mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 17:56:15 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
329 lines
9.3 KiB
C
329 lines
9.3 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __LINUX_PREEMPT_H
|
|
#define __LINUX_PREEMPT_H
|
|
|
|
/*
|
|
* include/linux/preempt.h - macros for accessing and manipulating
|
|
* preempt_count (used for kernel preemption, interrupt count, etc.)
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/list.h>
|
|
|
|
/*
|
|
* We put the hardirq and softirq counter into the preemption
|
|
* counter. The bitmask has the following meaning:
|
|
*
|
|
* - bits 0-7 are the preemption count (max preemption depth: 256)
|
|
* - bits 8-15 are the softirq count (max # of softirqs: 256)
|
|
*
|
|
* The hardirq count could in theory be the same as the number of
|
|
* interrupts in the system, but we run all interrupt handlers with
|
|
* interrupts disabled, so we cannot have nesting interrupts. Though
|
|
* there are a few palaeontologic drivers which reenable interrupts in
|
|
* the handler, so we need more than one bit here.
|
|
*
|
|
* PREEMPT_MASK: 0x000000ff
|
|
* SOFTIRQ_MASK: 0x0000ff00
|
|
* HARDIRQ_MASK: 0x000f0000
|
|
* NMI_MASK: 0x00100000
|
|
* PREEMPT_NEED_RESCHED: 0x80000000
|
|
*/
|
|
#define PREEMPT_BITS 8
|
|
#define SOFTIRQ_BITS 8
|
|
#define HARDIRQ_BITS 4
|
|
#define NMI_BITS 1
|
|
|
|
#define PREEMPT_SHIFT 0
|
|
#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
|
|
#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
|
|
#define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS)
|
|
|
|
#define __IRQ_MASK(x) ((1UL << (x))-1)
|
|
|
|
#define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
|
|
#define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
|
|
#define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
|
|
#define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT)
|
|
|
|
#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT)
|
|
#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT)
|
|
#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT)
|
|
#define NMI_OFFSET (1UL << NMI_SHIFT)
|
|
|
|
#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET)
|
|
|
|
/* We use the MSB mostly because its available */
|
|
#define PREEMPT_NEED_RESCHED 0x80000000
|
|
|
|
#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
|
|
|
|
/*
|
|
* Disable preemption until the scheduler is running -- use an unconditional
|
|
* value so that it also works on !PREEMPT_COUNT kernels.
|
|
*
|
|
* Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
|
|
*/
|
|
#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
|
|
|
|
/*
|
|
* Initial preempt_count value; reflects the preempt_count schedule invariant
|
|
* which states that during context switches:
|
|
*
|
|
* preempt_count() == 2*PREEMPT_DISABLE_OFFSET
|
|
*
|
|
* Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
|
|
* Note: See finish_task_switch().
|
|
*/
|
|
#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
|
|
|
|
/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
|
|
#include <asm/preempt.h>
|
|
|
|
#define hardirq_count() (preempt_count() & HARDIRQ_MASK)
|
|
#define softirq_count() (preempt_count() & SOFTIRQ_MASK)
|
|
#define irq_count() (preempt_count() & (HARDIRQ_MASK | SOFTIRQ_MASK \
|
|
| NMI_MASK))
|
|
|
|
/*
|
|
* Are we doing bottom half or hardware interrupt processing?
|
|
*
|
|
* in_irq() - We're in (hard) IRQ context
|
|
* in_softirq() - We have BH disabled, or are processing softirqs
|
|
* in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
|
|
* in_serving_softirq() - We're in softirq context
|
|
* in_nmi() - We're in NMI context
|
|
* in_task() - We're in task context
|
|
*
|
|
* Note: due to the BH disabled confusion: in_softirq(),in_interrupt() really
|
|
* should not be used in new code.
|
|
*/
|
|
#define in_irq() (hardirq_count())
|
|
#define in_softirq() (softirq_count())
|
|
#define in_interrupt() (irq_count())
|
|
#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET)
|
|
#define in_nmi() (preempt_count() & NMI_MASK)
|
|
#define in_task() (!(preempt_count() & \
|
|
(NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
|
|
|
|
/*
|
|
* The preempt_count offset after preempt_disable();
|
|
*/
|
|
#if defined(CONFIG_PREEMPT_COUNT)
|
|
# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET
|
|
#else
|
|
# define PREEMPT_DISABLE_OFFSET 0
|
|
#endif
|
|
|
|
/*
|
|
* The preempt_count offset after spin_lock()
|
|
*/
|
|
#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET
|
|
|
|
/*
|
|
* The preempt_count offset needed for things like:
|
|
*
|
|
* spin_lock_bh()
|
|
*
|
|
* Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
|
|
* softirqs, such that unlock sequences of:
|
|
*
|
|
* spin_unlock();
|
|
* local_bh_enable();
|
|
*
|
|
* Work as expected.
|
|
*/
|
|
#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
|
|
|
|
/*
|
|
* Are we running in atomic context? WARNING: this macro cannot
|
|
* always detect atomic context; in particular, it cannot know about
|
|
* held spinlocks in non-preemptible kernels. Thus it should not be
|
|
* used in the general case to determine whether sleeping is possible.
|
|
* Do not use in_atomic() in driver code.
|
|
*/
|
|
#define in_atomic() (preempt_count() != 0)
|
|
|
|
/*
|
|
* Check whether we were atomic before we did preempt_disable():
|
|
* (used by the scheduler)
|
|
*/
|
|
#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)
|
|
|
|
#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_PREEMPT_TRACER)
|
|
extern void preempt_count_add(int val);
|
|
extern void preempt_count_sub(int val);
|
|
#define preempt_count_dec_and_test() \
|
|
({ preempt_count_sub(1); should_resched(0); })
|
|
#else
|
|
#define preempt_count_add(val) __preempt_count_add(val)
|
|
#define preempt_count_sub(val) __preempt_count_sub(val)
|
|
#define preempt_count_dec_and_test() __preempt_count_dec_and_test()
|
|
#endif
|
|
|
|
#define __preempt_count_inc() __preempt_count_add(1)
|
|
#define __preempt_count_dec() __preempt_count_sub(1)
|
|
|
|
#define preempt_count_inc() preempt_count_add(1)
|
|
#define preempt_count_dec() preempt_count_sub(1)
|
|
|
|
#ifdef CONFIG_PREEMPT_COUNT
|
|
|
|
#define preempt_disable() \
|
|
do { \
|
|
preempt_count_inc(); \
|
|
barrier(); \
|
|
} while (0)
|
|
|
|
#define sched_preempt_enable_no_resched() \
|
|
do { \
|
|
barrier(); \
|
|
preempt_count_dec(); \
|
|
} while (0)
|
|
|
|
#define preempt_enable_no_resched() sched_preempt_enable_no_resched()
|
|
|
|
#define preemptible() (preempt_count() == 0 && !irqs_disabled())
|
|
|
|
#ifdef CONFIG_PREEMPT
|
|
#define preempt_enable() \
|
|
do { \
|
|
barrier(); \
|
|
if (unlikely(preempt_count_dec_and_test())) \
|
|
__preempt_schedule(); \
|
|
} while (0)
|
|
|
|
#define preempt_enable_notrace() \
|
|
do { \
|
|
barrier(); \
|
|
if (unlikely(__preempt_count_dec_and_test())) \
|
|
__preempt_schedule_notrace(); \
|
|
} while (0)
|
|
|
|
#define preempt_check_resched() \
|
|
do { \
|
|
if (should_resched(0)) \
|
|
__preempt_schedule(); \
|
|
} while (0)
|
|
|
|
#else /* !CONFIG_PREEMPT */
|
|
#define preempt_enable() \
|
|
do { \
|
|
barrier(); \
|
|
preempt_count_dec(); \
|
|
} while (0)
|
|
|
|
#define preempt_enable_notrace() \
|
|
do { \
|
|
barrier(); \
|
|
__preempt_count_dec(); \
|
|
} while (0)
|
|
|
|
#define preempt_check_resched() do { } while (0)
|
|
#endif /* CONFIG_PREEMPT */
|
|
|
|
#define preempt_disable_notrace() \
|
|
do { \
|
|
__preempt_count_inc(); \
|
|
barrier(); \
|
|
} while (0)
|
|
|
|
#define preempt_enable_no_resched_notrace() \
|
|
do { \
|
|
barrier(); \
|
|
__preempt_count_dec(); \
|
|
} while (0)
|
|
|
|
#else /* !CONFIG_PREEMPT_COUNT */
|
|
|
|
/*
|
|
* Even if we don't have any preemption, we need preempt disable/enable
|
|
* to be barriers, so that we don't have things like get_user/put_user
|
|
* that can cause faults and scheduling migrate into our preempt-protected
|
|
* region.
|
|
*/
|
|
#define preempt_disable() barrier()
|
|
#define sched_preempt_enable_no_resched() barrier()
|
|
#define preempt_enable_no_resched() barrier()
|
|
#define preempt_enable() barrier()
|
|
#define preempt_check_resched() do { } while (0)
|
|
|
|
#define preempt_disable_notrace() barrier()
|
|
#define preempt_enable_no_resched_notrace() barrier()
|
|
#define preempt_enable_notrace() barrier()
|
|
#define preemptible() 0
|
|
|
|
#endif /* CONFIG_PREEMPT_COUNT */
|
|
|
|
#ifdef MODULE
|
|
/*
|
|
* Modules have no business playing preemption tricks.
|
|
*/
|
|
#undef sched_preempt_enable_no_resched
|
|
#undef preempt_enable_no_resched
|
|
#undef preempt_enable_no_resched_notrace
|
|
#undef preempt_check_resched
|
|
#endif
|
|
|
|
#define preempt_set_need_resched() \
|
|
do { \
|
|
set_preempt_need_resched(); \
|
|
} while (0)
|
|
#define preempt_fold_need_resched() \
|
|
do { \
|
|
if (tif_need_resched()) \
|
|
set_preempt_need_resched(); \
|
|
} while (0)
|
|
|
|
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
|
|
struct preempt_notifier;
|
|
|
|
/**
|
|
* preempt_ops - notifiers called when a task is preempted and rescheduled
|
|
* @sched_in: we're about to be rescheduled:
|
|
* notifier: struct preempt_notifier for the task being scheduled
|
|
* cpu: cpu we're scheduled on
|
|
* @sched_out: we've just been preempted
|
|
* notifier: struct preempt_notifier for the task being preempted
|
|
* next: the task that's kicking us out
|
|
*
|
|
* Please note that sched_in and out are called under different
|
|
* contexts. sched_out is called with rq lock held and irq disabled
|
|
* while sched_in is called without rq lock and irq enabled. This
|
|
* difference is intentional and depended upon by its users.
|
|
*/
|
|
struct preempt_ops {
|
|
void (*sched_in)(struct preempt_notifier *notifier, int cpu);
|
|
void (*sched_out)(struct preempt_notifier *notifier,
|
|
struct task_struct *next);
|
|
};
|
|
|
|
/**
|
|
* preempt_notifier - key for installing preemption notifiers
|
|
* @link: internal use
|
|
* @ops: defines the notifier functions to be called
|
|
*
|
|
* Usually used in conjunction with container_of().
|
|
*/
|
|
struct preempt_notifier {
|
|
struct hlist_node link;
|
|
struct preempt_ops *ops;
|
|
};
|
|
|
|
void preempt_notifier_inc(void);
|
|
void preempt_notifier_dec(void);
|
|
void preempt_notifier_register(struct preempt_notifier *notifier);
|
|
void preempt_notifier_unregister(struct preempt_notifier *notifier);
|
|
|
|
static inline void preempt_notifier_init(struct preempt_notifier *notifier,
|
|
struct preempt_ops *ops)
|
|
{
|
|
INIT_HLIST_NODE(¬ifier->link);
|
|
notifier->ops = ops;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif /* __LINUX_PREEMPT_H */
|