mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 12:49:47 +07:00
2f004eea0f
Make #GP exceptions caused by out-of-bounds KASAN shadow accesses easier to understand by computing the address of the original access and printing that. More details are in the comments in the patch. This turns an error like this: kasan: CONFIG_KASAN_INLINE enabled kasan: GPF could be caused by NULL-ptr deref or user memory access general protection fault, probably for non-canonical address 0xe017577ddf75b7dd: 0000 [#1] PREEMPT SMP KASAN PTI into this: general protection fault, probably for non-canonical address 0xe017577ddf75b7dd: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: maybe wild-memory-access in range [0x00badbeefbadbee8-0x00badbeefbadbeef] The hook is placed in architecture-independent code, but is currently only wired up to the X86 exception handler because I'm not sufficiently familiar with the address space layout and exception handling mechanisms on other architectures. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Dmitry Vyukov <dvyukov@google.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: kasan-dev@googlegroups.com Cc: linux-mm <linux-mm@kvack.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20191218231150.12139-4-jannh@google.com
449 lines
12 KiB
C
449 lines
12 KiB
C
/*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
|
|
*/
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/module.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/kasan.h>
|
|
|
|
#include <asm/cpu_entry_area.h>
|
|
#include <asm/stacktrace.h>
|
|
#include <asm/unwind.h>
|
|
|
|
int panic_on_unrecovered_nmi;
|
|
int panic_on_io_nmi;
|
|
static int die_counter;
|
|
|
|
static struct pt_regs exec_summary_regs;
|
|
|
|
bool in_task_stack(unsigned long *stack, struct task_struct *task,
|
|
struct stack_info *info)
|
|
{
|
|
unsigned long *begin = task_stack_page(task);
|
|
unsigned long *end = task_stack_page(task) + THREAD_SIZE;
|
|
|
|
if (stack < begin || stack >= end)
|
|
return false;
|
|
|
|
info->type = STACK_TYPE_TASK;
|
|
info->begin = begin;
|
|
info->end = end;
|
|
info->next_sp = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool in_entry_stack(unsigned long *stack, struct stack_info *info)
|
|
{
|
|
struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
|
|
|
|
void *begin = ss;
|
|
void *end = ss + 1;
|
|
|
|
if ((void *)stack < begin || (void *)stack >= end)
|
|
return false;
|
|
|
|
info->type = STACK_TYPE_ENTRY;
|
|
info->begin = begin;
|
|
info->end = end;
|
|
info->next_sp = NULL;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void printk_stack_address(unsigned long address, int reliable,
|
|
char *log_lvl)
|
|
{
|
|
touch_nmi_watchdog();
|
|
printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
|
|
}
|
|
|
|
/*
|
|
* There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
|
|
*
|
|
* In case where we don't have the exact kernel image (which, if we did, we can
|
|
* simply disassemble and navigate to the RIP), the purpose of the bigger
|
|
* prologue is to have more context and to be able to correlate the code from
|
|
* the different toolchains better.
|
|
*
|
|
* In addition, it helps in recreating the register allocation of the failing
|
|
* kernel and thus make sense of the register dump.
|
|
*
|
|
* What is more, the additional complication of a variable length insn arch like
|
|
* x86 warrants having longer byte sequence before rIP so that the disassembler
|
|
* can "sync" up properly and find instruction boundaries when decoding the
|
|
* opcode bytes.
|
|
*
|
|
* Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
|
|
* guesstimate in attempt to achieve all of the above.
|
|
*/
|
|
void show_opcodes(struct pt_regs *regs, const char *loglvl)
|
|
{
|
|
#define PROLOGUE_SIZE 42
|
|
#define EPILOGUE_SIZE 21
|
|
#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
|
|
u8 opcodes[OPCODE_BUFSIZE];
|
|
unsigned long prologue = regs->ip - PROLOGUE_SIZE;
|
|
bool bad_ip;
|
|
|
|
/*
|
|
* Make sure userspace isn't trying to trick us into dumping kernel
|
|
* memory by pointing the userspace instruction pointer at it.
|
|
*/
|
|
bad_ip = user_mode(regs) &&
|
|
__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
|
|
|
|
if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
|
|
OPCODE_BUFSIZE)) {
|
|
printk("%sCode: Bad RIP value.\n", loglvl);
|
|
} else {
|
|
printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
|
|
__stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
|
|
opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
|
|
}
|
|
}
|
|
|
|
void show_ip(struct pt_regs *regs, const char *loglvl)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
|
|
#else
|
|
printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
|
|
#endif
|
|
show_opcodes(regs, loglvl);
|
|
}
|
|
|
|
void show_iret_regs(struct pt_regs *regs)
|
|
{
|
|
show_ip(regs, KERN_DEFAULT);
|
|
printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
|
|
regs->sp, regs->flags);
|
|
}
|
|
|
|
static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
|
|
bool partial)
|
|
{
|
|
/*
|
|
* These on_stack() checks aren't strictly necessary: the unwind code
|
|
* has already validated the 'regs' pointer. The checks are done for
|
|
* ordering reasons: if the registers are on the next stack, we don't
|
|
* want to print them out yet. Otherwise they'll be shown as part of
|
|
* the wrong stack. Later, when show_trace_log_lvl() switches to the
|
|
* next stack, this function will be called again with the same regs so
|
|
* they can be printed in the right context.
|
|
*/
|
|
if (!partial && on_stack(info, regs, sizeof(*regs))) {
|
|
__show_regs(regs, SHOW_REGS_SHORT);
|
|
|
|
} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
|
|
IRET_FRAME_SIZE)) {
|
|
/*
|
|
* When an interrupt or exception occurs in entry code, the
|
|
* full pt_regs might not have been saved yet. In that case
|
|
* just print the iret frame.
|
|
*/
|
|
show_iret_regs(regs);
|
|
}
|
|
}
|
|
|
|
void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
|
|
unsigned long *stack, char *log_lvl)
|
|
{
|
|
struct unwind_state state;
|
|
struct stack_info stack_info = {0};
|
|
unsigned long visit_mask = 0;
|
|
int graph_idx = 0;
|
|
bool partial = false;
|
|
|
|
printk("%sCall Trace:\n", log_lvl);
|
|
|
|
unwind_start(&state, task, regs, stack);
|
|
stack = stack ? : get_stack_pointer(task, regs);
|
|
regs = unwind_get_entry_regs(&state, &partial);
|
|
|
|
/*
|
|
* Iterate through the stacks, starting with the current stack pointer.
|
|
* Each stack has a pointer to the next one.
|
|
*
|
|
* x86-64 can have several stacks:
|
|
* - task stack
|
|
* - interrupt stack
|
|
* - HW exception stacks (double fault, nmi, debug, mce)
|
|
* - entry stack
|
|
*
|
|
* x86-32 can have up to four stacks:
|
|
* - task stack
|
|
* - softirq stack
|
|
* - hardirq stack
|
|
* - entry stack
|
|
*/
|
|
for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
|
|
const char *stack_name;
|
|
|
|
if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
|
|
/*
|
|
* We weren't on a valid stack. It's possible that
|
|
* we overflowed a valid stack into a guard page.
|
|
* See if the next page up is valid so that we can
|
|
* generate some kind of backtrace if this happens.
|
|
*/
|
|
stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
|
|
if (get_stack_info(stack, task, &stack_info, &visit_mask))
|
|
break;
|
|
}
|
|
|
|
stack_name = stack_type_name(stack_info.type);
|
|
if (stack_name)
|
|
printk("%s <%s>\n", log_lvl, stack_name);
|
|
|
|
if (regs)
|
|
show_regs_if_on_stack(&stack_info, regs, partial);
|
|
|
|
/*
|
|
* Scan the stack, printing any text addresses we find. At the
|
|
* same time, follow proper stack frames with the unwinder.
|
|
*
|
|
* Addresses found during the scan which are not reported by
|
|
* the unwinder are considered to be additional clues which are
|
|
* sometimes useful for debugging and are prefixed with '?'.
|
|
* This also serves as a failsafe option in case the unwinder
|
|
* goes off in the weeds.
|
|
*/
|
|
for (; stack < stack_info.end; stack++) {
|
|
unsigned long real_addr;
|
|
int reliable = 0;
|
|
unsigned long addr = READ_ONCE_NOCHECK(*stack);
|
|
unsigned long *ret_addr_p =
|
|
unwind_get_return_address_ptr(&state);
|
|
|
|
if (!__kernel_text_address(addr))
|
|
continue;
|
|
|
|
/*
|
|
* Don't print regs->ip again if it was already printed
|
|
* by show_regs_if_on_stack().
|
|
*/
|
|
if (regs && stack == ®s->ip)
|
|
goto next;
|
|
|
|
if (stack == ret_addr_p)
|
|
reliable = 1;
|
|
|
|
/*
|
|
* When function graph tracing is enabled for a
|
|
* function, its return address on the stack is
|
|
* replaced with the address of an ftrace handler
|
|
* (return_to_handler). In that case, before printing
|
|
* the "real" address, we want to print the handler
|
|
* address as an "unreliable" hint that function graph
|
|
* tracing was involved.
|
|
*/
|
|
real_addr = ftrace_graph_ret_addr(task, &graph_idx,
|
|
addr, stack);
|
|
if (real_addr != addr)
|
|
printk_stack_address(addr, 0, log_lvl);
|
|
printk_stack_address(real_addr, reliable, log_lvl);
|
|
|
|
if (!reliable)
|
|
continue;
|
|
|
|
next:
|
|
/*
|
|
* Get the next frame from the unwinder. No need to
|
|
* check for an error: if anything goes wrong, the rest
|
|
* of the addresses will just be printed as unreliable.
|
|
*/
|
|
unwind_next_frame(&state);
|
|
|
|
/* if the frame has entry regs, print them */
|
|
regs = unwind_get_entry_regs(&state, &partial);
|
|
if (regs)
|
|
show_regs_if_on_stack(&stack_info, regs, partial);
|
|
}
|
|
|
|
if (stack_name)
|
|
printk("%s </%s>\n", log_lvl, stack_name);
|
|
}
|
|
}
|
|
|
|
void show_stack(struct task_struct *task, unsigned long *sp)
|
|
{
|
|
task = task ? : current;
|
|
|
|
/*
|
|
* Stack frames below this one aren't interesting. Don't show them
|
|
* if we're printing for %current.
|
|
*/
|
|
if (!sp && task == current)
|
|
sp = get_stack_pointer(current, NULL);
|
|
|
|
show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
|
|
}
|
|
|
|
void show_stack_regs(struct pt_regs *regs)
|
|
{
|
|
show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
|
|
}
|
|
|
|
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
|
|
static int die_owner = -1;
|
|
static unsigned int die_nest_count;
|
|
|
|
unsigned long oops_begin(void)
|
|
{
|
|
int cpu;
|
|
unsigned long flags;
|
|
|
|
oops_enter();
|
|
|
|
/* racy, but better than risking deadlock. */
|
|
raw_local_irq_save(flags);
|
|
cpu = smp_processor_id();
|
|
if (!arch_spin_trylock(&die_lock)) {
|
|
if (cpu == die_owner)
|
|
/* nested oops. should stop eventually */;
|
|
else
|
|
arch_spin_lock(&die_lock);
|
|
}
|
|
die_nest_count++;
|
|
die_owner = cpu;
|
|
console_verbose();
|
|
bust_spinlocks(1);
|
|
return flags;
|
|
}
|
|
NOKPROBE_SYMBOL(oops_begin);
|
|
|
|
void __noreturn rewind_stack_do_exit(int signr);
|
|
|
|
void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
|
|
{
|
|
if (regs && kexec_should_crash(current))
|
|
crash_kexec(regs);
|
|
|
|
bust_spinlocks(0);
|
|
die_owner = -1;
|
|
add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
|
|
die_nest_count--;
|
|
if (!die_nest_count)
|
|
/* Nest count reaches zero, release the lock. */
|
|
arch_spin_unlock(&die_lock);
|
|
raw_local_irq_restore(flags);
|
|
oops_exit();
|
|
|
|
/* Executive summary in case the oops scrolled away */
|
|
__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
|
|
|
|
if (!signr)
|
|
return;
|
|
if (in_interrupt())
|
|
panic("Fatal exception in interrupt");
|
|
if (panic_on_oops)
|
|
panic("Fatal exception");
|
|
|
|
/*
|
|
* We're not going to return, but we might be on an IST stack or
|
|
* have very little stack space left. Rewind the stack and kill
|
|
* the task.
|
|
* Before we rewind the stack, we have to tell KASAN that we're going to
|
|
* reuse the task stack and that existing poisons are invalid.
|
|
*/
|
|
kasan_unpoison_task_stack(current);
|
|
rewind_stack_do_exit(signr);
|
|
}
|
|
NOKPROBE_SYMBOL(oops_end);
|
|
|
|
static void __die_header(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
const char *pr = "";
|
|
|
|
/* Save the regs of the first oops for the executive summary later. */
|
|
if (!die_counter)
|
|
exec_summary_regs = *regs;
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPTION))
|
|
pr = IS_ENABLED(CONFIG_PREEMPT_RT) ? " PREEMPT_RT" : " PREEMPT";
|
|
|
|
printk(KERN_DEFAULT
|
|
"%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
|
|
pr,
|
|
IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
|
|
debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
|
|
IS_ENABLED(CONFIG_KASAN) ? " KASAN" : "",
|
|
IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
|
|
(boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
|
|
}
|
|
NOKPROBE_SYMBOL(__die_header);
|
|
|
|
static int __die_body(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
show_regs(regs);
|
|
print_modules();
|
|
|
|
if (notify_die(DIE_OOPS, str, regs, err,
|
|
current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
NOKPROBE_SYMBOL(__die_body);
|
|
|
|
int __die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
__die_header(str, regs, err);
|
|
return __die_body(str, regs, err);
|
|
}
|
|
NOKPROBE_SYMBOL(__die);
|
|
|
|
/*
|
|
* This is gone through when something in the kernel has done something bad
|
|
* and is about to be terminated:
|
|
*/
|
|
void die(const char *str, struct pt_regs *regs, long err)
|
|
{
|
|
unsigned long flags = oops_begin();
|
|
int sig = SIGSEGV;
|
|
|
|
if (__die(str, regs, err))
|
|
sig = 0;
|
|
oops_end(flags, regs, sig);
|
|
}
|
|
|
|
void die_addr(const char *str, struct pt_regs *regs, long err, long gp_addr)
|
|
{
|
|
unsigned long flags = oops_begin();
|
|
int sig = SIGSEGV;
|
|
|
|
__die_header(str, regs, err);
|
|
if (gp_addr)
|
|
kasan_non_canonical_hook(gp_addr);
|
|
if (__die_body(str, regs, err))
|
|
sig = 0;
|
|
oops_end(flags, regs, sig);
|
|
}
|
|
|
|
void show_regs(struct pt_regs *regs)
|
|
{
|
|
show_regs_print_info(KERN_DEFAULT);
|
|
|
|
__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
|
|
|
|
/*
|
|
* When in-kernel, we also print out the stack at the time of the fault..
|
|
*/
|
|
if (!user_mode(regs))
|
|
show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
|
|
}
|