linux_dsm_epyc7002/arch/x86/mm/hugetlbpage.c
Dmitry Safonov a846446b19 x86/compat: Adjust in_compat_syscall() to generic code under !COMPAT
The result of in_compat_syscall() can be pictured as:

x86 platform:
    ---------------------------------------------------
    |  Arch\syscall  |  64-bit  |   ia32   |   x32    |
    |-------------------------------------------------|
    |     x86_64     |  false   |   true   |   true   |
    |-------------------------------------------------|
    |      i686      |          |  <true>  |          |
    ---------------------------------------------------

Other platforms:
    -------------------------------------------
    |  Arch\syscall  |  64-bit  |   compat    |
    |-----------------------------------------|
    |     64-bit     |  false   |    true     |
    |-----------------------------------------|
    |    32-bit(?)   |          |   <false>   |
    -------------------------------------------

As seen, the result of in_compat_syscall() on generic 32-bit platform
differs from i686.

There is no reason for in_compat_syscall() == true on native i686.  It also
easy to misread code if the result on native 32-bit platform differs
between arches.

Because of that non arch-specific code has many places with:
    if (IS_ENABLED(CONFIG_COMPAT) && in_compat_syscall())
in different variations.

It looks-like the only non-x86 code which uses in_compat_syscall() not
under CONFIG_COMPAT guard is in amd/amdkfd. But according to the commit
a18069c132 ("amdkfd: Disable support for 32-bit user processes"), it
actually should be disabled on native i686.

Rename in_compat_syscall() to in_32bit_syscall() for x86-specific code
and make in_compat_syscall() false under !CONFIG_COMPAT.

A follow on patch will clean up generic users which were forced to check
IS_ENABLED(CONFIG_COMPAT) with in_compat_syscall().

Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: linux-efi@vger.kernel.org
Cc: netdev@vger.kernel.org
Link: https://lkml.kernel.org/r/20181012134253.23266-2-dima@arista.com
2018-11-01 12:59:25 +01:00

217 lines
5.2 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* IA-32 Huge TLB Page Support for Kernel.
*
* Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
*/
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/sched/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <linux/compat.h>
#include <asm/mman.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgalloc.h>
#include <asm/elf.h>
#include <asm/mpx.h>
#if 0 /* This is just for testing */
struct page *
follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
{
unsigned long start = address;
int length = 1;
int nr;
struct page *page;
struct vm_area_struct *vma;
vma = find_vma(mm, addr);
if (!vma || !is_vm_hugetlb_page(vma))
return ERR_PTR(-EINVAL);
pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
/* hugetlb should be locked, and hence, prefaulted */
WARN_ON(!pte || pte_none(*pte));
page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
WARN_ON(!PageHead(page));
return page;
}
int pmd_huge(pmd_t pmd)
{
return 0;
}
int pud_huge(pud_t pud)
{
return 0;
}
#else
/*
* pmd_huge() returns 1 if @pmd is hugetlb related entry, that is normal
* hugetlb entry or non-present (migration or hwpoisoned) hugetlb entry.
* Otherwise, returns 0.
*/
int pmd_huge(pmd_t pmd)
{
return !pmd_none(pmd) &&
(pmd_val(pmd) & (_PAGE_PRESENT|_PAGE_PSE)) != _PAGE_PRESENT;
}
int pud_huge(pud_t pud)
{
return !!(pud_val(pud) & _PAGE_PSE);
}
#endif
#ifdef CONFIG_HUGETLB_PAGE
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
info.flags = 0;
info.length = len;
info.low_limit = get_mmap_base(1);
/*
* If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area
* in the full address space.
*/
info.high_limit = in_32bit_syscall() ?
task_size_32bit() : task_size_64bit(addr > DEFAULT_MAP_WINDOW);
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
return vm_unmapped_area(&info);
}
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = PAGE_SIZE;
info.high_limit = get_mmap_base(0);
/*
* If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area
* in the full address space.
*/
if (addr > DEFAULT_MAP_WINDOW && !in_32bit_syscall())
info.high_limit += TASK_SIZE_MAX - DEFAULT_MAP_WINDOW;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (addr & ~PAGE_MASK) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE_LOW;
addr = vm_unmapped_area(&info);
}
return addr;
}
unsigned long
hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
if (len & ~huge_page_mask(h))
return -EINVAL;
addr = mpx_unmapped_area_check(addr, len, flags);
if (IS_ERR_VALUE(addr))
return addr;
if (len > TASK_SIZE)
return -ENOMEM;
/* No address checking. See comment at mmap_address_hint_valid() */
if (flags & MAP_FIXED) {
if (prepare_hugepage_range(file, addr, len))
return -EINVAL;
return addr;
}
if (addr) {
addr &= huge_page_mask(h);
if (!mmap_address_hint_valid(addr, len))
goto get_unmapped_area;
vma = find_vma(mm, addr);
if (!vma || addr + len <= vm_start_gap(vma))
return addr;
}
get_unmapped_area:
if (mm->get_unmapped_area == arch_get_unmapped_area)
return hugetlb_get_unmapped_area_bottomup(file, addr, len,
pgoff, flags);
else
return hugetlb_get_unmapped_area_topdown(file, addr, len,
pgoff, flags);
}
#endif /* CONFIG_HUGETLB_PAGE */
#ifdef CONFIG_X86_64
static __init int setup_hugepagesz(char *opt)
{
unsigned long ps = memparse(opt, &opt);
if (ps == PMD_SIZE) {
hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
} else if (ps == PUD_SIZE && boot_cpu_has(X86_FEATURE_GBPAGES)) {
hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
} else {
hugetlb_bad_size();
printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
ps >> 20);
return 0;
}
return 1;
}
__setup("hugepagesz=", setup_hugepagesz);
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
static __init int gigantic_pages_init(void)
{
/* With compaction or CMA we can allocate gigantic pages at runtime */
if (boot_cpu_has(X86_FEATURE_GBPAGES) && !size_to_hstate(1UL << PUD_SHIFT))
hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
return 0;
}
arch_initcall(gigantic_pages_init);
#endif
#endif