linux_dsm_epyc7002/arch/x86/boot/compressed/kaslr.c
Linus Torvalds 6e9f879684 ACPI updates for 5.5-rc1
- Update the ACPICA code in the kernel to upstream revision 20191018
    including:
 
    * Fixes for Clang warnings (Bob Moore).
 
    * Fix for possible overflow in get_tick_count() (Bob Moore).
 
    * Introduction of acpi_unload_table() (Bob Moore).
 
    * Debugger and utilities updates (Erik Schmauss).
 
    * Fix for unloading tables loaded via configfs (Nikolaus Voss).
 
  - Add support for EFI specific purpose memory to optionally allow
    either application-exclusive or core-kernel-mm managed access to
    differentiated memory (Dan Williams).
 
  - Fix and clean up processing of the HMAT table (Brice Goglin,
    Qian Cai, Tao Xu).
 
  - Update the ACPI EC driver to make it work on systems with
    hardware-reduced ACPI (Daniel Drake).
 
  - Always build in support for the Generic Event Device (GED) to
    allow one kernel binary to work both on systems with full
    hardware ACPI and hardware-reduced ACPI (Arjan van de Ven).
 
  - Fix the table unload mechanism to unregister platform devices
    created when the given table was loaded (Andy Shevchenko).
 
  - Rework the lid blacklist handling in the button driver and add
    more lid quirks to it (Hans de Goede).
 
  - Improve ACPI-based device enumeration for some platforms based
    on Intel BayTrail SoCs (Hans de Goede).
 
  - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC
    and prevent handlers from being registered for unhandled PMIC
    OpRegions (Hans de Goede).
 
  - Unify ACPI _HID/_UID matching (Andy Shevchenko).
 
  - Clean up documentation and comments (Cao jin, James Pack, Kacper
    Piwiński).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAl3dHNkSHHJqd0Byand5
 c29ja2kubmV0AAoJEILEb/54YlRx/NkP/2y6DWjslA6UW4gjZwaRBcjYoyWExMtQ
 Z86goiRJtP+/NqOwm09wHFcV6FdZ4kitUno3UgMCDZJjrURapg1D0rxb1lSYtMzs
 mGr2FBZlVsJ9erOVSzKj1x2afVhdgl0Rl0fxPzoKgCFt8tCJar6cXy4CVEQKdeLs
 eUui2ksXMIEODGhpN/tr/fJqY4O4jlLmPY6gKWfFpSTsv6lnZmzcCxLf5EvUU7JW
 O91/jXdWz4Vl6IdP32sce6dGDjkvwnY105c7HeBf5EQWUe9RHFuSex982qhCD8U+
 iE+JzlhoYpUb03EktJSXbL++IKUHvoUpTanbhka6unMhazC86x0hDf7ruUtYo2Bk
 V8347CFeQ1x2O5IabfJNnUfKaMYhYmOXIoFHJTLKFO5mcCJmP8KOOyDAYilC1psb
 RJpl1fDoAhk7NqhMttyBqfxiotP0kMoKuqtAAl8Y0hTF0DwR9IfKntuTtp1yTGds
 R4dpJrizUDzw1/o4fCWbc3dFZQR3NFGpL/EAyfPzqjGaeaBBkLoNYstqkal5XHwT
 CILmQg2WHoNuQLXZ4NFFDrM2k2G+VUAjQdkYcb/MCOFbw+aTVPu1wyQq37RLtbMo
 9UwGeeT6SXW3iA1nyMoM+YvitjmxS7gHPPPl+b9G6kBubAzBPp91Ra0Mj9dPIGRB
 Evv5nzOIh8Hi
 =7Cqr
 -----END PGP SIGNATURE-----

Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull ACPI updates from Rafael Wysocki:
 "These update the ACPICA code in the kernel to upstream revision
  20191018, add support for EFI specific purpose memory, update the ACPI
  EC driver to make it work on systems with hardware-reduced ACPI,
  improve ACPI-based device enumeration for some platforms, rework the
  lid blacklist handling in the button driver and add more lid quirks to
  it, unify ACPI _HID/_UID matching, fix assorted issues and clean up
  the code and documentation.

  Specifics:

   - Update the ACPICA code in the kernel to upstream revision 20191018
     including:
      * Fixes for Clang warnings (Bob Moore)
      * Fix for possible overflow in get_tick_count() (Bob Moore)
      * Introduction of acpi_unload_table() (Bob Moore)
      * Debugger and utilities updates (Erik Schmauss)
      * Fix for unloading tables loaded via configfs (Nikolaus Voss)

   - Add support for EFI specific purpose memory to optionally allow
     either application-exclusive or core-kernel-mm managed access to
     differentiated memory (Dan Williams)

   - Fix and clean up processing of the HMAT table (Brice Goglin, Qian
     Cai, Tao Xu)

   - Update the ACPI EC driver to make it work on systems with
     hardware-reduced ACPI (Daniel Drake)

   - Always build in support for the Generic Event Device (GED) to allow
     one kernel binary to work both on systems with full hardware ACPI
     and hardware-reduced ACPI (Arjan van de Ven)

   - Fix the table unload mechanism to unregister platform devices
     created when the given table was loaded (Andy Shevchenko)

   - Rework the lid blacklist handling in the button driver and add more
     lid quirks to it (Hans de Goede)

   - Improve ACPI-based device enumeration for some platforms based on
     Intel BayTrail SoCs (Hans de Goede)

   - Add an OpRegion driver for the Cherry Trail Crystal Cove PMIC and
     prevent handlers from being registered for unhandled PMIC OpRegions
     (Hans de Goede)

   - Unify ACPI _HID/_UID matching (Andy Shevchenko)

   - Clean up documentation and comments (Cao jin, James Pack, Kacper
     Piwiński)"

* tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (52 commits)
  ACPI: OSI: Shoot duplicate word
  ACPI: HMAT: use %u instead of %d to print u32 values
  ACPI: NUMA: HMAT: fix a section mismatch
  ACPI: HMAT: don't mix pxm and nid when setting memory target processor_pxm
  ACPI: NUMA: HMAT: Register "soft reserved" memory as an "hmem" device
  ACPI: NUMA: HMAT: Register HMAT at device_initcall level
  device-dax: Add a driver for "hmem" devices
  dax: Fix alloc_dax_region() compile warning
  lib: Uplevel the pmem "region" ida to a global allocator
  x86/efi: Add efi_fake_mem support for EFI_MEMORY_SP
  arm/efi: EFI soft reservation to memblock
  x86/efi: EFI soft reservation to E820 enumeration
  efi: Common enable/disable infrastructure for EFI soft reservation
  x86/efi: Push EFI_MEMMAP check into leaf routines
  efi: Enumerate EFI_MEMORY_SP
  ACPI: NUMA: Establish a new drivers/acpi/numa/ directory
  ACPICA: Update version to 20191018
  ACPICA: debugger: remove leading whitespaces when converting a string to a buffer
  ACPICA: acpiexec: initialize all simple types and field units from user input
  ACPICA: debugger: add field unit support for acpi_db_get_next_token
  ...
2019-11-26 19:25:25 -08:00

955 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* kaslr.c
*
* This contains the routines needed to generate a reasonable level of
* entropy to choose a randomized kernel base address offset in support
* of Kernel Address Space Layout Randomization (KASLR). Additionally
* handles walking the physical memory maps (and tracking memory regions
* to avoid) in order to select a physical memory location that can
* contain the entire properly aligned running kernel image.
*
*/
/*
* isspace() in linux/ctype.h is expected by next_args() to filter
* out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
* since isdigit() is implemented in both of them. Hence disable it
* here.
*/
#define BOOT_CTYPE_H
/*
* _ctype[] in lib/ctype.c is needed by isspace() of linux/ctype.h.
* While both lib/ctype.c and lib/cmdline.c will bring EXPORT_SYMBOL
* which is meaningless and will cause compiling error in some cases.
*/
#define __DISABLE_EXPORTS
#include "misc.h"
#include "error.h"
#include "../string.h"
#include <generated/compile.h>
#include <linux/module.h>
#include <linux/uts.h>
#include <linux/utsname.h>
#include <linux/ctype.h>
#include <linux/efi.h>
#include <generated/utsrelease.h>
#include <asm/efi.h>
/* Macros used by the included decompressor code below. */
#define STATIC
#include <linux/decompress/mm.h>
#ifdef CONFIG_X86_5LEVEL
unsigned int __pgtable_l5_enabled;
unsigned int pgdir_shift __ro_after_init = 39;
unsigned int ptrs_per_p4d __ro_after_init = 1;
#endif
extern unsigned long get_cmd_line_ptr(void);
/* Used by PAGE_KERN* macros: */
pteval_t __default_kernel_pte_mask __read_mostly = ~0;
/* Simplified build-specific string for starting entropy. */
static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
static unsigned long rotate_xor(unsigned long hash, const void *area,
size_t size)
{
size_t i;
unsigned long *ptr = (unsigned long *)area;
for (i = 0; i < size / sizeof(hash); i++) {
/* Rotate by odd number of bits and XOR. */
hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
hash ^= ptr[i];
}
return hash;
}
/* Attempt to create a simple but unpredictable starting entropy. */
static unsigned long get_boot_seed(void)
{
unsigned long hash = 0;
hash = rotate_xor(hash, build_str, sizeof(build_str));
hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
return hash;
}
#define KASLR_COMPRESSED_BOOT
#include "../../lib/kaslr.c"
/* Only supporting at most 4 unusable memmap regions with kaslr */
#define MAX_MEMMAP_REGIONS 4
static bool memmap_too_large;
/* Store memory limit specified by "mem=nn[KMG]" or "memmap=nn[KMG]" */
static unsigned long long mem_limit = ULLONG_MAX;
/* Number of immovable memory regions */
static int num_immovable_mem;
enum mem_avoid_index {
MEM_AVOID_ZO_RANGE = 0,
MEM_AVOID_INITRD,
MEM_AVOID_CMDLINE,
MEM_AVOID_BOOTPARAMS,
MEM_AVOID_MEMMAP_BEGIN,
MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
MEM_AVOID_MAX,
};
static struct mem_vector mem_avoid[MEM_AVOID_MAX];
static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
{
/* Item one is entirely before item two. */
if (one->start + one->size <= two->start)
return false;
/* Item one is entirely after item two. */
if (one->start >= two->start + two->size)
return false;
return true;
}
char *skip_spaces(const char *str)
{
while (isspace(*str))
++str;
return (char *)str;
}
#include "../../../../lib/ctype.c"
#include "../../../../lib/cmdline.c"
enum parse_mode {
PARSE_MEMMAP,
PARSE_EFI,
};
static int
parse_memmap(char *p, unsigned long long *start, unsigned long long *size,
enum parse_mode mode)
{
char *oldp;
if (!p)
return -EINVAL;
/* We don't care about this option here */
if (!strncmp(p, "exactmap", 8))
return -EINVAL;
oldp = p;
*size = memparse(p, &p);
if (p == oldp)
return -EINVAL;
switch (*p) {
case '#':
case '$':
case '!':
*start = memparse(p + 1, &p);
return 0;
case '@':
if (mode == PARSE_MEMMAP) {
/*
* memmap=nn@ss specifies usable region, should
* be skipped
*/
*size = 0;
} else {
unsigned long long flags;
/*
* efi_fake_mem=nn@ss:attr the attr specifies
* flags that might imply a soft-reservation.
*/
*start = memparse(p + 1, &p);
if (p && *p == ':') {
p++;
if (kstrtoull(p, 0, &flags) < 0)
*size = 0;
else if (flags & EFI_MEMORY_SP)
return 0;
}
*size = 0;
}
/* Fall through */
default:
/*
* If w/o offset, only size specified, memmap=nn[KMG] has the
* same behaviour as mem=nn[KMG]. It limits the max address
* system can use. Region above the limit should be avoided.
*/
*start = 0;
return 0;
}
return -EINVAL;
}
static void mem_avoid_memmap(enum parse_mode mode, char *str)
{
static int i;
if (i >= MAX_MEMMAP_REGIONS)
return;
while (str && (i < MAX_MEMMAP_REGIONS)) {
int rc;
unsigned long long start, size;
char *k = strchr(str, ',');
if (k)
*k++ = 0;
rc = parse_memmap(str, &start, &size, mode);
if (rc < 0)
break;
str = k;
if (start == 0) {
/* Store the specified memory limit if size > 0 */
if (size > 0)
mem_limit = size;
continue;
}
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
i++;
}
/* More than 4 memmaps, fail kaslr */
if ((i >= MAX_MEMMAP_REGIONS) && str)
memmap_too_large = true;
}
/* Store the number of 1GB huge pages which users specified: */
static unsigned long max_gb_huge_pages;
static void parse_gb_huge_pages(char *param, char *val)
{
static bool gbpage_sz;
char *p;
if (!strcmp(param, "hugepagesz")) {
p = val;
if (memparse(p, &p) != PUD_SIZE) {
gbpage_sz = false;
return;
}
if (gbpage_sz)
warn("Repeatedly set hugeTLB page size of 1G!\n");
gbpage_sz = true;
return;
}
if (!strcmp(param, "hugepages") && gbpage_sz) {
p = val;
max_gb_huge_pages = simple_strtoull(p, &p, 0);
return;
}
}
static void handle_mem_options(void)
{
char *args = (char *)get_cmd_line_ptr();
size_t len = strlen((char *)args);
char *tmp_cmdline;
char *param, *val;
u64 mem_size;
if (!strstr(args, "memmap=") && !strstr(args, "mem=") &&
!strstr(args, "hugepages"))
return;
tmp_cmdline = malloc(len + 1);
if (!tmp_cmdline)
error("Failed to allocate space for tmp_cmdline");
memcpy(tmp_cmdline, args, len);
tmp_cmdline[len] = 0;
args = tmp_cmdline;
/* Chew leading spaces */
args = skip_spaces(args);
while (*args) {
args = next_arg(args, &param, &val);
/* Stop at -- */
if (!val && strcmp(param, "--") == 0) {
warn("Only '--' specified in cmdline");
goto out;
}
if (!strcmp(param, "memmap")) {
mem_avoid_memmap(PARSE_MEMMAP, val);
} else if (strstr(param, "hugepages")) {
parse_gb_huge_pages(param, val);
} else if (!strcmp(param, "mem")) {
char *p = val;
if (!strcmp(p, "nopentium"))
continue;
mem_size = memparse(p, &p);
if (mem_size == 0)
goto out;
mem_limit = mem_size;
} else if (!strcmp(param, "efi_fake_mem")) {
mem_avoid_memmap(PARSE_EFI, val);
}
}
out:
free(tmp_cmdline);
return;
}
/*
* In theory, KASLR can put the kernel anywhere in the range of [16M, 64T).
* The mem_avoid array is used to store the ranges that need to be avoided
* when KASLR searches for an appropriate random address. We must avoid any
* regions that are unsafe to overlap with during decompression, and other
* things like the initrd, cmdline and boot_params. This comment seeks to
* explain mem_avoid as clearly as possible since incorrect mem_avoid
* memory ranges lead to really hard to debug boot failures.
*
* The initrd, cmdline, and boot_params are trivial to identify for
* avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
* MEM_AVOID_BOOTPARAMS respectively below.
*
* What is not obvious how to avoid is the range of memory that is used
* during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
* the compressed kernel (ZO) and its run space, which is used to extract
* the uncompressed kernel (VO) and relocs.
*
* ZO's full run size sits against the end of the decompression buffer, so
* we can calculate where text, data, bss, etc of ZO are positioned more
* easily.
*
* For additional background, the decompression calculations can be found
* in header.S, and the memory diagram is based on the one found in misc.c.
*
* The following conditions are already enforced by the image layouts and
* associated code:
* - input + input_size >= output + output_size
* - kernel_total_size <= init_size
* - kernel_total_size <= output_size (see Note below)
* - output + init_size >= output + output_size
*
* (Note that kernel_total_size and output_size have no fundamental
* relationship, but output_size is passed to choose_random_location
* as a maximum of the two. The diagram is showing a case where
* kernel_total_size is larger than output_size, but this case is
* handled by bumping output_size.)
*
* The above conditions can be illustrated by a diagram:
*
* 0 output input input+input_size output+init_size
* | | | | |
* | | | | |
* |-----|--------|--------|--------------|-----------|--|-------------|
* | | |
* | | |
* output+init_size-ZO_INIT_SIZE output+output_size output+kernel_total_size
*
* [output, output+init_size) is the entire memory range used for
* extracting the compressed image.
*
* [output, output+kernel_total_size) is the range needed for the
* uncompressed kernel (VO) and its run size (bss, brk, etc).
*
* [output, output+output_size) is VO plus relocs (i.e. the entire
* uncompressed payload contained by ZO). This is the area of the buffer
* written to during decompression.
*
* [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
* range of the copied ZO and decompression code. (i.e. the range
* covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
*
* [input, input+input_size) is the original copied compressed image (ZO)
* (i.e. it does not include its run size). This range must be avoided
* because it contains the data used for decompression.
*
* [input+input_size, output+init_size) is [_text, _end) for ZO. This
* range includes ZO's heap and stack, and must be avoided since it
* performs the decompression.
*
* Since the above two ranges need to be avoided and they are adjacent,
* they can be merged, resulting in: [input, output+init_size) which
* becomes the MEM_AVOID_ZO_RANGE below.
*/
static void mem_avoid_init(unsigned long input, unsigned long input_size,
unsigned long output)
{
unsigned long init_size = boot_params->hdr.init_size;
u64 initrd_start, initrd_size;
u64 cmd_line, cmd_line_size;
char *ptr;
/*
* Avoid the region that is unsafe to overlap during
* decompression.
*/
mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
add_identity_map(mem_avoid[MEM_AVOID_ZO_RANGE].start,
mem_avoid[MEM_AVOID_ZO_RANGE].size);
/* Avoid initrd. */
initrd_start = (u64)boot_params->ext_ramdisk_image << 32;
initrd_start |= boot_params->hdr.ramdisk_image;
initrd_size = (u64)boot_params->ext_ramdisk_size << 32;
initrd_size |= boot_params->hdr.ramdisk_size;
mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
/* No need to set mapping for initrd, it will be handled in VO. */
/* Avoid kernel command line. */
cmd_line = (u64)boot_params->ext_cmd_line_ptr << 32;
cmd_line |= boot_params->hdr.cmd_line_ptr;
/* Calculate size of cmd_line. */
ptr = (char *)(unsigned long)cmd_line;
for (cmd_line_size = 0; ptr[cmd_line_size++];)
;
mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
add_identity_map(mem_avoid[MEM_AVOID_CMDLINE].start,
mem_avoid[MEM_AVOID_CMDLINE].size);
/* Avoid boot parameters. */
mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
add_identity_map(mem_avoid[MEM_AVOID_BOOTPARAMS].start,
mem_avoid[MEM_AVOID_BOOTPARAMS].size);
/* We don't need to set a mapping for setup_data. */
/* Mark the memmap regions we need to avoid */
handle_mem_options();
/* Enumerate the immovable memory regions */
num_immovable_mem = count_immovable_mem_regions();
#ifdef CONFIG_X86_VERBOSE_BOOTUP
/* Make sure video RAM can be used. */
add_identity_map(0, PMD_SIZE);
#endif
}
/*
* Does this memory vector overlap a known avoided area? If so, record the
* overlap region with the lowest address.
*/
static bool mem_avoid_overlap(struct mem_vector *img,
struct mem_vector *overlap)
{
int i;
struct setup_data *ptr;
unsigned long earliest = img->start + img->size;
bool is_overlapping = false;
for (i = 0; i < MEM_AVOID_MAX; i++) {
if (mem_overlaps(img, &mem_avoid[i]) &&
mem_avoid[i].start < earliest) {
*overlap = mem_avoid[i];
earliest = overlap->start;
is_overlapping = true;
}
}
/* Avoid all entries in the setup_data linked list. */
ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
while (ptr) {
struct mem_vector avoid;
avoid.start = (unsigned long)ptr;
avoid.size = sizeof(*ptr) + ptr->len;
if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
*overlap = avoid;
earliest = overlap->start;
is_overlapping = true;
}
if (ptr->type == SETUP_INDIRECT &&
((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
avoid.start = ((struct setup_indirect *)ptr->data)->addr;
avoid.size = ((struct setup_indirect *)ptr->data)->len;
if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
*overlap = avoid;
earliest = overlap->start;
is_overlapping = true;
}
}
ptr = (struct setup_data *)(unsigned long)ptr->next;
}
return is_overlapping;
}
struct slot_area {
unsigned long addr;
int num;
};
#define MAX_SLOT_AREA 100
static struct slot_area slot_areas[MAX_SLOT_AREA];
static unsigned long slot_max;
static unsigned long slot_area_index;
static void store_slot_info(struct mem_vector *region, unsigned long image_size)
{
struct slot_area slot_area;
if (slot_area_index == MAX_SLOT_AREA)
return;
slot_area.addr = region->start;
slot_area.num = (region->size - image_size) /
CONFIG_PHYSICAL_ALIGN + 1;
if (slot_area.num > 0) {
slot_areas[slot_area_index++] = slot_area;
slot_max += slot_area.num;
}
}
/*
* Skip as many 1GB huge pages as possible in the passed region
* according to the number which users specified:
*/
static void
process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
{
unsigned long addr, size = 0;
struct mem_vector tmp;
int i = 0;
if (!max_gb_huge_pages) {
store_slot_info(region, image_size);
return;
}
addr = ALIGN(region->start, PUD_SIZE);
/* Did we raise the address above the passed in memory entry? */
if (addr < region->start + region->size)
size = region->size - (addr - region->start);
/* Check how many 1GB huge pages can be filtered out: */
while (size > PUD_SIZE && max_gb_huge_pages) {
size -= PUD_SIZE;
max_gb_huge_pages--;
i++;
}
/* No good 1GB huge pages found: */
if (!i) {
store_slot_info(region, image_size);
return;
}
/*
* Skip those 'i'*1GB good huge pages, and continue checking and
* processing the remaining head or tail part of the passed region
* if available.
*/
if (addr >= region->start + image_size) {
tmp.start = region->start;
tmp.size = addr - region->start;
store_slot_info(&tmp, image_size);
}
size = region->size - (addr - region->start) - i * PUD_SIZE;
if (size >= image_size) {
tmp.start = addr + i * PUD_SIZE;
tmp.size = size;
store_slot_info(&tmp, image_size);
}
}
static unsigned long slots_fetch_random(void)
{
unsigned long slot;
int i;
/* Handle case of no slots stored. */
if (slot_max == 0)
return 0;
slot = kaslr_get_random_long("Physical") % slot_max;
for (i = 0; i < slot_area_index; i++) {
if (slot >= slot_areas[i].num) {
slot -= slot_areas[i].num;
continue;
}
return slot_areas[i].addr + slot * CONFIG_PHYSICAL_ALIGN;
}
if (i == slot_area_index)
debug_putstr("slots_fetch_random() failed!?\n");
return 0;
}
static void __process_mem_region(struct mem_vector *entry,
unsigned long minimum,
unsigned long image_size)
{
struct mem_vector region, overlap;
unsigned long start_orig, end;
struct mem_vector cur_entry;
/* On 32-bit, ignore entries entirely above our maximum. */
if (IS_ENABLED(CONFIG_X86_32) && entry->start >= KERNEL_IMAGE_SIZE)
return;
/* Ignore entries entirely below our minimum. */
if (entry->start + entry->size < minimum)
return;
/* Ignore entries above memory limit */
end = min(entry->size + entry->start, mem_limit);
if (entry->start >= end)
return;
cur_entry.start = entry->start;
cur_entry.size = end - entry->start;
region.start = cur_entry.start;
region.size = cur_entry.size;
/* Give up if slot area array is full. */
while (slot_area_index < MAX_SLOT_AREA) {
start_orig = region.start;
/* Potentially raise address to minimum location. */
if (region.start < minimum)
region.start = minimum;
/* Potentially raise address to meet alignment needs. */
region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
/* Did we raise the address above the passed in memory entry? */
if (region.start > cur_entry.start + cur_entry.size)
return;
/* Reduce size by any delta from the original address. */
region.size -= region.start - start_orig;
/* On 32-bit, reduce region size to fit within max size. */
if (IS_ENABLED(CONFIG_X86_32) &&
region.start + region.size > KERNEL_IMAGE_SIZE)
region.size = KERNEL_IMAGE_SIZE - region.start;
/* Return if region can't contain decompressed kernel */
if (region.size < image_size)
return;
/* If nothing overlaps, store the region and return. */
if (!mem_avoid_overlap(&region, &overlap)) {
process_gb_huge_pages(&region, image_size);
return;
}
/* Store beginning of region if holds at least image_size. */
if (overlap.start > region.start + image_size) {
struct mem_vector beginning;
beginning.start = region.start;
beginning.size = overlap.start - region.start;
process_gb_huge_pages(&beginning, image_size);
}
/* Return if overlap extends to or past end of region. */
if (overlap.start + overlap.size >= region.start + region.size)
return;
/* Clip off the overlapping region and start over. */
region.size -= overlap.start - region.start + overlap.size;
region.start = overlap.start + overlap.size;
}
}
static bool process_mem_region(struct mem_vector *region,
unsigned long long minimum,
unsigned long long image_size)
{
int i;
/*
* If no immovable memory found, or MEMORY_HOTREMOVE disabled,
* use @region directly.
*/
if (!num_immovable_mem) {
__process_mem_region(region, minimum, image_size);
if (slot_area_index == MAX_SLOT_AREA) {
debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
return 1;
}
return 0;
}
#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
/*
* If immovable memory found, filter the intersection between
* immovable memory and @region.
*/
for (i = 0; i < num_immovable_mem; i++) {
unsigned long long start, end, entry_end, region_end;
struct mem_vector entry;
if (!mem_overlaps(region, &immovable_mem[i]))
continue;
start = immovable_mem[i].start;
end = start + immovable_mem[i].size;
region_end = region->start + region->size;
entry.start = clamp(region->start, start, end);
entry_end = clamp(region_end, start, end);
entry.size = entry_end - entry.start;
__process_mem_region(&entry, minimum, image_size);
if (slot_area_index == MAX_SLOT_AREA) {
debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
return 1;
}
}
#endif
return 0;
}
#ifdef CONFIG_EFI
/*
* Returns true if mirror region found (and must have been processed
* for slots adding)
*/
static bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
struct efi_info *e = &boot_params->efi_info;
bool efi_mirror_found = false;
struct mem_vector region;
efi_memory_desc_t *md;
unsigned long pmap;
char *signature;
u32 nr_desc;
int i;
signature = (char *)&e->efi_loader_signature;
if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
return false;
#ifdef CONFIG_X86_32
/* Can't handle data above 4GB at this time */
if (e->efi_memmap_hi) {
warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
return false;
}
pmap = e->efi_memmap;
#else
pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
#endif
nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
for (i = 0; i < nr_desc; i++) {
md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
efi_mirror_found = true;
break;
}
}
for (i = 0; i < nr_desc; i++) {
md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
/*
* Here we are more conservative in picking free memory than
* the EFI spec allows:
*
* According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
* free memory and thus available to place the kernel image into,
* but in practice there's firmware where using that memory leads
* to crashes.
*
* Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
*/
if (md->type != EFI_CONVENTIONAL_MEMORY)
continue;
if (efi_soft_reserve_enabled() &&
(md->attribute & EFI_MEMORY_SP))
continue;
if (efi_mirror_found &&
!(md->attribute & EFI_MEMORY_MORE_RELIABLE))
continue;
region.start = md->phys_addr;
region.size = md->num_pages << EFI_PAGE_SHIFT;
if (process_mem_region(&region, minimum, image_size))
break;
}
return true;
}
#else
static inline bool
process_efi_entries(unsigned long minimum, unsigned long image_size)
{
return false;
}
#endif
static void process_e820_entries(unsigned long minimum,
unsigned long image_size)
{
int i;
struct mem_vector region;
struct boot_e820_entry *entry;
/* Verify potential e820 positions, appending to slots list. */
for (i = 0; i < boot_params->e820_entries; i++) {
entry = &boot_params->e820_table[i];
/* Skip non-RAM entries. */
if (entry->type != E820_TYPE_RAM)
continue;
region.start = entry->addr;
region.size = entry->size;
if (process_mem_region(&region, minimum, image_size))
break;
}
}
static unsigned long find_random_phys_addr(unsigned long minimum,
unsigned long image_size)
{
/* Check if we had too many memmaps. */
if (memmap_too_large) {
debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
return 0;
}
/* Make sure minimum is aligned. */
minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
if (process_efi_entries(minimum, image_size))
return slots_fetch_random();
process_e820_entries(minimum, image_size);
return slots_fetch_random();
}
static unsigned long find_random_virt_addr(unsigned long minimum,
unsigned long image_size)
{
unsigned long slots, random_addr;
/* Make sure minimum is aligned. */
minimum = ALIGN(minimum, CONFIG_PHYSICAL_ALIGN);
/* Align image_size for easy slot calculations. */
image_size = ALIGN(image_size, CONFIG_PHYSICAL_ALIGN);
/*
* There are how many CONFIG_PHYSICAL_ALIGN-sized slots
* that can hold image_size within the range of minimum to
* KERNEL_IMAGE_SIZE?
*/
slots = (KERNEL_IMAGE_SIZE - minimum - image_size) /
CONFIG_PHYSICAL_ALIGN + 1;
random_addr = kaslr_get_random_long("Virtual") % slots;
return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
}
/*
* Since this function examines addresses much more numerically,
* it takes the input and output pointers as 'unsigned long'.
*/
void choose_random_location(unsigned long input,
unsigned long input_size,
unsigned long *output,
unsigned long output_size,
unsigned long *virt_addr)
{
unsigned long random_addr, min_addr;
if (cmdline_find_option_bool("nokaslr")) {
warn("KASLR disabled: 'nokaslr' on cmdline.");
return;
}
#ifdef CONFIG_X86_5LEVEL
if (__read_cr4() & X86_CR4_LA57) {
__pgtable_l5_enabled = 1;
pgdir_shift = 48;
ptrs_per_p4d = 512;
}
#endif
boot_params->hdr.loadflags |= KASLR_FLAG;
/* Prepare to add new identity pagetables on demand. */
initialize_identity_maps();
/* Record the various known unsafe memory ranges. */
mem_avoid_init(input, input_size, *output);
/*
* Low end of the randomization range should be the
* smaller of 512M or the initial kernel image
* location:
*/
min_addr = min(*output, 512UL << 20);
/* Walk available memory entries to find a random address. */
random_addr = find_random_phys_addr(min_addr, output_size);
if (!random_addr) {
warn("Physical KASLR disabled: no suitable memory region!");
} else {
/* Update the new physical address location. */
if (*output != random_addr) {
add_identity_map(random_addr, output_size);
*output = random_addr;
}
/*
* This loads the identity mapping page table.
* This should only be done if a new physical address
* is found for the kernel, otherwise we should keep
* the old page table to make it be like the "nokaslr"
* case.
*/
finalize_identity_maps();
}
/* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
if (IS_ENABLED(CONFIG_X86_64))
random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
*virt_addr = random_addr;
}