|
th->window = htons(min(req->rcv_wnd, 65535U));
|
|
tcp_options_write((__be32 *)(th + 1), tp, &opts);
|
|
th->doff = (tcp_header_size >> 2);
|
|
TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
/* Okay, we have all we need - do the md5 hash if needed */
|
|
if (md5) {
|
|
tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
|
|
md5, NULL, req, skb);
|
|
}
|
|
#endif
|
|
|
|
return skb;
|
|
}
|
|
EXPORT_SYMBOL(tcp_make_synack);
|
|
|
|
/* Do all connect socket setups that can be done AF independent. */
|
|
void tcp_connect_init(struct sock *sk)
|
|
{
|
|
const struct dst_entry *dst = __sk_dst_get(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
__u8 rcv_wscale;
|
|
|
|
/* We'll fix this up when we get a response from the other end.
|
|
* See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
|
|
*/
|
|
tp->tcp_header_len = sizeof(struct tcphdr) +
|
|
(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
|
|
|
|
#ifdef CONFIG_TCP_MD5SIG
|
|
if (tp->af_specific->md5_lookup(sk, sk) != NULL)
|
|
tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
|
|
#endif
|
|
|
|
/* If user gave his TCP_MAXSEG, record it to clamp */
|
|
if (tp->rx_opt.user_mss)
|
|
tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
|
|
tp->max_window = 0;
|
|
tcp_mtup_init(sk);
|
|
tcp_sync_mss(sk, dst_mtu(dst));
|
|
|
|
if (!tp->window_clamp)
|
|
tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
|
|
tp->advmss = dst_metric_advmss(dst);
|
|
if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
|
|
tp->advmss = tp->rx_opt.user_mss;
|
|
|
|
tcp_initialize_rcv_mss(sk);
|
|
|
|
/* limit the window selection if the user enforce a smaller rx buffer */
|
|
if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
|
|
(tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
|
|
tp->window_clamp = tcp_full_space(sk);
|
|
|
|
tcp_select_initial_window(tcp_full_space(sk),
|
|
tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
|
|
&tp->rcv_wnd,
|
|
&tp->window_clamp,
|
|
sysctl_tcp_window_scaling,
|
|
&rcv_wscale,
|
|
dst_metric(dst, RTAX_INITRWND));
|
|
|
|
tp->rx_opt.rcv_wscale = rcv_wscale;
|
|
tp->rcv_ssthresh = tp->rcv_wnd;
|
|
|
|
sk->sk_err = 0;
|
|
sock_reset_flag(sk, SOCK_DONE);
|
|
tp->snd_wnd = 0;
|
|
tcp_init_wl(tp, 0);
|
|
tp->snd_una = tp->write_seq;
|
|
tp->snd_sml = tp->write_seq;
|
|
tp->snd_up = tp->write_seq;
|
|
tp->snd_nxt = tp->write_seq;
|
|
|
|
if (likely(!tp->repair))
|
|
tp->rcv_nxt = 0;
|
|
tp->rcv_wup = tp->rcv_nxt;
|
|
tp->copied_seq = tp->rcv_nxt;
|
|
|
|
inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
|
|
inet_csk(sk)->icsk_retransmits = 0;
|
|
tcp_clear_retrans(tp);
|
|
}
|
|
|
|
static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
|
|
|
|
tcb->end_seq += skb->len;
|
|
skb_header_release(skb);
|
|
__tcp_add_write_queue_tail(sk, skb);
|
|
sk->sk_wmem_queued += skb->truesize;
|
|
sk_mem_charge(sk, skb->truesize);
|
|
tp->write_seq = tcb->end_seq;
|
|
tp->packets_out += tcp_skb_pcount(skb);
|
|
}
|
|
|
|
/* Build and send a SYN with data and (cached) Fast Open cookie. However,
|
|
* queue a data-only packet after the regular SYN, such that regular SYNs
|
|
* are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
|
|
* only the SYN sequence, the data are retransmitted in the first ACK.
|
|
* If cookie is not cached or other error occurs, falls back to send a
|
|
* regular SYN with Fast Open cookie request option.
|
|
*/
|
|
static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct tcp_fastopen_request *fo = tp->fastopen_req;
|
|
int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
|
|
struct sk_buff *syn_data = NULL, *data;
|
|
unsigned long last_syn_loss = 0;
|
|
|
|
tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
|
|
tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
|
|
&syn_loss, &last_syn_loss);
|
|
/* Recurring FO SYN losses: revert to regular handshake temporarily */
|
|
if (syn_loss > 1 &&
|
|
time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
|
|
fo->cookie.len = -1;
|
|
goto fallback;
|
|
}
|
|
|
|
if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
|
|
fo->cookie.len = -1;
|
|
else if (fo->cookie.len <= 0)
|
|
goto fallback;
|
|
|
|
/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
|
|
* user-MSS. Reserve maximum option space for middleboxes that add
|
|
* private TCP options. The cost is reduced data space in SYN :(
|
|
*/
|
|
if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
|
|
tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
|
|
space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
|
|
MAX_TCP_OPTION_SPACE;
|
|
|
|
syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
|
|
sk->sk_allocation);
|
|
if (syn_data == NULL)
|
|
goto fallback;
|
|
|
|
for (i = 0; i < iovlen && syn_data->len < space; ++i) {
|
|
struct iovec *iov = &fo->data->msg_iov[i];
|
|
unsigned char __user *from = iov->iov_base;
|
|
int len = iov->iov_len;
|
|
|
|
if (syn_data->len + len > space)
|
|
len = space - syn_data->len;
|
|
else if (i + 1 == iovlen)
|
|
/* No more data pending in inet_wait_for_connect() */
|
|
fo->data = NULL;
|
|
|
|
if (skb_add_data(syn_data, from, len))
|
|
goto fallback;
|
|
}
|
|
|
|
/* Queue a data-only packet after the regular SYN for retransmission */
|
|
data = pskb_copy(syn_data, sk->sk_allocation);
|
|
if (data == NULL)
|
|
goto fallback;
|
|
TCP_SKB_CB(data)->seq++;
|
|
TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
|
|
TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
|
|
tcp_connect_queue_skb(sk, data);
|
|
fo->copied = data->len;
|
|
|
|
if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
|
|
tp->syn_data = (fo->copied > 0);
|
|
NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
|
|
goto done;
|
|
}
|
|
syn_data = NULL;
|
|
|
|
fallback:
|
|
/* Send a regular SYN with Fast Open cookie request option */
|
|
if (fo->cookie.len > 0)
|
|
fo->cookie.len = 0;
|
|
err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
|
|
if (err)
|
|
tp->syn_fastopen = 0;
|
|
kfree_skb(syn_data);
|
|
done:
|
|
fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
|
|
return err;
|
|
}
|
|
|
|
/* Build a SYN and send it off. */
|
|
int tcp_connect(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *buff;
|
|
int err;
|
|
|
|
tcp_connect_init(sk);
|
|
|
|
if (unlikely(tp->repair)) {
|
|
tcp_finish_connect(sk, NULL);
|
|
return 0;
|
|
}
|
|
|
|
buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
|
|
if (unlikely(buff == NULL))
|
|
return -ENOBUFS;
|
|
|
|
/* Reserve space for headers. */
|
|
skb_reserve(buff, MAX_TCP_HEADER);
|
|
|
|
tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
|
|
tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
|
|
tcp_connect_queue_skb(sk, buff);
|
|
TCP_ECN_send_syn(sk, buff);
|
|
|
|
/* Send off SYN; include data in Fast Open. */
|
|
err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
|
|
tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
|
|
if (err == -ECONNREFUSED)
|
|
return err;
|
|
|
|
/* We change tp->snd_nxt after the tcp_transmit_skb() call
|
|
* in order to make this packet get counted in tcpOutSegs.
|
|
*/
|
|
tp->snd_nxt = tp->write_seq;
|
|
tp->pushed_seq = tp->write_seq;
|
|
TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
|
|
|
|
/* Timer for repeating the SYN until an answer. */
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
|
|
inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(tcp_connect);
|
|
|
|
/* Send out a delayed ack, the caller does the policy checking
|
|
* to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
|
|
* for details.
|
|
*/
|
|
void tcp_send_delayed_ack(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
int ato = icsk->icsk_ack.ato;
|
|
unsigned long timeout;
|
|
|
|
if (ato > TCP_DELACK_MIN) {
|
|
const struct tcp_sock *tp = tcp_sk(sk);
|
|
int max_ato = HZ / 2;
|
|
|
|
if (icsk->icsk_ack.pingpong ||
|
|
(icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
|
|
max_ato = TCP_DELACK_MAX;
|
|
|
|
/* Slow path, intersegment interval is "high". */
|
|
|
|
/* If some rtt estimate is known, use it to bound delayed ack.
|
|
* Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
|
|
* directly.
|
|
*/
|
|
if (tp->srtt) {
|
|
int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
|
|
|
|
if (rtt < max_ato)
|
|
max_ato = rtt;
|
|
}
|
|
|
|
ato = min(ato, max_ato);
|
|
}
|
|
|
|
/* Stay within the limit we were given */
|
|
timeout = jiffies + ato;
|
|
|
|
/* Use new timeout only if there wasn't a older one earlier. */
|
|
if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
|
|
/* If delack timer was blocked or is about to expire,
|
|
* send ACK now.
|
|
*/
|
|
if (icsk->icsk_ack.blocked ||
|
|
time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
|
|
tcp_send_ack(sk);
|
|
return;
|
|
}
|
|
|
|
if (!time_before(timeout, icsk->icsk_ack.timeout))
|
|
timeout = icsk->icsk_ack.timeout;
|
|
}
|
|
icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
|
|
icsk->icsk_ack.timeout = timeout;
|
|
sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
|
|
}
|
|
|
|
/* This routine sends an ack and also updates the window. */
|
|
void tcp_send_ack(struct sock *sk)
|
|
{
|
|
struct sk_buff *buff;
|
|
|
|
/* If we have been reset, we may not send again. */
|
|
if (sk->sk_state == TCP_CLOSE)
|
|
return;
|
|
|
|
/* We are not putting this on the write queue, so
|
|
* tcp_transmit_skb() will set the ownership to this
|
|
* sock.
|
|
*/
|
|
buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
|
|
if (buff == NULL) {
|
|
inet_csk_schedule_ack(sk);
|
|
inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
|
|
TCP_DELACK_MAX, TCP_RTO_MAX);
|
|
return;
|
|
}
|
|
|
|
/* Reserve space for headers and prepare control bits. */
|
|
skb_reserve(buff, MAX_TCP_HEADER);
|
|
tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
|
|
|
|
/* Send it off, this clears delayed acks for us. */
|
|
TCP_SKB_CB(buff)->when = tcp_time_stamp;
|
|
tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
|
|
}
|
|
|
|
/* This routine sends a packet with an out of date sequence
|
|
* number. It assumes the other end will try to ack it.
|
|
*
|
|
* Question: what should we make while urgent mode?
|
|
* 4.4BSD forces sending single byte of data. We cannot send
|
|
* out of window data, because we have SND.NXT==SND.MAX...
|
|
*
|
|
* Current solution: to send TWO zero-length segments in urgent mode:
|
|
* one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
|
|
* out-of-date with SND.UNA-1 to probe window.
|
|
*/
|
|
static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb;
|
|
|
|
/* We don't queue it, tcp_transmit_skb() sets ownership. */
|
|
skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
|
|
if (skb == NULL)
|
|
return -1;
|
|
|
|
/* Reserve space for headers and set control bits. */
|
|
skb_reserve(skb, MAX_TCP_HEADER);
|
|
/* Use a previous sequence. This should cause the other
|
|
* end to send an ack. Don't queue or clone SKB, just
|
|
* send it.
|
|
*/
|
|
tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
|
|
TCP_SKB_CB(skb)->when = tcp_time_stamp;
|
|
return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
|
|
}
|
|
|
|
void tcp_send_window_probe(struct sock *sk)
|
|
{
|
|
if (sk->sk_state == TCP_ESTABLISHED) {
|
|
tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
|
|
tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
|
|
tcp_xmit_probe_skb(sk, 0);
|
|
}
|
|
}
|
|
|
|
/* Initiate keepalive or window probe from timer. */
|
|
int tcp_write_wakeup(struct sock *sk)
|
|
{
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
struct sk_buff *skb;
|
|
|
|
if (sk->sk_state == TCP_CLOSE)
|
|
return -1;
|
|
|
|
if ((skb = tcp_send_head(sk)) != NULL &&
|
|
before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
|
|
int err;
|
|
unsigned int mss = tcp_current_mss(sk);
|
|
unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
|
|
|
|
if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
|
|
tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
|
|
|
|
/* We are probing the opening of a window
|
|
* but the window size is != 0
|
|
* must have been a result SWS avoidance ( sender )
|
|
*/
|
|
if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
|
|
skb->len > mss) {
|
|
seg_size = min(seg_size, mss);
|
|
TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
|
|
if (tcp_fragment(sk, skb, seg_size, mss))
|
|
return -1;
|
|
} else if (!tcp_skb_pcount(skb))
|
|
tcp_set_skb_tso_segs(sk, skb, mss);
|
|
|
|
TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
|
|
TCP_SKB_CB(skb)->when = tcp_time_stamp;
|
|
err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
|
|
if (!err)
|
|
tcp_event_new_data_sent(sk, skb);
|
|
return err;
|
|
} else {
|
|
if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
|
|
tcp_xmit_probe_skb(sk, 1);
|
|
return tcp_xmit_probe_skb(sk, 0);
|
|
}
|
|
}
|
|
|
|
/* A window probe timeout has occurred. If window is not closed send
|
|
* a partial packet else a zero probe.
|
|
*/
|
|
void tcp_send_probe0(struct sock *sk)
|
|
{
|
|
struct inet_connection_sock *icsk = inet_csk(sk);
|
|
struct tcp_sock *tp = tcp_sk(sk);
|
|
int err;
|
|
|
|
err = tcp_write_wakeup(sk);
|
|
|
|
if (tp->packets_out || !tcp_send_head(sk)) {
|
|
/* Cancel probe timer, if it is not required. */
|
|
icsk->icsk_probes_out = 0;
|
|
icsk->icsk_backoff = 0;
|
|
return;
|
|
}
|
|
|
|
if (err <= 0) {
|
|
if (icsk->icsk_backoff < sysctl_tcp_retries2)
|
|
icsk->icsk_backoff++;
|
|
icsk->icsk_probes_out++;
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
|
|
min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
|
|
TCP_RTO_MAX);
|
|
} else {
|
|
/* If packet was not sent due to local congestion,
|
|
* do not backoff and do not remember icsk_probes_out.
|
|
* Let local senders to fight for local resources.
|
|
*
|
|
* Use accumulated backoff yet.
|
|
*/
|
|
if (!icsk->icsk_probes_out)
|
|
icsk->icsk_probes_out = 1;
|
|
inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
|
|
min(icsk->icsk_rto << icsk->icsk_backoff,
|
|
TCP_RESOURCE_PROBE_INTERVAL),
|
|
TCP_RTO_MAX);
|
|
}
|
|
}
|