linux_dsm_epyc7002/drivers/clk/renesas/rcar-gen2-cpg.c
Geert Uytterhoeven 7aee839ed2 clk: renesas: rcar-gen2: Switch Z clock to .determine_rate()
As the .round_rate() callback returns a long clock rate, it cannot
return clock rates that do not fit in signed long, but do fit in
unsigned long.  Hence switch the Z clock on R-Car Gen2 from the old
.round_rate() callback to the newer .determine_rate() callback, which
does not suffer from this limitation.

This includes implementing range checking.

Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Link: https://lore.kernel.org/r/20190830134515.11925-7-geert+renesas@glider.be
2019-10-21 09:53:43 +02:00

395 lines
9.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* R-Car Gen2 Clock Pulse Generator
*
* Copyright (C) 2016 Cogent Embedded Inc.
*/
#include <linux/bug.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/sys_soc.h>
#include "renesas-cpg-mssr.h"
#include "rcar-gen2-cpg.h"
#define CPG_FRQCRB 0x0004
#define CPG_FRQCRB_KICK BIT(31)
#define CPG_SDCKCR 0x0074
#define CPG_PLL0CR 0x00d8
#define CPG_PLL0CR_STC_SHIFT 24
#define CPG_PLL0CR_STC_MASK (0x7f << CPG_PLL0CR_STC_SHIFT)
#define CPG_FRQCRC 0x00e0
#define CPG_FRQCRC_ZFC_SHIFT 8
#define CPG_FRQCRC_ZFC_MASK (0x1f << CPG_FRQCRC_ZFC_SHIFT)
#define CPG_ADSPCKCR 0x025c
#define CPG_RCANCKCR 0x0270
static spinlock_t cpg_lock;
/*
* Z Clock
*
* Traits of this clock:
* prepare - clk_prepare only ensures that parents are prepared
* enable - clk_enable only ensures that parents are enabled
* rate - rate is adjustable. clk->rate = parent->rate * mult / 32
* parent - fixed parent. No clk_set_parent support
*/
struct cpg_z_clk {
struct clk_hw hw;
void __iomem *reg;
void __iomem *kick_reg;
};
#define to_z_clk(_hw) container_of(_hw, struct cpg_z_clk, hw)
static unsigned long cpg_z_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int mult;
unsigned int val;
val = (readl(zclk->reg) & CPG_FRQCRC_ZFC_MASK) >> CPG_FRQCRC_ZFC_SHIFT;
mult = 32 - val;
return div_u64((u64)parent_rate * mult, 32);
}
static int cpg_z_clk_determine_rate(struct clk_hw *hw,
struct clk_rate_request *req)
{
unsigned long prate = req->best_parent_rate;
unsigned int min_mult, max_mult, mult;
min_mult = max(div64_ul(req->min_rate * 32ULL, prate), 1ULL);
max_mult = min(div64_ul(req->max_rate * 32ULL, prate), 32ULL);
if (max_mult < min_mult)
return -EINVAL;
mult = div64_ul(req->rate * 32ULL, prate);
mult = clamp(mult, min_mult, max_mult);
req->rate = div_u64((u64)prate * mult, 32);
return 0;
}
static int cpg_z_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct cpg_z_clk *zclk = to_z_clk(hw);
unsigned int mult;
u32 val, kick;
unsigned int i;
mult = div64_ul(rate * 32ULL, parent_rate);
mult = clamp(mult, 1U, 32U);
if (readl(zclk->kick_reg) & CPG_FRQCRB_KICK)
return -EBUSY;
val = readl(zclk->reg);
val &= ~CPG_FRQCRC_ZFC_MASK;
val |= (32 - mult) << CPG_FRQCRC_ZFC_SHIFT;
writel(val, zclk->reg);
/*
* Set KICK bit in FRQCRB to update hardware setting and wait for
* clock change completion.
*/
kick = readl(zclk->kick_reg);
kick |= CPG_FRQCRB_KICK;
writel(kick, zclk->kick_reg);
/*
* Note: There is no HW information about the worst case latency.
*
* Using experimental measurements, it seems that no more than
* ~10 iterations are needed, independently of the CPU rate.
* Since this value might be dependent on external xtal rate, pll1
* rate or even the other emulation clocks rate, use 1000 as a
* "super" safe value.
*/
for (i = 1000; i; i--) {
if (!(readl(zclk->kick_reg) & CPG_FRQCRB_KICK))
return 0;
cpu_relax();
}
return -ETIMEDOUT;
}
static const struct clk_ops cpg_z_clk_ops = {
.recalc_rate = cpg_z_clk_recalc_rate,
.determine_rate = cpg_z_clk_determine_rate,
.set_rate = cpg_z_clk_set_rate,
};
static struct clk * __init cpg_z_clk_register(const char *name,
const char *parent_name,
void __iomem *base)
{
struct clk_init_data init;
struct cpg_z_clk *zclk;
struct clk *clk;
zclk = kzalloc(sizeof(*zclk), GFP_KERNEL);
if (!zclk)
return ERR_PTR(-ENOMEM);
init.name = name;
init.ops = &cpg_z_clk_ops;
init.flags = 0;
init.parent_names = &parent_name;
init.num_parents = 1;
zclk->reg = base + CPG_FRQCRC;
zclk->kick_reg = base + CPG_FRQCRB;
zclk->hw.init = &init;
clk = clk_register(NULL, &zclk->hw);
if (IS_ERR(clk))
kfree(zclk);
return clk;
}
static struct clk * __init cpg_rcan_clk_register(const char *name,
const char *parent_name,
void __iomem *base)
{
struct clk_fixed_factor *fixed;
struct clk_gate *gate;
struct clk *clk;
fixed = kzalloc(sizeof(*fixed), GFP_KERNEL);
if (!fixed)
return ERR_PTR(-ENOMEM);
fixed->mult = 1;
fixed->div = 6;
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate) {
kfree(fixed);
return ERR_PTR(-ENOMEM);
}
gate->reg = base + CPG_RCANCKCR;
gate->bit_idx = 8;
gate->flags = CLK_GATE_SET_TO_DISABLE;
gate->lock = &cpg_lock;
clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL,
&fixed->hw, &clk_fixed_factor_ops,
&gate->hw, &clk_gate_ops, 0);
if (IS_ERR(clk)) {
kfree(gate);
kfree(fixed);
}
return clk;
}
/* ADSP divisors */
static const struct clk_div_table cpg_adsp_div_table[] = {
{ 1, 3 }, { 2, 4 }, { 3, 6 }, { 4, 8 },
{ 5, 12 }, { 6, 16 }, { 7, 18 }, { 8, 24 },
{ 10, 36 }, { 11, 48 }, { 0, 0 },
};
static struct clk * __init cpg_adsp_clk_register(const char *name,
const char *parent_name,
void __iomem *base)
{
struct clk_divider *div;
struct clk_gate *gate;
struct clk *clk;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
return ERR_PTR(-ENOMEM);
div->reg = base + CPG_ADSPCKCR;
div->width = 4;
div->table = cpg_adsp_div_table;
div->lock = &cpg_lock;
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
if (!gate) {
kfree(div);
return ERR_PTR(-ENOMEM);
}
gate->reg = base + CPG_ADSPCKCR;
gate->bit_idx = 8;
gate->flags = CLK_GATE_SET_TO_DISABLE;
gate->lock = &cpg_lock;
clk = clk_register_composite(NULL, name, &parent_name, 1, NULL, NULL,
&div->hw, &clk_divider_ops,
&gate->hw, &clk_gate_ops, 0);
if (IS_ERR(clk)) {
kfree(gate);
kfree(div);
}
return clk;
}
/* SDHI divisors */
static const struct clk_div_table cpg_sdh_div_table[] = {
{ 0, 2 }, { 1, 3 }, { 2, 4 }, { 3, 6 },
{ 4, 8 }, { 5, 12 }, { 6, 16 }, { 7, 18 },
{ 8, 24 }, { 10, 36 }, { 11, 48 }, { 0, 0 },
};
static const struct clk_div_table cpg_sd01_div_table[] = {
{ 4, 8 }, { 5, 12 }, { 6, 16 }, { 7, 18 },
{ 8, 24 }, { 10, 36 }, { 11, 48 }, { 12, 10 },
{ 0, 0 },
};
static const struct rcar_gen2_cpg_pll_config *cpg_pll_config __initdata;
static unsigned int cpg_pll0_div __initdata;
static u32 cpg_mode __initdata;
static u32 cpg_quirks __initdata;
#define SD_SKIP_FIRST BIT(0) /* Skip first clock in SD table */
static const struct soc_device_attribute cpg_quirks_match[] __initconst = {
{
.soc_id = "r8a77470",
.data = (void *)SD_SKIP_FIRST,
},
{ /* sentinel */ }
};
struct clk * __init rcar_gen2_cpg_clk_register(struct device *dev,
const struct cpg_core_clk *core, const struct cpg_mssr_info *info,
struct clk **clks, void __iomem *base,
struct raw_notifier_head *notifiers)
{
const struct clk_div_table *table = NULL;
const struct clk *parent;
const char *parent_name;
unsigned int mult = 1;
unsigned int div = 1;
unsigned int shift;
parent = clks[core->parent];
if (IS_ERR(parent))
return ERR_CAST(parent);
parent_name = __clk_get_name(parent);
switch (core->type) {
/* R-Car Gen2 */
case CLK_TYPE_GEN2_MAIN:
div = cpg_pll_config->extal_div;
break;
case CLK_TYPE_GEN2_PLL0:
/*
* PLL0 is a configurable multiplier clock except on R-Car
* V2H/E2. Register the PLL0 clock as a fixed factor clock for
* now as there's no generic multiplier clock implementation and
* we currently have no need to change the multiplier value.
*/
mult = cpg_pll_config->pll0_mult;
div = cpg_pll0_div;
if (!mult) {
u32 pll0cr = readl(base + CPG_PLL0CR);
mult = (((pll0cr & CPG_PLL0CR_STC_MASK) >>
CPG_PLL0CR_STC_SHIFT) + 1) * 2;
}
break;
case CLK_TYPE_GEN2_PLL1:
mult = cpg_pll_config->pll1_mult / 2;
break;
case CLK_TYPE_GEN2_PLL3:
mult = cpg_pll_config->pll3_mult;
break;
case CLK_TYPE_GEN2_Z:
return cpg_z_clk_register(core->name, parent_name, base);
case CLK_TYPE_GEN2_LB:
div = cpg_mode & BIT(18) ? 36 : 24;
break;
case CLK_TYPE_GEN2_ADSP:
return cpg_adsp_clk_register(core->name, parent_name, base);
case CLK_TYPE_GEN2_SDH:
table = cpg_sdh_div_table;
shift = 8;
break;
case CLK_TYPE_GEN2_SD0:
table = cpg_sd01_div_table;
if (cpg_quirks & SD_SKIP_FIRST)
table++;
shift = 4;
break;
case CLK_TYPE_GEN2_SD1:
table = cpg_sd01_div_table;
if (cpg_quirks & SD_SKIP_FIRST)
table++;
shift = 0;
break;
case CLK_TYPE_GEN2_QSPI:
div = (cpg_mode & (BIT(3) | BIT(2) | BIT(1))) == BIT(2) ?
8 : 10;
break;
case CLK_TYPE_GEN2_RCAN:
return cpg_rcan_clk_register(core->name, parent_name, base);
default:
return ERR_PTR(-EINVAL);
}
if (!table)
return clk_register_fixed_factor(NULL, core->name, parent_name,
0, mult, div);
else
return clk_register_divider_table(NULL, core->name,
parent_name, 0,
base + CPG_SDCKCR, shift, 4,
0, table, &cpg_lock);
}
int __init rcar_gen2_cpg_init(const struct rcar_gen2_cpg_pll_config *config,
unsigned int pll0_div, u32 mode)
{
const struct soc_device_attribute *attr;
cpg_pll_config = config;
cpg_pll0_div = pll0_div;
cpg_mode = mode;
attr = soc_device_match(cpg_quirks_match);
if (attr)
cpg_quirks = (uintptr_t)attr->data;
pr_debug("%s: mode = 0x%x quirks = 0x%x\n", __func__, mode, cpg_quirks);
spin_lock_init(&cpg_lock);
return 0;
}