linux_dsm_epyc7002/drivers/net/ethernet/mellanox/mlx4/en_rx.c
Joonsoo Kim fe896d1878 mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count.  Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it.  Then, it is hard to find actual
reason of CMA allocation failure.  CMA allocation should be guaranteed
to succeed so finding offending place is really important.

In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function.  This is preparation step to
add tracepoint to each page reference manipulation function.  With this
facility, we can easily find reason of CMA allocation failure.  There is
no functional change in this patch.

In addition, this patch also converts reference read sites.  It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00

1305 lines
36 KiB
C

/*
* Copyright (c) 2007 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <net/busy_poll.h>
#include <linux/mlx4/cq.h>
#include <linux/slab.h>
#include <linux/mlx4/qp.h>
#include <linux/skbuff.h>
#include <linux/rculist.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/irq.h>
#if IS_ENABLED(CONFIG_IPV6)
#include <net/ip6_checksum.h>
#endif
#include "mlx4_en.h"
static int mlx4_alloc_pages(struct mlx4_en_priv *priv,
struct mlx4_en_rx_alloc *page_alloc,
const struct mlx4_en_frag_info *frag_info,
gfp_t _gfp)
{
int order;
struct page *page;
dma_addr_t dma;
for (order = MLX4_EN_ALLOC_PREFER_ORDER; ;) {
gfp_t gfp = _gfp;
if (order)
gfp |= __GFP_COMP | __GFP_NOWARN;
page = alloc_pages(gfp, order);
if (likely(page))
break;
if (--order < 0 ||
((PAGE_SIZE << order) < frag_info->frag_size))
return -ENOMEM;
}
dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order,
PCI_DMA_FROMDEVICE);
if (dma_mapping_error(priv->ddev, dma)) {
put_page(page);
return -ENOMEM;
}
page_alloc->page_size = PAGE_SIZE << order;
page_alloc->page = page;
page_alloc->dma = dma;
page_alloc->page_offset = 0;
/* Not doing get_page() for each frag is a big win
* on asymetric workloads. Note we can not use atomic_set().
*/
page_ref_add(page, page_alloc->page_size / frag_info->frag_stride - 1);
return 0;
}
static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_alloc *frags,
struct mlx4_en_rx_alloc *ring_alloc,
gfp_t gfp)
{
struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS];
const struct mlx4_en_frag_info *frag_info;
struct page *page;
dma_addr_t dma;
int i;
for (i = 0; i < priv->num_frags; i++) {
frag_info = &priv->frag_info[i];
page_alloc[i] = ring_alloc[i];
page_alloc[i].page_offset += frag_info->frag_stride;
if (page_alloc[i].page_offset + frag_info->frag_stride <=
ring_alloc[i].page_size)
continue;
if (mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))
goto out;
}
for (i = 0; i < priv->num_frags; i++) {
frags[i] = ring_alloc[i];
dma = ring_alloc[i].dma + ring_alloc[i].page_offset;
ring_alloc[i] = page_alloc[i];
rx_desc->data[i].addr = cpu_to_be64(dma);
}
return 0;
out:
while (i--) {
if (page_alloc[i].page != ring_alloc[i].page) {
dma_unmap_page(priv->ddev, page_alloc[i].dma,
page_alloc[i].page_size, PCI_DMA_FROMDEVICE);
page = page_alloc[i].page;
set_page_count(page, 1);
put_page(page);
}
}
return -ENOMEM;
}
static void mlx4_en_free_frag(struct mlx4_en_priv *priv,
struct mlx4_en_rx_alloc *frags,
int i)
{
const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride;
if (next_frag_end > frags[i].page_size)
dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size,
PCI_DMA_FROMDEVICE);
if (frags[i].page)
put_page(frags[i].page);
}
static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int i;
struct mlx4_en_rx_alloc *page_alloc;
for (i = 0; i < priv->num_frags; i++) {
const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
if (mlx4_alloc_pages(priv, &ring->page_alloc[i],
frag_info, GFP_KERNEL | __GFP_COLD))
goto out;
en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n",
i, ring->page_alloc[i].page_size,
page_ref_count(ring->page_alloc[i].page));
}
return 0;
out:
while (i--) {
struct page *page;
page_alloc = &ring->page_alloc[i];
dma_unmap_page(priv->ddev, page_alloc->dma,
page_alloc->page_size, PCI_DMA_FROMDEVICE);
page = page_alloc->page;
set_page_count(page, 1);
put_page(page);
page_alloc->page = NULL;
}
return -ENOMEM;
}
static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
struct mlx4_en_rx_alloc *page_alloc;
int i;
for (i = 0; i < priv->num_frags; i++) {
const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
page_alloc = &ring->page_alloc[i];
en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
i, page_count(page_alloc->page));
dma_unmap_page(priv->ddev, page_alloc->dma,
page_alloc->page_size, PCI_DMA_FROMDEVICE);
while (page_alloc->page_offset + frag_info->frag_stride <
page_alloc->page_size) {
put_page(page_alloc->page);
page_alloc->page_offset += frag_info->frag_stride;
}
page_alloc->page = NULL;
}
}
static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
int possible_frags;
int i;
/* Set size and memtype fields */
for (i = 0; i < priv->num_frags; i++) {
rx_desc->data[i].byte_count =
cpu_to_be32(priv->frag_info[i].frag_size);
rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
}
/* If the number of used fragments does not fill up the ring stride,
* remaining (unused) fragments must be padded with null address/size
* and a special memory key */
possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
for (i = priv->num_frags; i < possible_frags; i++) {
rx_desc->data[i].byte_count = 0;
rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
rx_desc->data[i].addr = 0;
}
}
static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index,
gfp_t gfp)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
struct mlx4_en_rx_alloc *frags = ring->rx_info +
(index << priv->log_rx_info);
return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp);
}
static inline bool mlx4_en_is_ring_empty(struct mlx4_en_rx_ring *ring)
{
return ring->prod == ring->cons;
}
static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
{
*ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
}
static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring,
int index)
{
struct mlx4_en_rx_alloc *frags;
int nr;
frags = ring->rx_info + (index << priv->log_rx_info);
for (nr = 0; nr < priv->num_frags; nr++) {
en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
mlx4_en_free_frag(priv, frags, nr);
}
}
static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int ring_ind;
int buf_ind;
int new_size;
for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
if (mlx4_en_prepare_rx_desc(priv, ring,
ring->actual_size,
GFP_KERNEL | __GFP_COLD)) {
if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
en_err(priv, "Failed to allocate enough rx buffers\n");
return -ENOMEM;
} else {
new_size = rounddown_pow_of_two(ring->actual_size);
en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n",
ring->actual_size, new_size);
goto reduce_rings;
}
}
ring->actual_size++;
ring->prod++;
}
}
return 0;
reduce_rings:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
while (ring->actual_size > new_size) {
ring->actual_size--;
ring->prod--;
mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
}
}
return 0;
}
static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int index;
en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
ring->cons, ring->prod);
/* Unmap and free Rx buffers */
while (!mlx4_en_is_ring_empty(ring)) {
index = ring->cons & ring->size_mask;
en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
mlx4_en_free_rx_desc(priv, ring, index);
++ring->cons;
}
}
void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev)
{
int i;
int num_of_eqs;
int num_rx_rings;
struct mlx4_dev *dev = mdev->dev;
mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) {
num_of_eqs = max_t(int, MIN_RX_RINGS,
min_t(int,
mlx4_get_eqs_per_port(mdev->dev, i),
DEF_RX_RINGS));
num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS :
min_t(int, num_of_eqs,
netif_get_num_default_rss_queues());
mdev->profile.prof[i].rx_ring_num =
rounddown_pow_of_two(num_rx_rings);
}
}
int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size, u16 stride, int node)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring;
int err = -ENOMEM;
int tmp;
ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node);
if (!ring) {
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring) {
en_err(priv, "Failed to allocate RX ring structure\n");
return -ENOMEM;
}
}
ring->prod = 0;
ring->cons = 0;
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
sizeof(struct mlx4_en_rx_alloc));
ring->rx_info = vmalloc_node(tmp, node);
if (!ring->rx_info) {
ring->rx_info = vmalloc(tmp);
if (!ring->rx_info) {
err = -ENOMEM;
goto err_ring;
}
}
en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
ring->rx_info, tmp);
/* Allocate HW buffers on provided NUMA node */
set_dev_node(&mdev->dev->persist->pdev->dev, node);
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
ring->buf_size, 2 * PAGE_SIZE);
set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node);
if (err)
goto err_info;
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map RX buffer\n");
goto err_hwq;
}
ring->buf = ring->wqres.buf.direct.buf;
ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter;
*pring = ring;
return 0;
err_hwq:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_info:
vfree(ring->rx_info);
ring->rx_info = NULL;
err_ring:
kfree(ring);
*pring = NULL;
return err;
}
int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int i;
int ring_ind;
int err;
int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
DS_SIZE * priv->num_frags);
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->prod = 0;
ring->cons = 0;
ring->actual_size = 0;
ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn;
ring->stride = stride;
if (ring->stride <= TXBB_SIZE)
ring->buf += TXBB_SIZE;
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride;
memset(ring->buf, 0, ring->buf_size);
mlx4_en_update_rx_prod_db(ring);
/* Initialize all descriptors */
for (i = 0; i < ring->size; i++)
mlx4_en_init_rx_desc(priv, ring, i);
/* Initialize page allocators */
err = mlx4_en_init_allocator(priv, ring);
if (err) {
en_err(priv, "Failed initializing ring allocator\n");
if (ring->stride <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
ring_ind--;
goto err_allocator;
}
}
err = mlx4_en_fill_rx_buffers(priv);
if (err)
goto err_buffers;
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = priv->rx_ring[ring_ind];
ring->size_mask = ring->actual_size - 1;
mlx4_en_update_rx_prod_db(ring);
}
return 0;
err_buffers:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]);
ring_ind = priv->rx_ring_num - 1;
err_allocator:
while (ring_ind >= 0) {
if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE)
priv->rx_ring[ring_ind]->buf -= TXBB_SIZE;
mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]);
ring_ind--;
}
return err;
}
/* We recover from out of memory by scheduling our napi poll
* function (mlx4_en_process_cq), which tries to allocate
* all missing RX buffers (call to mlx4_en_refill_rx_buffers).
*/
void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv)
{
int ring;
if (!priv->port_up)
return;
for (ring = 0; ring < priv->rx_ring_num; ring++) {
if (mlx4_en_is_ring_empty(priv->rx_ring[ring]))
napi_reschedule(&priv->rx_cq[ring]->napi);
}
}
void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring **pring,
u32 size, u16 stride)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rx_ring *ring = *pring;
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE);
vfree(ring->rx_info);
ring->rx_info = NULL;
kfree(ring);
*pring = NULL;
#ifdef CONFIG_RFS_ACCEL
mlx4_en_cleanup_filters(priv);
#endif
}
void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
mlx4_en_free_rx_buf(priv, ring);
if (ring->stride <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
mlx4_en_destroy_allocator(priv, ring);
}
static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_alloc *frags,
struct sk_buff *skb,
int length)
{
struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags;
struct mlx4_en_frag_info *frag_info;
int nr;
dma_addr_t dma;
/* Collect used fragments while replacing them in the HW descriptors */
for (nr = 0; nr < priv->num_frags; nr++) {
frag_info = &priv->frag_info[nr];
if (length <= frag_info->frag_prefix_size)
break;
if (!frags[nr].page)
goto fail;
dma = be64_to_cpu(rx_desc->data[nr].addr);
dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size,
DMA_FROM_DEVICE);
/* Save page reference in skb */
__skb_frag_set_page(&skb_frags_rx[nr], frags[nr].page);
skb_frag_size_set(&skb_frags_rx[nr], frag_info->frag_size);
skb_frags_rx[nr].page_offset = frags[nr].page_offset;
skb->truesize += frag_info->frag_stride;
frags[nr].page = NULL;
}
/* Adjust size of last fragment to match actual length */
if (nr > 0)
skb_frag_size_set(&skb_frags_rx[nr - 1],
length - priv->frag_info[nr - 1].frag_prefix_size);
return nr;
fail:
while (nr > 0) {
nr--;
__skb_frag_unref(&skb_frags_rx[nr]);
}
return 0;
}
static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct mlx4_en_rx_alloc *frags,
unsigned int length)
{
struct sk_buff *skb;
void *va;
int used_frags;
dma_addr_t dma;
skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN);
if (!skb) {
en_dbg(RX_ERR, priv, "Failed allocating skb\n");
return NULL;
}
skb_reserve(skb, NET_IP_ALIGN);
skb->len = length;
/* Get pointer to first fragment so we could copy the headers into the
* (linear part of the) skb */
va = page_address(frags[0].page) + frags[0].page_offset;
if (length <= SMALL_PACKET_SIZE) {
/* We are copying all relevant data to the skb - temporarily
* sync buffers for the copy */
dma = be64_to_cpu(rx_desc->data[0].addr);
dma_sync_single_for_cpu(priv->ddev, dma, length,
DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb, va, length);
skb->tail += length;
} else {
unsigned int pull_len;
/* Move relevant fragments to skb */
used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags,
skb, length);
if (unlikely(!used_frags)) {
kfree_skb(skb);
return NULL;
}
skb_shinfo(skb)->nr_frags = used_frags;
pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE);
/* Copy headers into the skb linear buffer */
memcpy(skb->data, va, pull_len);
skb->tail += pull_len;
/* Skip headers in first fragment */
skb_shinfo(skb)->frags[0].page_offset += pull_len;
/* Adjust size of first fragment */
skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len);
skb->data_len = length - pull_len;
}
return skb;
}
static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb)
{
int i;
int offset = ETH_HLEN;
for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) {
if (*(skb->data + offset) != (unsigned char) (i & 0xff))
goto out_loopback;
}
/* Loopback found */
priv->loopback_ok = 1;
out_loopback:
dev_kfree_skb_any(skb);
}
static void mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int index = ring->prod & ring->size_mask;
while ((u32) (ring->prod - ring->cons) < ring->actual_size) {
if (mlx4_en_prepare_rx_desc(priv, ring, index,
GFP_ATOMIC | __GFP_COLD))
break;
ring->prod++;
index = ring->prod & ring->size_mask;
}
}
/* When hardware doesn't strip the vlan, we need to calculate the checksum
* over it and add it to the hardware's checksum calculation
*/
static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum,
struct vlan_hdr *vlanh)
{
return csum_add(hw_checksum, *(__wsum *)vlanh);
}
/* Although the stack expects checksum which doesn't include the pseudo
* header, the HW adds it. To address that, we are subtracting the pseudo
* header checksum from the checksum value provided by the HW.
*/
static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb,
struct iphdr *iph)
{
__u16 length_for_csum = 0;
__wsum csum_pseudo_header = 0;
length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2));
csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr,
length_for_csum, iph->protocol, 0);
skb->csum = csum_sub(hw_checksum, csum_pseudo_header);
}
#if IS_ENABLED(CONFIG_IPV6)
/* In IPv6 packets, besides subtracting the pseudo header checksum,
* we also compute/add the IP header checksum which
* is not added by the HW.
*/
static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb,
struct ipv6hdr *ipv6h)
{
__wsum csum_pseudo_hdr = 0;
if (ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS)
return -1;
hw_checksum = csum_add(hw_checksum, (__force __wsum)(ipv6h->nexthdr << 8));
csum_pseudo_hdr = csum_partial(&ipv6h->saddr,
sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0);
csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len);
csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr));
skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr);
skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0));
return 0;
}
#endif
static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va,
netdev_features_t dev_features)
{
__wsum hw_checksum = 0;
void *hdr = (u8 *)va + sizeof(struct ethhdr);
hw_checksum = csum_unfold((__force __sum16)cqe->checksum);
if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) &&
!(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) {
hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr);
hdr += sizeof(struct vlan_hdr);
}
if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4))
get_fixed_ipv4_csum(hw_checksum, skb, hdr);
#if IS_ENABLED(CONFIG_IPV6)
else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6))
if (get_fixed_ipv6_csum(hw_checksum, skb, hdr))
return -1;
#endif
return 0;
}
int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_cqe *cqe;
struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring];
struct mlx4_en_rx_alloc *frags;
struct mlx4_en_rx_desc *rx_desc;
struct sk_buff *skb;
int index;
int nr;
unsigned int length;
int polled = 0;
int ip_summed;
int factor = priv->cqe_factor;
u64 timestamp;
bool l2_tunnel;
if (!priv->port_up)
return 0;
if (budget <= 0)
return polled;
/* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
* descriptor offset can be deduced from the CQE index instead of
* reading 'cqe->index' */
index = cq->mcq.cons_index & ring->size_mask;
cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cq->mcq.cons_index & cq->size)) {
frags = ring->rx_info + (index << priv->log_rx_info);
rx_desc = ring->buf + (index << ring->log_stride);
/*
* make sure we read the CQE after we read the ownership bit
*/
dma_rmb();
/* Drop packet on bad receive or bad checksum */
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n",
((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome,
((struct mlx4_err_cqe *)cqe)->syndrome);
goto next;
}
if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
goto next;
}
/* Check if we need to drop the packet if SRIOV is not enabled
* and not performing the selftest or flb disabled
*/
if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) {
struct ethhdr *ethh;
dma_addr_t dma;
/* Get pointer to first fragment since we haven't
* skb yet and cast it to ethhdr struct
*/
dma = be64_to_cpu(rx_desc->data[0].addr);
dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh),
DMA_FROM_DEVICE);
ethh = (struct ethhdr *)(page_address(frags[0].page) +
frags[0].page_offset);
if (is_multicast_ether_addr(ethh->h_dest)) {
struct mlx4_mac_entry *entry;
struct hlist_head *bucket;
unsigned int mac_hash;
/* Drop the packet, since HW loopback-ed it */
mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX];
bucket = &priv->mac_hash[mac_hash];
rcu_read_lock();
hlist_for_each_entry_rcu(entry, bucket, hlist) {
if (ether_addr_equal_64bits(entry->mac,
ethh->h_source)) {
rcu_read_unlock();
goto next;
}
}
rcu_read_unlock();
}
}
/*
* Packet is OK - process it.
*/
length = be32_to_cpu(cqe->byte_cnt);
length -= ring->fcs_del;
ring->bytes += length;
ring->packets++;
l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) &&
(cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL));
if (likely(dev->features & NETIF_F_RXCSUM)) {
if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP |
MLX4_CQE_STATUS_UDP)) {
if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
cqe->checksum == cpu_to_be16(0xffff)) {
ip_summed = CHECKSUM_UNNECESSARY;
ring->csum_ok++;
} else {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
}
} else {
if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP &&
(cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 |
MLX4_CQE_STATUS_IPV6))) {
ip_summed = CHECKSUM_COMPLETE;
ring->csum_complete++;
} else {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
}
}
} else {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
}
/* This packet is eligible for GRO if it is:
* - DIX Ethernet (type interpretation)
* - TCP/IP (v4)
* - without IP options
* - not an IP fragment
*/
if (dev->features & NETIF_F_GRO) {
struct sk_buff *gro_skb = napi_get_frags(&cq->napi);
if (!gro_skb)
goto next;
nr = mlx4_en_complete_rx_desc(priv,
rx_desc, frags, gro_skb,
length);
if (!nr)
goto next;
if (ip_summed == CHECKSUM_COMPLETE) {
void *va = skb_frag_address(skb_shinfo(gro_skb)->frags);
if (check_csum(cqe, gro_skb, va,
dev->features)) {
ip_summed = CHECKSUM_NONE;
ring->csum_none++;
ring->csum_complete--;
}
}
skb_shinfo(gro_skb)->nr_frags = nr;
gro_skb->len = length;
gro_skb->data_len = length;
gro_skb->ip_summed = ip_summed;
if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
gro_skb->csum_level = 1;
if ((cqe->vlan_my_qpn &
cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_RX)) {
u16 vid = be16_to_cpu(cqe->sl_vid);
__vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid);
} else if ((be32_to_cpu(cqe->vlan_my_qpn) &
MLX4_CQE_SVLAN_PRESENT_MASK) &&
(dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
__vlan_hwaccel_put_tag(gro_skb,
htons(ETH_P_8021AD),
be16_to_cpu(cqe->sl_vid));
}
if (dev->features & NETIF_F_RXHASH)
skb_set_hash(gro_skb,
be32_to_cpu(cqe->immed_rss_invalid),
(ip_summed == CHECKSUM_UNNECESSARY) ?
PKT_HASH_TYPE_L4 :
PKT_HASH_TYPE_L3);
skb_record_rx_queue(gro_skb, cq->ring);
if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
timestamp = mlx4_en_get_cqe_ts(cqe);
mlx4_en_fill_hwtstamps(mdev,
skb_hwtstamps(gro_skb),
timestamp);
}
napi_gro_frags(&cq->napi);
goto next;
}
/* GRO not possible, complete processing here */
skb = mlx4_en_rx_skb(priv, rx_desc, frags, length);
if (!skb) {
priv->stats.rx_dropped++;
goto next;
}
if (unlikely(priv->validate_loopback)) {
validate_loopback(priv, skb);
goto next;
}
if (ip_summed == CHECKSUM_COMPLETE) {
if (check_csum(cqe, skb, skb->data, dev->features)) {
ip_summed = CHECKSUM_NONE;
ring->csum_complete--;
ring->csum_none++;
}
}
skb->ip_summed = ip_summed;
skb->protocol = eth_type_trans(skb, dev);
skb_record_rx_queue(skb, cq->ring);
if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY)
skb->csum_level = 1;
if (dev->features & NETIF_F_RXHASH)
skb_set_hash(skb,
be32_to_cpu(cqe->immed_rss_invalid),
(ip_summed == CHECKSUM_UNNECESSARY) ?
PKT_HASH_TYPE_L4 :
PKT_HASH_TYPE_L3);
if ((be32_to_cpu(cqe->vlan_my_qpn) &
MLX4_CQE_CVLAN_PRESENT_MASK) &&
(dev->features & NETIF_F_HW_VLAN_CTAG_RX))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid));
else if ((be32_to_cpu(cqe->vlan_my_qpn) &
MLX4_CQE_SVLAN_PRESENT_MASK) &&
(dev->features & NETIF_F_HW_VLAN_STAG_RX))
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD),
be16_to_cpu(cqe->sl_vid));
if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) {
timestamp = mlx4_en_get_cqe_ts(cqe);
mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb),
timestamp);
}
napi_gro_receive(&cq->napi, skb);
next:
for (nr = 0; nr < priv->num_frags; nr++)
mlx4_en_free_frag(priv, frags, nr);
++cq->mcq.cons_index;
index = (cq->mcq.cons_index) & ring->size_mask;
cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor;
if (++polled == budget)
goto out;
}
out:
AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
mlx4_cq_set_ci(&cq->mcq);
wmb(); /* ensure HW sees CQ consumer before we post new buffers */
ring->cons = cq->mcq.cons_index;
mlx4_en_refill_rx_buffers(priv, ring);
mlx4_en_update_rx_prod_db(ring);
return polled;
}
void mlx4_en_rx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
if (likely(priv->port_up))
napi_schedule_irqoff(&cq->napi);
else
mlx4_en_arm_cq(priv, cq);
}
/* Rx CQ polling - called by NAPI */
int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
{
struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
struct net_device *dev = cq->dev;
struct mlx4_en_priv *priv = netdev_priv(dev);
int done;
done = mlx4_en_process_rx_cq(dev, cq, budget);
/* If we used up all the quota - we're probably not done yet... */
if (done == budget) {
const struct cpumask *aff;
struct irq_data *idata;
int cpu_curr;
INC_PERF_COUNTER(priv->pstats.napi_quota);
cpu_curr = smp_processor_id();
idata = irq_desc_get_irq_data(cq->irq_desc);
aff = irq_data_get_affinity_mask(idata);
if (likely(cpumask_test_cpu(cpu_curr, aff)))
return budget;
/* Current cpu is not according to smp_irq_affinity -
* probably affinity changed. need to stop this NAPI
* poll, and restart it on the right CPU
*/
done = 0;
}
/* Done for now */
napi_complete_done(napi, done);
mlx4_en_arm_cq(priv, cq);
return done;
}
static const int frag_sizes[] = {
FRAG_SZ0,
FRAG_SZ1,
FRAG_SZ2,
FRAG_SZ3
};
void mlx4_en_calc_rx_buf(struct net_device *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
/* VLAN_HLEN is added twice,to support skb vlan tagged with multiple
* headers. (For example: ETH_P_8021Q and ETH_P_8021AD).
*/
int eff_mtu = dev->mtu + ETH_HLEN + (2 * VLAN_HLEN);
int buf_size = 0;
int i = 0;
while (buf_size < eff_mtu) {
priv->frag_info[i].frag_size =
(eff_mtu > buf_size + frag_sizes[i]) ?
frag_sizes[i] : eff_mtu - buf_size;
priv->frag_info[i].frag_prefix_size = buf_size;
priv->frag_info[i].frag_stride =
ALIGN(priv->frag_info[i].frag_size,
SMP_CACHE_BYTES);
buf_size += priv->frag_info[i].frag_size;
i++;
}
priv->num_frags = i;
priv->rx_skb_size = eff_mtu;
priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc));
en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n",
eff_mtu, priv->num_frags);
for (i = 0; i < priv->num_frags; i++) {
en_err(priv,
" frag:%d - size:%d prefix:%d stride:%d\n",
i,
priv->frag_info[i].frag_size,
priv->frag_info[i].frag_prefix_size,
priv->frag_info[i].frag_stride);
}
}
/* RSS related functions */
static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
struct mlx4_en_rx_ring *ring,
enum mlx4_qp_state *state,
struct mlx4_qp *qp)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_qp_context *context;
int err = 0;
context = kmalloc(sizeof(*context), GFP_KERNEL);
if (!context)
return -ENOMEM;
err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed to allocate qp #%x\n", qpn);
goto out;
}
qp->event = mlx4_en_sqp_event;
memset(context, 0, sizeof *context);
mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0,
qpn, ring->cqn, -1, context);
context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
/* Cancel FCS removal if FW allows */
if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) {
context->param3 |= cpu_to_be32(1 << 29);
if (priv->dev->features & NETIF_F_RXFCS)
ring->fcs_del = 0;
else
ring->fcs_del = ETH_FCS_LEN;
} else
ring->fcs_del = 0;
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
if (err) {
mlx4_qp_remove(mdev->dev, qp);
mlx4_qp_free(mdev->dev, qp);
}
mlx4_en_update_rx_prod_db(ring);
out:
kfree(context);
return err;
}
int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv)
{
int err;
u32 qpn;
err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn,
MLX4_RESERVE_A0_QP);
if (err) {
en_err(priv, "Failed reserving drop qpn\n");
return err;
}
err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed allocating drop qp\n");
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
return err;
}
return 0;
}
void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv)
{
u32 qpn;
qpn = priv->drop_qp.qpn;
mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_free(priv->mdev->dev, &priv->drop_qp);
mlx4_qp_release_range(priv->mdev->dev, qpn, 1);
}
/* Allocate rx qp's and configure them according to rss map */
int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
struct mlx4_qp_context context;
struct mlx4_rss_context *rss_context;
int rss_rings;
void *ptr;
u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 |
MLX4_RSS_TCP_IPV6);
int i, qpn;
int err = 0;
int good_qps = 0;
en_dbg(DRV, priv, "Configuring rss steering\n");
err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
priv->rx_ring_num,
&rss_map->base_qpn, 0);
if (err) {
en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
return err;
}
for (i = 0; i < priv->rx_ring_num; i++) {
qpn = rss_map->base_qpn + i;
err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i],
&rss_map->state[i],
&rss_map->qps[i]);
if (err)
goto rss_err;
++good_qps;
}
/* Configure RSS indirection qp */
err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL);
if (err) {
en_err(priv, "Failed to allocate RSS indirection QP\n");
goto rss_err;
}
rss_map->indir_qp.event = mlx4_en_sqp_event;
mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
priv->rx_ring[0]->cqn, -1, &context);
if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num)
rss_rings = priv->rx_ring_num;
else
rss_rings = priv->prof->rss_rings;
ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path)
+ MLX4_RSS_OFFSET_IN_QPC_PRI_PATH;
rss_context = ptr;
rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 |
(rss_map->base_qpn));
rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
if (priv->mdev->profile.udp_rss) {
rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6;
rss_context->base_qpn_udp = rss_context->default_qpn;
}
if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) {
en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n");
rss_mask |= MLX4_RSS_BY_INNER_HEADERS;
}
rss_context->flags = rss_mask;
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) {
rss_context->hash_fn = MLX4_RSS_HASH_XOR;
} else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) {
rss_context->hash_fn = MLX4_RSS_HASH_TOP;
memcpy(rss_context->rss_key, priv->rss_key,
MLX4_EN_RSS_KEY_SIZE);
} else {
en_err(priv, "Unknown RSS hash function requested\n");
err = -EINVAL;
goto indir_err;
}
err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
&rss_map->indir_qp, &rss_map->indir_state);
if (err)
goto indir_err;
return 0;
indir_err:
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
rss_err:
for (i = 0; i < good_qps; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
return err;
}
void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
int i;
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
for (i = 0; i < priv->rx_ring_num; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
}