mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 03:46:09 +07:00
15013ad813
Some watchdogs require a minimum time between heartbeats. Examples are the watchdogs in DA9062 and AT91SAM9x. Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
184 lines
6.5 KiB
C
184 lines
6.5 KiB
C
/*
|
|
* Generic watchdog defines. Derived from..
|
|
*
|
|
* Berkshire PC Watchdog Defines
|
|
* by Ken Hollis <khollis@bitgate.com>
|
|
*
|
|
*/
|
|
#ifndef _LINUX_WATCHDOG_H
|
|
#define _LINUX_WATCHDOG_H
|
|
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/notifier.h>
|
|
#include <uapi/linux/watchdog.h>
|
|
|
|
struct watchdog_ops;
|
|
struct watchdog_device;
|
|
struct watchdog_core_data;
|
|
|
|
/** struct watchdog_ops - The watchdog-devices operations
|
|
*
|
|
* @owner: The module owner.
|
|
* @start: The routine for starting the watchdog device.
|
|
* @stop: The routine for stopping the watchdog device.
|
|
* @ping: The routine that sends a keepalive ping to the watchdog device.
|
|
* @status: The routine that shows the status of the watchdog device.
|
|
* @set_timeout:The routine for setting the watchdog devices timeout value (in seconds).
|
|
* @get_timeleft:The routine that gets the time left before a reset (in seconds).
|
|
* @restart: The routine for restarting the machine.
|
|
* @ioctl: The routines that handles extra ioctl calls.
|
|
*
|
|
* The watchdog_ops structure contains a list of low-level operations
|
|
* that control a watchdog device. It also contains the module that owns
|
|
* these operations. The start and stop function are mandatory, all other
|
|
* functions are optional.
|
|
*/
|
|
struct watchdog_ops {
|
|
struct module *owner;
|
|
/* mandatory operations */
|
|
int (*start)(struct watchdog_device *);
|
|
int (*stop)(struct watchdog_device *);
|
|
/* optional operations */
|
|
int (*ping)(struct watchdog_device *);
|
|
unsigned int (*status)(struct watchdog_device *);
|
|
int (*set_timeout)(struct watchdog_device *, unsigned int);
|
|
unsigned int (*get_timeleft)(struct watchdog_device *);
|
|
int (*restart)(struct watchdog_device *, unsigned long, void *);
|
|
long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
|
|
};
|
|
|
|
/** struct watchdog_device - The structure that defines a watchdog device
|
|
*
|
|
* @id: The watchdog's ID. (Allocated by watchdog_register_device)
|
|
* @parent: The parent bus device
|
|
* @groups: List of sysfs attribute groups to create when creating the
|
|
* watchdog device.
|
|
* @info: Pointer to a watchdog_info structure.
|
|
* @ops: Pointer to the list of watchdog operations.
|
|
* @bootstatus: Status of the watchdog device at boot.
|
|
* @timeout: The watchdog devices timeout value (in seconds).
|
|
* @min_timeout:The watchdog devices minimum timeout value (in seconds).
|
|
* @max_timeout:The watchdog devices maximum timeout value (in seconds)
|
|
* as configurable from user space. Only relevant if
|
|
* max_hw_heartbeat_ms is not provided.
|
|
* @min_hw_heartbeat_ms:
|
|
* Minimum time between heartbeats, in milli-seconds.
|
|
* @max_hw_heartbeat_ms:
|
|
* Hardware limit for maximum timeout, in milli-seconds.
|
|
* Replaces max_timeout if specified.
|
|
* @reboot_nb: The notifier block to stop watchdog on reboot.
|
|
* @restart_nb: The notifier block to register a restart function.
|
|
* @driver_data:Pointer to the drivers private data.
|
|
* @wd_data: Pointer to watchdog core internal data.
|
|
* @status: Field that contains the devices internal status bits.
|
|
* @deferred: Entry in wtd_deferred_reg_list which is used to
|
|
* register early initialized watchdogs.
|
|
*
|
|
* The watchdog_device structure contains all information about a
|
|
* watchdog timer device.
|
|
*
|
|
* The driver-data field may not be accessed directly. It must be accessed
|
|
* via the watchdog_set_drvdata and watchdog_get_drvdata helpers.
|
|
*
|
|
* The lock field is for watchdog core internal use only and should not be
|
|
* touched.
|
|
*/
|
|
struct watchdog_device {
|
|
int id;
|
|
struct device *parent;
|
|
const struct attribute_group **groups;
|
|
const struct watchdog_info *info;
|
|
const struct watchdog_ops *ops;
|
|
unsigned int bootstatus;
|
|
unsigned int timeout;
|
|
unsigned int min_timeout;
|
|
unsigned int max_timeout;
|
|
unsigned int min_hw_heartbeat_ms;
|
|
unsigned int max_hw_heartbeat_ms;
|
|
struct notifier_block reboot_nb;
|
|
struct notifier_block restart_nb;
|
|
void *driver_data;
|
|
struct watchdog_core_data *wd_data;
|
|
unsigned long status;
|
|
/* Bit numbers for status flags */
|
|
#define WDOG_ACTIVE 0 /* Is the watchdog running/active */
|
|
#define WDOG_NO_WAY_OUT 1 /* Is 'nowayout' feature set ? */
|
|
#define WDOG_STOP_ON_REBOOT 2 /* Should be stopped on reboot */
|
|
#define WDOG_HW_RUNNING 3 /* True if HW watchdog running */
|
|
struct list_head deferred;
|
|
};
|
|
|
|
#define WATCHDOG_NOWAYOUT IS_BUILTIN(CONFIG_WATCHDOG_NOWAYOUT)
|
|
#define WATCHDOG_NOWAYOUT_INIT_STATUS (WATCHDOG_NOWAYOUT << WDOG_NO_WAY_OUT)
|
|
|
|
/* Use the following function to check whether or not the watchdog is active */
|
|
static inline bool watchdog_active(struct watchdog_device *wdd)
|
|
{
|
|
return test_bit(WDOG_ACTIVE, &wdd->status);
|
|
}
|
|
|
|
/*
|
|
* Use the following function to check whether or not the hardware watchdog
|
|
* is running
|
|
*/
|
|
static inline bool watchdog_hw_running(struct watchdog_device *wdd)
|
|
{
|
|
return test_bit(WDOG_HW_RUNNING, &wdd->status);
|
|
}
|
|
|
|
/* Use the following function to set the nowayout feature */
|
|
static inline void watchdog_set_nowayout(struct watchdog_device *wdd, bool nowayout)
|
|
{
|
|
if (nowayout)
|
|
set_bit(WDOG_NO_WAY_OUT, &wdd->status);
|
|
}
|
|
|
|
/* Use the following function to stop the watchdog on reboot */
|
|
static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd)
|
|
{
|
|
set_bit(WDOG_STOP_ON_REBOOT, &wdd->status);
|
|
}
|
|
|
|
/* Use the following function to check if a timeout value is invalid */
|
|
static inline bool watchdog_timeout_invalid(struct watchdog_device *wdd, unsigned int t)
|
|
{
|
|
/*
|
|
* The timeout is invalid if
|
|
* - the requested value is larger than UINT_MAX / 1000
|
|
* (since internal calculations are done in milli-seconds),
|
|
* or
|
|
* - the requested value is smaller than the configured minimum timeout,
|
|
* or
|
|
* - a maximum hardware timeout is not configured, a maximum timeout
|
|
* is configured, and the requested value is larger than the
|
|
* configured maximum timeout.
|
|
*/
|
|
return t > UINT_MAX / 1000 || t < wdd->min_timeout ||
|
|
(!wdd->max_hw_heartbeat_ms && wdd->max_timeout &&
|
|
t > wdd->max_timeout);
|
|
}
|
|
|
|
/* Use the following functions to manipulate watchdog driver specific data */
|
|
static inline void watchdog_set_drvdata(struct watchdog_device *wdd, void *data)
|
|
{
|
|
wdd->driver_data = data;
|
|
}
|
|
|
|
static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
|
|
{
|
|
return wdd->driver_data;
|
|
}
|
|
|
|
/* drivers/watchdog/watchdog_core.c */
|
|
void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
|
|
extern int watchdog_init_timeout(struct watchdog_device *wdd,
|
|
unsigned int timeout_parm, struct device *dev);
|
|
extern int watchdog_register_device(struct watchdog_device *);
|
|
extern void watchdog_unregister_device(struct watchdog_device *);
|
|
|
|
#endif /* ifndef _LINUX_WATCHDOG_H */
|