mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-24 06:00:20 +07:00
f387e5b901
The ACPI spec defines Minimum Request Turnaround Time(MRTT) and Maximum Periodic Access Rate(MPAR) to prevent the OSPM from sending too many requests than the platform can handle. For further details on these parameters please refer to section 14.1.3 of ACPI 6.0 spec. This patch includes MRTT/MPAR in deciding if or when a CPPC request can be sent to the platform to make sure CPPC implementation is compliant to the spec. Signed-off-by: Prashanth Prakash <pprakash@codeaurora.org> Acked-by: Ashwin Chaugule <ashwin.chaugule@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
879 lines
23 KiB
C
879 lines
23 KiB
C
/*
|
|
* CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
|
|
*
|
|
* (C) Copyright 2014, 2015 Linaro Ltd.
|
|
* Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; version 2
|
|
* of the License.
|
|
*
|
|
* CPPC describes a few methods for controlling CPU performance using
|
|
* information from a per CPU table called CPC. This table is described in
|
|
* the ACPI v5.0+ specification. The table consists of a list of
|
|
* registers which may be memory mapped or hardware registers and also may
|
|
* include some static integer values.
|
|
*
|
|
* CPU performance is on an abstract continuous scale as against a discretized
|
|
* P-state scale which is tied to CPU frequency only. In brief, the basic
|
|
* operation involves:
|
|
*
|
|
* - OS makes a CPU performance request. (Can provide min and max bounds)
|
|
*
|
|
* - Platform (such as BMC) is free to optimize request within requested bounds
|
|
* depending on power/thermal budgets etc.
|
|
*
|
|
* - Platform conveys its decision back to OS
|
|
*
|
|
* The communication between OS and platform occurs through another medium
|
|
* called (PCC) Platform Communication Channel. This is a generic mailbox like
|
|
* mechanism which includes doorbell semantics to indicate register updates.
|
|
* See drivers/mailbox/pcc.c for details on PCC.
|
|
*
|
|
* Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
|
|
* above specifications.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "ACPI CPPC: " fmt
|
|
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/ktime.h>
|
|
|
|
#include <acpi/cppc_acpi.h>
|
|
/*
|
|
* Lock to provide mutually exclusive access to the PCC
|
|
* channel. e.g. When the remote updates the shared region
|
|
* with new data, the reader needs to be protected from
|
|
* other CPUs activity on the same channel.
|
|
*/
|
|
static DEFINE_SPINLOCK(pcc_lock);
|
|
|
|
/*
|
|
* The cpc_desc structure contains the ACPI register details
|
|
* as described in the per CPU _CPC tables. The details
|
|
* include the type of register (e.g. PCC, System IO, FFH etc.)
|
|
* and destination addresses which lets us READ/WRITE CPU performance
|
|
* information using the appropriate I/O methods.
|
|
*/
|
|
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
|
|
|
|
/* This layer handles all the PCC specifics for CPPC. */
|
|
static struct mbox_chan *pcc_channel;
|
|
static void __iomem *pcc_comm_addr;
|
|
static u64 comm_base_addr;
|
|
static int pcc_subspace_idx = -1;
|
|
static bool pcc_channel_acquired;
|
|
static ktime_t deadline;
|
|
static unsigned int pcc_mpar, pcc_mrtt;
|
|
|
|
/* pcc mapped address + header size + offset within PCC subspace */
|
|
#define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs))
|
|
|
|
/*
|
|
* Arbitrary Retries in case the remote processor is slow to respond
|
|
* to PCC commands. Keeping it high enough to cover emulators where
|
|
* the processors run painfully slow.
|
|
*/
|
|
#define NUM_RETRIES 500
|
|
|
|
static int check_pcc_chan(void)
|
|
{
|
|
int ret = -EIO;
|
|
struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr;
|
|
ktime_t next_deadline = ktime_add(ktime_get(), deadline);
|
|
|
|
/* Retry in case the remote processor was too slow to catch up. */
|
|
while (!ktime_after(ktime_get(), next_deadline)) {
|
|
/*
|
|
* Per spec, prior to boot the PCC space wil be initialized by
|
|
* platform and should have set the command completion bit when
|
|
* PCC can be used by OSPM
|
|
*/
|
|
if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
/*
|
|
* Reducing the bus traffic in case this loop takes longer than
|
|
* a few retries.
|
|
*/
|
|
udelay(3);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int send_pcc_cmd(u16 cmd)
|
|
{
|
|
int ret = -EIO;
|
|
struct acpi_pcct_shared_memory *generic_comm_base =
|
|
(struct acpi_pcct_shared_memory *) pcc_comm_addr;
|
|
static ktime_t last_cmd_cmpl_time, last_mpar_reset;
|
|
static int mpar_count;
|
|
unsigned int time_delta;
|
|
|
|
/*
|
|
* For CMD_WRITE we know for a fact the caller should have checked
|
|
* the channel before writing to PCC space
|
|
*/
|
|
if (cmd == CMD_READ) {
|
|
ret = check_pcc_chan();
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Handle the Minimum Request Turnaround Time(MRTT)
|
|
* "The minimum amount of time that OSPM must wait after the completion
|
|
* of a command before issuing the next command, in microseconds"
|
|
*/
|
|
if (pcc_mrtt) {
|
|
time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
|
|
if (pcc_mrtt > time_delta)
|
|
udelay(pcc_mrtt - time_delta);
|
|
}
|
|
|
|
/*
|
|
* Handle the non-zero Maximum Periodic Access Rate(MPAR)
|
|
* "The maximum number of periodic requests that the subspace channel can
|
|
* support, reported in commands per minute. 0 indicates no limitation."
|
|
*
|
|
* This parameter should be ideally zero or large enough so that it can
|
|
* handle maximum number of requests that all the cores in the system can
|
|
* collectively generate. If it is not, we will follow the spec and just
|
|
* not send the request to the platform after hitting the MPAR limit in
|
|
* any 60s window
|
|
*/
|
|
if (pcc_mpar) {
|
|
if (mpar_count == 0) {
|
|
time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
|
|
if (time_delta < 60 * MSEC_PER_SEC) {
|
|
pr_debug("PCC cmd not sent due to MPAR limit");
|
|
return -EIO;
|
|
}
|
|
last_mpar_reset = ktime_get();
|
|
mpar_count = pcc_mpar;
|
|
}
|
|
mpar_count--;
|
|
}
|
|
|
|
/* Write to the shared comm region. */
|
|
writew_relaxed(cmd, &generic_comm_base->command);
|
|
|
|
/* Flip CMD COMPLETE bit */
|
|
writew_relaxed(0, &generic_comm_base->status);
|
|
|
|
/* Ring doorbell */
|
|
ret = mbox_send_message(pcc_channel, &cmd);
|
|
if (ret < 0) {
|
|
pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
|
|
cmd, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* For READs we need to ensure the cmd completed to ensure
|
|
* the ensuing read()s can proceed. For WRITEs we dont care
|
|
* because the actual write()s are done before coming here
|
|
* and the next READ or WRITE will check if the channel
|
|
* is busy/free at the entry of this call.
|
|
*
|
|
* If Minimum Request Turnaround Time is non-zero, we need
|
|
* to record the completion time of both READ and WRITE
|
|
* command for proper handling of MRTT, so we need to check
|
|
* for pcc_mrtt in addition to CMD_READ
|
|
*/
|
|
if (cmd == CMD_READ || pcc_mrtt) {
|
|
ret = check_pcc_chan();
|
|
if (pcc_mrtt)
|
|
last_cmd_cmpl_time = ktime_get();
|
|
}
|
|
|
|
mbox_client_txdone(pcc_channel, ret);
|
|
return ret;
|
|
}
|
|
|
|
static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
|
|
{
|
|
if (ret < 0)
|
|
pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
|
|
*(u16 *)msg, ret);
|
|
else
|
|
pr_debug("TX completed. CMD sent:%x, ret:%d\n",
|
|
*(u16 *)msg, ret);
|
|
}
|
|
|
|
struct mbox_client cppc_mbox_cl = {
|
|
.tx_done = cppc_chan_tx_done,
|
|
.knows_txdone = true,
|
|
};
|
|
|
|
static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
|
|
{
|
|
int result = -EFAULT;
|
|
acpi_status status = AE_OK;
|
|
struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
|
|
struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
|
|
struct acpi_buffer state = {0, NULL};
|
|
union acpi_object *psd = NULL;
|
|
struct acpi_psd_package *pdomain;
|
|
|
|
status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
|
|
ACPI_TYPE_PACKAGE);
|
|
if (ACPI_FAILURE(status))
|
|
return -ENODEV;
|
|
|
|
psd = buffer.pointer;
|
|
if (!psd || psd->package.count != 1) {
|
|
pr_debug("Invalid _PSD data\n");
|
|
goto end;
|
|
}
|
|
|
|
pdomain = &(cpc_ptr->domain_info);
|
|
|
|
state.length = sizeof(struct acpi_psd_package);
|
|
state.pointer = pdomain;
|
|
|
|
status = acpi_extract_package(&(psd->package.elements[0]),
|
|
&format, &state);
|
|
if (ACPI_FAILURE(status)) {
|
|
pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
|
|
goto end;
|
|
}
|
|
|
|
if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
|
|
pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
|
|
goto end;
|
|
}
|
|
|
|
if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
|
|
pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
|
|
goto end;
|
|
}
|
|
|
|
if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
|
|
pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
|
|
pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
|
|
pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
|
|
goto end;
|
|
}
|
|
|
|
result = 0;
|
|
end:
|
|
kfree(buffer.pointer);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* acpi_get_psd_map - Map the CPUs in a common freq domain.
|
|
* @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
|
|
*
|
|
* Return: 0 for success or negative value for err.
|
|
*/
|
|
int acpi_get_psd_map(struct cpudata **all_cpu_data)
|
|
{
|
|
int count_target;
|
|
int retval = 0;
|
|
unsigned int i, j;
|
|
cpumask_var_t covered_cpus;
|
|
struct cpudata *pr, *match_pr;
|
|
struct acpi_psd_package *pdomain;
|
|
struct acpi_psd_package *match_pdomain;
|
|
struct cpc_desc *cpc_ptr, *match_cpc_ptr;
|
|
|
|
if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Now that we have _PSD data from all CPUs, lets setup P-state
|
|
* domain info.
|
|
*/
|
|
for_each_possible_cpu(i) {
|
|
pr = all_cpu_data[i];
|
|
if (!pr)
|
|
continue;
|
|
|
|
if (cpumask_test_cpu(i, covered_cpus))
|
|
continue;
|
|
|
|
cpc_ptr = per_cpu(cpc_desc_ptr, i);
|
|
if (!cpc_ptr)
|
|
continue;
|
|
|
|
pdomain = &(cpc_ptr->domain_info);
|
|
cpumask_set_cpu(i, pr->shared_cpu_map);
|
|
cpumask_set_cpu(i, covered_cpus);
|
|
if (pdomain->num_processors <= 1)
|
|
continue;
|
|
|
|
/* Validate the Domain info */
|
|
count_target = pdomain->num_processors;
|
|
if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
|
|
pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
|
|
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
|
|
pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
|
|
else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
|
|
pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
|
|
|
|
for_each_possible_cpu(j) {
|
|
if (i == j)
|
|
continue;
|
|
|
|
match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
|
|
if (!match_cpc_ptr)
|
|
continue;
|
|
|
|
match_pdomain = &(match_cpc_ptr->domain_info);
|
|
if (match_pdomain->domain != pdomain->domain)
|
|
continue;
|
|
|
|
/* Here i and j are in the same domain */
|
|
if (match_pdomain->num_processors != count_target) {
|
|
retval = -EFAULT;
|
|
goto err_ret;
|
|
}
|
|
|
|
if (pdomain->coord_type != match_pdomain->coord_type) {
|
|
retval = -EFAULT;
|
|
goto err_ret;
|
|
}
|
|
|
|
cpumask_set_cpu(j, covered_cpus);
|
|
cpumask_set_cpu(j, pr->shared_cpu_map);
|
|
}
|
|
|
|
for_each_possible_cpu(j) {
|
|
if (i == j)
|
|
continue;
|
|
|
|
match_pr = all_cpu_data[j];
|
|
if (!match_pr)
|
|
continue;
|
|
|
|
match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
|
|
if (!match_cpc_ptr)
|
|
continue;
|
|
|
|
match_pdomain = &(match_cpc_ptr->domain_info);
|
|
if (match_pdomain->domain != pdomain->domain)
|
|
continue;
|
|
|
|
match_pr->shared_type = pr->shared_type;
|
|
cpumask_copy(match_pr->shared_cpu_map,
|
|
pr->shared_cpu_map);
|
|
}
|
|
}
|
|
|
|
err_ret:
|
|
for_each_possible_cpu(i) {
|
|
pr = all_cpu_data[i];
|
|
if (!pr)
|
|
continue;
|
|
|
|
/* Assume no coordination on any error parsing domain info */
|
|
if (retval) {
|
|
cpumask_clear(pr->shared_cpu_map);
|
|
cpumask_set_cpu(i, pr->shared_cpu_map);
|
|
pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
|
|
}
|
|
}
|
|
|
|
free_cpumask_var(covered_cpus);
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_get_psd_map);
|
|
|
|
static int register_pcc_channel(int pcc_subspace_idx)
|
|
{
|
|
struct acpi_pcct_hw_reduced *cppc_ss;
|
|
unsigned int len;
|
|
u64 usecs_lat;
|
|
|
|
if (pcc_subspace_idx >= 0) {
|
|
pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
|
|
pcc_subspace_idx);
|
|
|
|
if (IS_ERR(pcc_channel)) {
|
|
pr_err("Failed to find PCC communication channel\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* The PCC mailbox controller driver should
|
|
* have parsed the PCCT (global table of all
|
|
* PCC channels) and stored pointers to the
|
|
* subspace communication region in con_priv.
|
|
*/
|
|
cppc_ss = pcc_channel->con_priv;
|
|
|
|
if (!cppc_ss) {
|
|
pr_err("No PCC subspace found for CPPC\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/*
|
|
* This is the shared communication region
|
|
* for the OS and Platform to communicate over.
|
|
*/
|
|
comm_base_addr = cppc_ss->base_address;
|
|
len = cppc_ss->length;
|
|
|
|
/*
|
|
* cppc_ss->latency is just a Nominal value. In reality
|
|
* the remote processor could be much slower to reply.
|
|
* So add an arbitrary amount of wait on top of Nominal.
|
|
*/
|
|
usecs_lat = NUM_RETRIES * cppc_ss->latency;
|
|
deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
|
|
pcc_mrtt = cppc_ss->min_turnaround_time;
|
|
pcc_mpar = cppc_ss->max_access_rate;
|
|
|
|
pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len);
|
|
if (!pcc_comm_addr) {
|
|
pr_err("Failed to ioremap PCC comm region mem\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Set flag so that we dont come here for each CPU. */
|
|
pcc_channel_acquired = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* An example CPC table looks like the following.
|
|
*
|
|
* Name(_CPC, Package()
|
|
* {
|
|
* 17,
|
|
* NumEntries
|
|
* 1,
|
|
* // Revision
|
|
* ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
|
|
* // Highest Performance
|
|
* ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
|
|
* // Nominal Performance
|
|
* ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
|
|
* // Lowest Nonlinear Performance
|
|
* ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
|
|
* // Lowest Performance
|
|
* ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
|
|
* // Guaranteed Performance Register
|
|
* ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
|
|
* // Desired Performance Register
|
|
* ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
|
|
* ..
|
|
* ..
|
|
* ..
|
|
*
|
|
* }
|
|
* Each Register() encodes how to access that specific register.
|
|
* e.g. a sample PCC entry has the following encoding:
|
|
*
|
|
* Register (
|
|
* PCC,
|
|
* AddressSpaceKeyword
|
|
* 8,
|
|
* //RegisterBitWidth
|
|
* 8,
|
|
* //RegisterBitOffset
|
|
* 0x30,
|
|
* //RegisterAddress
|
|
* 9
|
|
* //AccessSize (subspace ID)
|
|
* 0
|
|
* )
|
|
* }
|
|
*/
|
|
|
|
/**
|
|
* acpi_cppc_processor_probe - Search for per CPU _CPC objects.
|
|
* @pr: Ptr to acpi_processor containing this CPUs logical Id.
|
|
*
|
|
* Return: 0 for success or negative value for err.
|
|
*/
|
|
int acpi_cppc_processor_probe(struct acpi_processor *pr)
|
|
{
|
|
struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
|
|
union acpi_object *out_obj, *cpc_obj;
|
|
struct cpc_desc *cpc_ptr;
|
|
struct cpc_reg *gas_t;
|
|
acpi_handle handle = pr->handle;
|
|
unsigned int num_ent, i, cpc_rev;
|
|
acpi_status status;
|
|
int ret = -EFAULT;
|
|
|
|
/* Parse the ACPI _CPC table for this cpu. */
|
|
status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
|
|
ACPI_TYPE_PACKAGE);
|
|
if (ACPI_FAILURE(status)) {
|
|
ret = -ENODEV;
|
|
goto out_buf_free;
|
|
}
|
|
|
|
out_obj = (union acpi_object *) output.pointer;
|
|
|
|
cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
|
|
if (!cpc_ptr) {
|
|
ret = -ENOMEM;
|
|
goto out_buf_free;
|
|
}
|
|
|
|
/* First entry is NumEntries. */
|
|
cpc_obj = &out_obj->package.elements[0];
|
|
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
|
|
num_ent = cpc_obj->integer.value;
|
|
} else {
|
|
pr_debug("Unexpected entry type(%d) for NumEntries\n",
|
|
cpc_obj->type);
|
|
goto out_free;
|
|
}
|
|
|
|
/* Only support CPPCv2. Bail otherwise. */
|
|
if (num_ent != CPPC_NUM_ENT) {
|
|
pr_debug("Firmware exports %d entries. Expected: %d\n",
|
|
num_ent, CPPC_NUM_ENT);
|
|
goto out_free;
|
|
}
|
|
|
|
/* Second entry should be revision. */
|
|
cpc_obj = &out_obj->package.elements[1];
|
|
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
|
|
cpc_rev = cpc_obj->integer.value;
|
|
} else {
|
|
pr_debug("Unexpected entry type(%d) for Revision\n",
|
|
cpc_obj->type);
|
|
goto out_free;
|
|
}
|
|
|
|
if (cpc_rev != CPPC_REV) {
|
|
pr_debug("Firmware exports revision:%d. Expected:%d\n",
|
|
cpc_rev, CPPC_REV);
|
|
goto out_free;
|
|
}
|
|
|
|
/* Iterate through remaining entries in _CPC */
|
|
for (i = 2; i < num_ent; i++) {
|
|
cpc_obj = &out_obj->package.elements[i];
|
|
|
|
if (cpc_obj->type == ACPI_TYPE_INTEGER) {
|
|
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
|
|
cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
|
|
} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
|
|
gas_t = (struct cpc_reg *)
|
|
cpc_obj->buffer.pointer;
|
|
|
|
/*
|
|
* The PCC Subspace index is encoded inside
|
|
* the CPC table entries. The same PCC index
|
|
* will be used for all the PCC entries,
|
|
* so extract it only once.
|
|
*/
|
|
if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
|
if (pcc_subspace_idx < 0)
|
|
pcc_subspace_idx = gas_t->access_width;
|
|
else if (pcc_subspace_idx != gas_t->access_width) {
|
|
pr_debug("Mismatched PCC ids.\n");
|
|
goto out_free;
|
|
}
|
|
} else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) {
|
|
/* Support only PCC and SYS MEM type regs */
|
|
pr_debug("Unsupported register type: %d\n", gas_t->space_id);
|
|
goto out_free;
|
|
}
|
|
|
|
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
|
|
memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
|
|
} else {
|
|
pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
|
|
goto out_free;
|
|
}
|
|
}
|
|
/* Store CPU Logical ID */
|
|
cpc_ptr->cpu_id = pr->id;
|
|
|
|
/* Plug it into this CPUs CPC descriptor. */
|
|
per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
|
|
|
|
/* Parse PSD data for this CPU */
|
|
ret = acpi_get_psd(cpc_ptr, handle);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
/* Register PCC channel once for all CPUs. */
|
|
if (!pcc_channel_acquired) {
|
|
ret = register_pcc_channel(pcc_subspace_idx);
|
|
if (ret)
|
|
goto out_free;
|
|
}
|
|
|
|
/* Everything looks okay */
|
|
pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
|
|
|
|
kfree(output.pointer);
|
|
return 0;
|
|
|
|
out_free:
|
|
kfree(cpc_ptr);
|
|
|
|
out_buf_free:
|
|
kfree(output.pointer);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
|
|
|
|
/**
|
|
* acpi_cppc_processor_exit - Cleanup CPC structs.
|
|
* @pr: Ptr to acpi_processor containing this CPUs logical Id.
|
|
*
|
|
* Return: Void
|
|
*/
|
|
void acpi_cppc_processor_exit(struct acpi_processor *pr)
|
|
{
|
|
struct cpc_desc *cpc_ptr;
|
|
cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
|
|
kfree(cpc_ptr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
|
|
|
|
/*
|
|
* Since cpc_read and cpc_write are called while holding pcc_lock, it should be
|
|
* as fast as possible. We have already mapped the PCC subspace during init, so
|
|
* we can directly write to it.
|
|
*/
|
|
|
|
static int cpc_read(struct cpc_reg *reg, u64 *val)
|
|
{
|
|
int ret_val = 0;
|
|
|
|
*val = 0;
|
|
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
|
void __iomem *vaddr = GET_PCC_VADDR(reg->address);
|
|
|
|
switch (reg->bit_width) {
|
|
case 8:
|
|
*val = readb_relaxed(vaddr);
|
|
break;
|
|
case 16:
|
|
*val = readw_relaxed(vaddr);
|
|
break;
|
|
case 32:
|
|
*val = readl_relaxed(vaddr);
|
|
break;
|
|
case 64:
|
|
*val = readq_relaxed(vaddr);
|
|
break;
|
|
default:
|
|
pr_debug("Error: Cannot read %u bit width from PCC\n",
|
|
reg->bit_width);
|
|
ret_val = -EFAULT;
|
|
}
|
|
} else
|
|
ret_val = acpi_os_read_memory((acpi_physical_address)reg->address,
|
|
val, reg->bit_width);
|
|
return ret_val;
|
|
}
|
|
|
|
static int cpc_write(struct cpc_reg *reg, u64 val)
|
|
{
|
|
int ret_val = 0;
|
|
|
|
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
|
void __iomem *vaddr = GET_PCC_VADDR(reg->address);
|
|
|
|
switch (reg->bit_width) {
|
|
case 8:
|
|
writeb_relaxed(val, vaddr);
|
|
break;
|
|
case 16:
|
|
writew_relaxed(val, vaddr);
|
|
break;
|
|
case 32:
|
|
writel_relaxed(val, vaddr);
|
|
break;
|
|
case 64:
|
|
writeq_relaxed(val, vaddr);
|
|
break;
|
|
default:
|
|
pr_debug("Error: Cannot write %u bit width to PCC\n",
|
|
reg->bit_width);
|
|
ret_val = -EFAULT;
|
|
break;
|
|
}
|
|
} else
|
|
ret_val = acpi_os_write_memory((acpi_physical_address)reg->address,
|
|
val, reg->bit_width);
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* cppc_get_perf_caps - Get a CPUs performance capabilities.
|
|
* @cpunum: CPU from which to get capabilities info.
|
|
* @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
|
|
*
|
|
* Return: 0 for success with perf_caps populated else -ERRNO.
|
|
*/
|
|
int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
|
|
{
|
|
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
|
|
struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
|
|
*nom_perf;
|
|
u64 high, low, ref, nom;
|
|
int ret = 0;
|
|
|
|
if (!cpc_desc) {
|
|
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
|
|
return -ENODEV;
|
|
}
|
|
|
|
highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
|
|
lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
|
|
ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
|
|
nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
|
|
|
|
spin_lock(&pcc_lock);
|
|
|
|
/* Are any of the regs PCC ?*/
|
|
if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
|
(lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
|
(ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
|
(nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
|
|
/* Ring doorbell once to update PCC subspace */
|
|
if (send_pcc_cmd(CMD_READ) < 0) {
|
|
ret = -EIO;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
cpc_read(&highest_reg->cpc_entry.reg, &high);
|
|
perf_caps->highest_perf = high;
|
|
|
|
cpc_read(&lowest_reg->cpc_entry.reg, &low);
|
|
perf_caps->lowest_perf = low;
|
|
|
|
cpc_read(&ref_perf->cpc_entry.reg, &ref);
|
|
perf_caps->reference_perf = ref;
|
|
|
|
cpc_read(&nom_perf->cpc_entry.reg, &nom);
|
|
perf_caps->nominal_perf = nom;
|
|
|
|
if (!ref)
|
|
perf_caps->reference_perf = perf_caps->nominal_perf;
|
|
|
|
if (!high || !low || !nom)
|
|
ret = -EFAULT;
|
|
|
|
out_err:
|
|
spin_unlock(&pcc_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
|
|
|
|
/**
|
|
* cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
|
|
* @cpunum: CPU from which to read counters.
|
|
* @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
|
|
*
|
|
* Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
|
|
*/
|
|
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
|
|
{
|
|
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
|
|
struct cpc_register_resource *delivered_reg, *reference_reg;
|
|
u64 delivered, reference;
|
|
int ret = 0;
|
|
|
|
if (!cpc_desc) {
|
|
pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
|
|
return -ENODEV;
|
|
}
|
|
|
|
delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
|
|
reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
|
|
|
|
spin_lock(&pcc_lock);
|
|
|
|
/* Are any of the regs PCC ?*/
|
|
if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
|
|
(reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
|
|
/* Ring doorbell once to update PCC subspace */
|
|
if (send_pcc_cmd(CMD_READ) < 0) {
|
|
ret = -EIO;
|
|
goto out_err;
|
|
}
|
|
}
|
|
|
|
cpc_read(&delivered_reg->cpc_entry.reg, &delivered);
|
|
cpc_read(&reference_reg->cpc_entry.reg, &reference);
|
|
|
|
if (!delivered || !reference) {
|
|
ret = -EFAULT;
|
|
goto out_err;
|
|
}
|
|
|
|
perf_fb_ctrs->delivered = delivered;
|
|
perf_fb_ctrs->reference = reference;
|
|
|
|
perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered;
|
|
perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;
|
|
|
|
perf_fb_ctrs->prev_delivered = delivered;
|
|
perf_fb_ctrs->prev_reference = reference;
|
|
|
|
out_err:
|
|
spin_unlock(&pcc_lock);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
|
|
|
|
/**
|
|
* cppc_set_perf - Set a CPUs performance controls.
|
|
* @cpu: CPU for which to set performance controls.
|
|
* @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
|
|
*
|
|
* Return: 0 for success, -ERRNO otherwise.
|
|
*/
|
|
int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
|
|
{
|
|
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
|
|
struct cpc_register_resource *desired_reg;
|
|
int ret = 0;
|
|
|
|
if (!cpc_desc) {
|
|
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
|
|
return -ENODEV;
|
|
}
|
|
|
|
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
|
|
|
|
spin_lock(&pcc_lock);
|
|
|
|
/* If this is PCC reg, check if channel is free before writing */
|
|
if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
|
ret = check_pcc_chan();
|
|
if (ret)
|
|
goto busy_channel;
|
|
}
|
|
|
|
/*
|
|
* Skip writing MIN/MAX until Linux knows how to come up with
|
|
* useful values.
|
|
*/
|
|
cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf);
|
|
|
|
/* Is this a PCC reg ?*/
|
|
if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
|
|
/* Ring doorbell so Remote can get our perf request. */
|
|
if (send_pcc_cmd(CMD_WRITE) < 0)
|
|
ret = -EIO;
|
|
}
|
|
busy_channel:
|
|
spin_unlock(&pcc_lock);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cppc_set_perf);
|