mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-19 17:20:02 +07:00
a60d4b9874
- Boot on ARM without using Xen unconditionally
- On Xen ARM don't run cpuidle/cpufreq
- Fix regression in balloon driver, preempt count warnings
- Fixes to make PVHVM able to use pv ticketlock.
- Revert Xen PVHVM disabling pv ticketlock (aka, re-enable pv ticketlocks)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)
iQEcBAABAgAGBQJSLhcPAAoJEFjIrFwIi8fJGq8IAIxI9zcnY9N6eaD3DepdZlz9
AMT8/k7afau1rDMk5r3HaUjAkdeEvCgeWw8W6tJ+OK19AmFTVEvoO803MSzYkDol
6XoknSoU9UnE+/w4FF1FttWmRxkZ8Op/hcs9435q7o+L0zlk9CbbkxFlzUKf5yVD
KfvQED4D/ShmPj2f+jYLCtsIi1m/AJ36BsfaUtJo3QVKvJIFFbT6F1AJ4tlbmvC0
FOaHYl9cTlPXfrpwviIP0+W8RVmcWreLqSOKsdHuWzB//MSvZDVmLGc7JPorblfe
cuME/tF/Y5bnxHKp8Es2MczpdvS6yp/HNoe0g6AdLVPL7dvGPqKpf2uZZNXUawQ=
=qpSg
-----END PGP SIGNATURE-----
Merge tag 'stable/for-linus-3.12-rc0-tag-two' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull Xen bug-fixes from Konrad Rzeszutek Wilk:
"This pull I usually do after rc1 is out but because we have a nice
amount of fixes, some bootup related fixes for ARM, and it is early in
the cycle we figured to do it now to help with tracking of potential
regressions.
The simple ones are the ARM ones - one of the patches fell through the
cracks, other fixes a bootup issue (unconditionally using Xen
functions). Then a fix for a regression causing preempt count being
off (patch causing this went in v3.12).
Lastly are the fixes to make Xen PVHVM guests use PV ticketlocks (Xen
PV already does).
The enablement of that was supposed to be part of the x86 spinlock
merge in commit 816434ec4a
("The biggest change here are
paravirtualized ticket spinlocks (PV spinlocks), which bring a nice
speedup on various benchmarks...") but unfortunatly it would cause
hang when booting Xen PVHVM guests. Yours truly got all of the bugs
fixed last week and they (six of them) are included in this pull.
Bug-fixes:
- Boot on ARM without using Xen unconditionally
- On Xen ARM don't run cpuidle/cpufreq
- Fix regression in balloon driver, preempt count warnings
- Fixes to make PVHVM able to use pv ticketlock.
- Revert Xen PVHVM disabling pv ticketlock (aka, re-enable pv ticketlocks)"
* tag 'stable/for-linus-3.12-rc0-tag-two' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/spinlock: Don't use __initdate for xen_pv_spin
Revert "xen/spinlock: Disable IRQ spinlock (PV) allocation on PVHVM"
xen/spinlock: Don't setup xen spinlock IPI kicker if disabled.
xen/smp: Update pv_lock_ops functions before alternative code starts under PVHVM
xen/spinlock: We don't need the old structure anymore
xen/spinlock: Fix locking path engaging too soon under PVHVM.
xen/arm: disable cpuidle and cpufreq when linux is running as dom0
xen/p2m: Don't call get_balloon_scratch_page() twice, keep interrupts disabled for multicalls
ARM: xen: only set pm function ptrs for Xen guests
1755 lines
42 KiB
C
1755 lines
42 KiB
C
/*
|
|
* Core of Xen paravirt_ops implementation.
|
|
*
|
|
* This file contains the xen_paravirt_ops structure itself, and the
|
|
* implementations for:
|
|
* - privileged instructions
|
|
* - interrupt flags
|
|
* - segment operations
|
|
* - booting and setup
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/page-flags.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/console.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/edd.h>
|
|
|
|
#include <xen/xen.h>
|
|
#include <xen/events.h>
|
|
#include <xen/interface/xen.h>
|
|
#include <xen/interface/version.h>
|
|
#include <xen/interface/physdev.h>
|
|
#include <xen/interface/vcpu.h>
|
|
#include <xen/interface/memory.h>
|
|
#include <xen/interface/xen-mca.h>
|
|
#include <xen/features.h>
|
|
#include <xen/page.h>
|
|
#include <xen/hvm.h>
|
|
#include <xen/hvc-console.h>
|
|
#include <xen/acpi.h>
|
|
|
|
#include <asm/paravirt.h>
|
|
#include <asm/apic.h>
|
|
#include <asm/page.h>
|
|
#include <asm/xen/pci.h>
|
|
#include <asm/xen/hypercall.h>
|
|
#include <asm/xen/hypervisor.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/msr-index.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/reboot.h>
|
|
#include <asm/stackprotector.h>
|
|
#include <asm/hypervisor.h>
|
|
#include <asm/mwait.h>
|
|
#include <asm/pci_x86.h>
|
|
#include <asm/pat.h>
|
|
|
|
#ifdef CONFIG_ACPI
|
|
#include <linux/acpi.h>
|
|
#include <asm/acpi.h>
|
|
#include <acpi/pdc_intel.h>
|
|
#include <acpi/processor.h>
|
|
#include <xen/interface/platform.h>
|
|
#endif
|
|
|
|
#include "xen-ops.h"
|
|
#include "mmu.h"
|
|
#include "smp.h"
|
|
#include "multicalls.h"
|
|
|
|
EXPORT_SYMBOL_GPL(hypercall_page);
|
|
|
|
/*
|
|
* Pointer to the xen_vcpu_info structure or
|
|
* &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
|
|
* and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
|
|
* but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
|
|
* to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
|
|
* acknowledge pending events.
|
|
* Also more subtly it is used by the patched version of irq enable/disable
|
|
* e.g. xen_irq_enable_direct and xen_iret in PV mode.
|
|
*
|
|
* The desire to be able to do those mask/unmask operations as a single
|
|
* instruction by using the per-cpu offset held in %gs is the real reason
|
|
* vcpu info is in a per-cpu pointer and the original reason for this
|
|
* hypercall.
|
|
*
|
|
*/
|
|
DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
|
|
|
|
/*
|
|
* Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
|
|
* hypercall. This can be used both in PV and PVHVM mode. The structure
|
|
* overrides the default per_cpu(xen_vcpu, cpu) value.
|
|
*/
|
|
DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
|
|
|
|
enum xen_domain_type xen_domain_type = XEN_NATIVE;
|
|
EXPORT_SYMBOL_GPL(xen_domain_type);
|
|
|
|
unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
|
|
EXPORT_SYMBOL(machine_to_phys_mapping);
|
|
unsigned long machine_to_phys_nr;
|
|
EXPORT_SYMBOL(machine_to_phys_nr);
|
|
|
|
struct start_info *xen_start_info;
|
|
EXPORT_SYMBOL_GPL(xen_start_info);
|
|
|
|
struct shared_info xen_dummy_shared_info;
|
|
|
|
void *xen_initial_gdt;
|
|
|
|
RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
|
|
__read_mostly int xen_have_vector_callback;
|
|
EXPORT_SYMBOL_GPL(xen_have_vector_callback);
|
|
|
|
/*
|
|
* Point at some empty memory to start with. We map the real shared_info
|
|
* page as soon as fixmap is up and running.
|
|
*/
|
|
struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
|
|
|
|
/*
|
|
* Flag to determine whether vcpu info placement is available on all
|
|
* VCPUs. We assume it is to start with, and then set it to zero on
|
|
* the first failure. This is because it can succeed on some VCPUs
|
|
* and not others, since it can involve hypervisor memory allocation,
|
|
* or because the guest failed to guarantee all the appropriate
|
|
* constraints on all VCPUs (ie buffer can't cross a page boundary).
|
|
*
|
|
* Note that any particular CPU may be using a placed vcpu structure,
|
|
* but we can only optimise if the all are.
|
|
*
|
|
* 0: not available, 1: available
|
|
*/
|
|
static int have_vcpu_info_placement = 1;
|
|
|
|
struct tls_descs {
|
|
struct desc_struct desc[3];
|
|
};
|
|
|
|
/*
|
|
* Updating the 3 TLS descriptors in the GDT on every task switch is
|
|
* surprisingly expensive so we avoid updating them if they haven't
|
|
* changed. Since Xen writes different descriptors than the one
|
|
* passed in the update_descriptor hypercall we keep shadow copies to
|
|
* compare against.
|
|
*/
|
|
static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
|
|
|
|
static void clamp_max_cpus(void)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
if (setup_max_cpus > MAX_VIRT_CPUS)
|
|
setup_max_cpus = MAX_VIRT_CPUS;
|
|
#endif
|
|
}
|
|
|
|
static void xen_vcpu_setup(int cpu)
|
|
{
|
|
struct vcpu_register_vcpu_info info;
|
|
int err;
|
|
struct vcpu_info *vcpup;
|
|
|
|
BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
|
|
|
|
/*
|
|
* This path is called twice on PVHVM - first during bootup via
|
|
* smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
|
|
* hotplugged: cpu_up -> xen_hvm_cpu_notify.
|
|
* As we can only do the VCPUOP_register_vcpu_info once lets
|
|
* not over-write its result.
|
|
*
|
|
* For PV it is called during restore (xen_vcpu_restore) and bootup
|
|
* (xen_setup_vcpu_info_placement). The hotplug mechanism does not
|
|
* use this function.
|
|
*/
|
|
if (xen_hvm_domain()) {
|
|
if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
|
|
return;
|
|
}
|
|
if (cpu < MAX_VIRT_CPUS)
|
|
per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
|
|
|
|
if (!have_vcpu_info_placement) {
|
|
if (cpu >= MAX_VIRT_CPUS)
|
|
clamp_max_cpus();
|
|
return;
|
|
}
|
|
|
|
vcpup = &per_cpu(xen_vcpu_info, cpu);
|
|
info.mfn = arbitrary_virt_to_mfn(vcpup);
|
|
info.offset = offset_in_page(vcpup);
|
|
|
|
/* Check to see if the hypervisor will put the vcpu_info
|
|
structure where we want it, which allows direct access via
|
|
a percpu-variable.
|
|
N.B. This hypercall can _only_ be called once per CPU. Subsequent
|
|
calls will error out with -EINVAL. This is due to the fact that
|
|
hypervisor has no unregister variant and this hypercall does not
|
|
allow to over-write info.mfn and info.offset.
|
|
*/
|
|
err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
|
|
|
|
if (err) {
|
|
printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
|
|
have_vcpu_info_placement = 0;
|
|
clamp_max_cpus();
|
|
} else {
|
|
/* This cpu is using the registered vcpu info, even if
|
|
later ones fail to. */
|
|
per_cpu(xen_vcpu, cpu) = vcpup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On restore, set the vcpu placement up again.
|
|
* If it fails, then we're in a bad state, since
|
|
* we can't back out from using it...
|
|
*/
|
|
void xen_vcpu_restore(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
bool other_cpu = (cpu != smp_processor_id());
|
|
bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
|
|
|
|
if (other_cpu && is_up &&
|
|
HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
|
|
BUG();
|
|
|
|
xen_setup_runstate_info(cpu);
|
|
|
|
if (have_vcpu_info_placement)
|
|
xen_vcpu_setup(cpu);
|
|
|
|
if (other_cpu && is_up &&
|
|
HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void __init xen_banner(void)
|
|
{
|
|
unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
|
|
struct xen_extraversion extra;
|
|
HYPERVISOR_xen_version(XENVER_extraversion, &extra);
|
|
|
|
printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
|
|
pv_info.name);
|
|
printk(KERN_INFO "Xen version: %d.%d%s%s\n",
|
|
version >> 16, version & 0xffff, extra.extraversion,
|
|
xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
|
|
}
|
|
/* Check if running on Xen version (major, minor) or later */
|
|
bool
|
|
xen_running_on_version_or_later(unsigned int major, unsigned int minor)
|
|
{
|
|
unsigned int version;
|
|
|
|
if (!xen_domain())
|
|
return false;
|
|
|
|
version = HYPERVISOR_xen_version(XENVER_version, NULL);
|
|
if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
|
|
((version >> 16) > major))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
#define CPUID_THERM_POWER_LEAF 6
|
|
#define APERFMPERF_PRESENT 0
|
|
|
|
static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
|
|
static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
|
|
|
|
static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
|
|
static __read_mostly unsigned int cpuid_leaf5_ecx_val;
|
|
static __read_mostly unsigned int cpuid_leaf5_edx_val;
|
|
|
|
static void xen_cpuid(unsigned int *ax, unsigned int *bx,
|
|
unsigned int *cx, unsigned int *dx)
|
|
{
|
|
unsigned maskebx = ~0;
|
|
unsigned maskecx = ~0;
|
|
unsigned maskedx = ~0;
|
|
unsigned setecx = 0;
|
|
/*
|
|
* Mask out inconvenient features, to try and disable as many
|
|
* unsupported kernel subsystems as possible.
|
|
*/
|
|
switch (*ax) {
|
|
case 1:
|
|
maskecx = cpuid_leaf1_ecx_mask;
|
|
setecx = cpuid_leaf1_ecx_set_mask;
|
|
maskedx = cpuid_leaf1_edx_mask;
|
|
break;
|
|
|
|
case CPUID_MWAIT_LEAF:
|
|
/* Synthesize the values.. */
|
|
*ax = 0;
|
|
*bx = 0;
|
|
*cx = cpuid_leaf5_ecx_val;
|
|
*dx = cpuid_leaf5_edx_val;
|
|
return;
|
|
|
|
case CPUID_THERM_POWER_LEAF:
|
|
/* Disabling APERFMPERF for kernel usage */
|
|
maskecx = ~(1 << APERFMPERF_PRESENT);
|
|
break;
|
|
|
|
case 0xb:
|
|
/* Suppress extended topology stuff */
|
|
maskebx = 0;
|
|
break;
|
|
}
|
|
|
|
asm(XEN_EMULATE_PREFIX "cpuid"
|
|
: "=a" (*ax),
|
|
"=b" (*bx),
|
|
"=c" (*cx),
|
|
"=d" (*dx)
|
|
: "0" (*ax), "2" (*cx));
|
|
|
|
*bx &= maskebx;
|
|
*cx &= maskecx;
|
|
*cx |= setecx;
|
|
*dx &= maskedx;
|
|
|
|
}
|
|
|
|
static bool __init xen_check_mwait(void)
|
|
{
|
|
#ifdef CONFIG_ACPI
|
|
struct xen_platform_op op = {
|
|
.cmd = XENPF_set_processor_pminfo,
|
|
.u.set_pminfo.id = -1,
|
|
.u.set_pminfo.type = XEN_PM_PDC,
|
|
};
|
|
uint32_t buf[3];
|
|
unsigned int ax, bx, cx, dx;
|
|
unsigned int mwait_mask;
|
|
|
|
/* We need to determine whether it is OK to expose the MWAIT
|
|
* capability to the kernel to harvest deeper than C3 states from ACPI
|
|
* _CST using the processor_harvest_xen.c module. For this to work, we
|
|
* need to gather the MWAIT_LEAF values (which the cstate.c code
|
|
* checks against). The hypervisor won't expose the MWAIT flag because
|
|
* it would break backwards compatibility; so we will find out directly
|
|
* from the hardware and hypercall.
|
|
*/
|
|
if (!xen_initial_domain())
|
|
return false;
|
|
|
|
/*
|
|
* When running under platform earlier than Xen4.2, do not expose
|
|
* mwait, to avoid the risk of loading native acpi pad driver
|
|
*/
|
|
if (!xen_running_on_version_or_later(4, 2))
|
|
return false;
|
|
|
|
ax = 1;
|
|
cx = 0;
|
|
|
|
native_cpuid(&ax, &bx, &cx, &dx);
|
|
|
|
mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
|
|
(1 << (X86_FEATURE_MWAIT % 32));
|
|
|
|
if ((cx & mwait_mask) != mwait_mask)
|
|
return false;
|
|
|
|
/* We need to emulate the MWAIT_LEAF and for that we need both
|
|
* ecx and edx. The hypercall provides only partial information.
|
|
*/
|
|
|
|
ax = CPUID_MWAIT_LEAF;
|
|
bx = 0;
|
|
cx = 0;
|
|
dx = 0;
|
|
|
|
native_cpuid(&ax, &bx, &cx, &dx);
|
|
|
|
/* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
|
|
* don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
|
|
*/
|
|
buf[0] = ACPI_PDC_REVISION_ID;
|
|
buf[1] = 1;
|
|
buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
|
|
|
|
set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
|
|
|
|
if ((HYPERVISOR_dom0_op(&op) == 0) &&
|
|
(buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
|
|
cpuid_leaf5_ecx_val = cx;
|
|
cpuid_leaf5_edx_val = dx;
|
|
}
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
static void __init xen_init_cpuid_mask(void)
|
|
{
|
|
unsigned int ax, bx, cx, dx;
|
|
unsigned int xsave_mask;
|
|
|
|
cpuid_leaf1_edx_mask =
|
|
~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
|
|
(1 << X86_FEATURE_ACC)); /* thermal monitoring */
|
|
|
|
if (!xen_initial_domain())
|
|
cpuid_leaf1_edx_mask &=
|
|
~((1 << X86_FEATURE_ACPI)); /* disable ACPI */
|
|
|
|
cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
|
|
|
|
ax = 1;
|
|
cx = 0;
|
|
xen_cpuid(&ax, &bx, &cx, &dx);
|
|
|
|
xsave_mask =
|
|
(1 << (X86_FEATURE_XSAVE % 32)) |
|
|
(1 << (X86_FEATURE_OSXSAVE % 32));
|
|
|
|
/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
|
|
if ((cx & xsave_mask) != xsave_mask)
|
|
cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
|
|
if (xen_check_mwait())
|
|
cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
|
|
}
|
|
|
|
static void xen_set_debugreg(int reg, unsigned long val)
|
|
{
|
|
HYPERVISOR_set_debugreg(reg, val);
|
|
}
|
|
|
|
static unsigned long xen_get_debugreg(int reg)
|
|
{
|
|
return HYPERVISOR_get_debugreg(reg);
|
|
}
|
|
|
|
static void xen_end_context_switch(struct task_struct *next)
|
|
{
|
|
xen_mc_flush();
|
|
paravirt_end_context_switch(next);
|
|
}
|
|
|
|
static unsigned long xen_store_tr(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the page permissions for a particular virtual address. If the
|
|
* address is a vmalloc mapping (or other non-linear mapping), then
|
|
* find the linear mapping of the page and also set its protections to
|
|
* match.
|
|
*/
|
|
static void set_aliased_prot(void *v, pgprot_t prot)
|
|
{
|
|
int level;
|
|
pte_t *ptep;
|
|
pte_t pte;
|
|
unsigned long pfn;
|
|
struct page *page;
|
|
|
|
ptep = lookup_address((unsigned long)v, &level);
|
|
BUG_ON(ptep == NULL);
|
|
|
|
pfn = pte_pfn(*ptep);
|
|
page = pfn_to_page(pfn);
|
|
|
|
pte = pfn_pte(pfn, prot);
|
|
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
|
|
BUG();
|
|
|
|
if (!PageHighMem(page)) {
|
|
void *av = __va(PFN_PHYS(pfn));
|
|
|
|
if (av != v)
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
|
|
BUG();
|
|
} else
|
|
kmap_flush_unused();
|
|
}
|
|
|
|
static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
|
|
{
|
|
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
|
|
int i;
|
|
|
|
for(i = 0; i < entries; i += entries_per_page)
|
|
set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
|
|
}
|
|
|
|
static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
|
|
{
|
|
const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
|
|
int i;
|
|
|
|
for(i = 0; i < entries; i += entries_per_page)
|
|
set_aliased_prot(ldt + i, PAGE_KERNEL);
|
|
}
|
|
|
|
static void xen_set_ldt(const void *addr, unsigned entries)
|
|
{
|
|
struct mmuext_op *op;
|
|
struct multicall_space mcs = xen_mc_entry(sizeof(*op));
|
|
|
|
trace_xen_cpu_set_ldt(addr, entries);
|
|
|
|
op = mcs.args;
|
|
op->cmd = MMUEXT_SET_LDT;
|
|
op->arg1.linear_addr = (unsigned long)addr;
|
|
op->arg2.nr_ents = entries;
|
|
|
|
MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_load_gdt(const struct desc_ptr *dtr)
|
|
{
|
|
unsigned long va = dtr->address;
|
|
unsigned int size = dtr->size + 1;
|
|
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
unsigned long frames[pages];
|
|
int f;
|
|
|
|
/*
|
|
* A GDT can be up to 64k in size, which corresponds to 8192
|
|
* 8-byte entries, or 16 4k pages..
|
|
*/
|
|
|
|
BUG_ON(size > 65536);
|
|
BUG_ON(va & ~PAGE_MASK);
|
|
|
|
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
|
|
int level;
|
|
pte_t *ptep;
|
|
unsigned long pfn, mfn;
|
|
void *virt;
|
|
|
|
/*
|
|
* The GDT is per-cpu and is in the percpu data area.
|
|
* That can be virtually mapped, so we need to do a
|
|
* page-walk to get the underlying MFN for the
|
|
* hypercall. The page can also be in the kernel's
|
|
* linear range, so we need to RO that mapping too.
|
|
*/
|
|
ptep = lookup_address(va, &level);
|
|
BUG_ON(ptep == NULL);
|
|
|
|
pfn = pte_pfn(*ptep);
|
|
mfn = pfn_to_mfn(pfn);
|
|
virt = __va(PFN_PHYS(pfn));
|
|
|
|
frames[f] = mfn;
|
|
|
|
make_lowmem_page_readonly((void *)va);
|
|
make_lowmem_page_readonly(virt);
|
|
}
|
|
|
|
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
|
|
BUG();
|
|
}
|
|
|
|
/*
|
|
* load_gdt for early boot, when the gdt is only mapped once
|
|
*/
|
|
static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
|
|
{
|
|
unsigned long va = dtr->address;
|
|
unsigned int size = dtr->size + 1;
|
|
unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
|
|
unsigned long frames[pages];
|
|
int f;
|
|
|
|
/*
|
|
* A GDT can be up to 64k in size, which corresponds to 8192
|
|
* 8-byte entries, or 16 4k pages..
|
|
*/
|
|
|
|
BUG_ON(size > 65536);
|
|
BUG_ON(va & ~PAGE_MASK);
|
|
|
|
for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
|
|
pte_t pte;
|
|
unsigned long pfn, mfn;
|
|
|
|
pfn = virt_to_pfn(va);
|
|
mfn = pfn_to_mfn(pfn);
|
|
|
|
pte = pfn_pte(pfn, PAGE_KERNEL_RO);
|
|
|
|
if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
|
|
BUG();
|
|
|
|
frames[f] = mfn;
|
|
}
|
|
|
|
if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
|
|
BUG();
|
|
}
|
|
|
|
static inline bool desc_equal(const struct desc_struct *d1,
|
|
const struct desc_struct *d2)
|
|
{
|
|
return d1->a == d2->a && d1->b == d2->b;
|
|
}
|
|
|
|
static void load_TLS_descriptor(struct thread_struct *t,
|
|
unsigned int cpu, unsigned int i)
|
|
{
|
|
struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
|
|
struct desc_struct *gdt;
|
|
xmaddr_t maddr;
|
|
struct multicall_space mc;
|
|
|
|
if (desc_equal(shadow, &t->tls_array[i]))
|
|
return;
|
|
|
|
*shadow = t->tls_array[i];
|
|
|
|
gdt = get_cpu_gdt_table(cpu);
|
|
maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
|
|
mc = __xen_mc_entry(0);
|
|
|
|
MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
|
|
}
|
|
|
|
static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
|
|
{
|
|
/*
|
|
* XXX sleazy hack: If we're being called in a lazy-cpu zone
|
|
* and lazy gs handling is enabled, it means we're in a
|
|
* context switch, and %gs has just been saved. This means we
|
|
* can zero it out to prevent faults on exit from the
|
|
* hypervisor if the next process has no %gs. Either way, it
|
|
* has been saved, and the new value will get loaded properly.
|
|
* This will go away as soon as Xen has been modified to not
|
|
* save/restore %gs for normal hypercalls.
|
|
*
|
|
* On x86_64, this hack is not used for %gs, because gs points
|
|
* to KERNEL_GS_BASE (and uses it for PDA references), so we
|
|
* must not zero %gs on x86_64
|
|
*
|
|
* For x86_64, we need to zero %fs, otherwise we may get an
|
|
* exception between the new %fs descriptor being loaded and
|
|
* %fs being effectively cleared at __switch_to().
|
|
*/
|
|
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
|
|
#ifdef CONFIG_X86_32
|
|
lazy_load_gs(0);
|
|
#else
|
|
loadsegment(fs, 0);
|
|
#endif
|
|
}
|
|
|
|
xen_mc_batch();
|
|
|
|
load_TLS_descriptor(t, cpu, 0);
|
|
load_TLS_descriptor(t, cpu, 1);
|
|
load_TLS_descriptor(t, cpu, 2);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
static void xen_load_gs_index(unsigned int idx)
|
|
{
|
|
if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
|
|
BUG();
|
|
}
|
|
#endif
|
|
|
|
static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
|
|
const void *ptr)
|
|
{
|
|
xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
|
|
u64 entry = *(u64 *)ptr;
|
|
|
|
trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
|
|
|
|
preempt_disable();
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
|
|
BUG();
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static int cvt_gate_to_trap(int vector, const gate_desc *val,
|
|
struct trap_info *info)
|
|
{
|
|
unsigned long addr;
|
|
|
|
if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
|
|
return 0;
|
|
|
|
info->vector = vector;
|
|
|
|
addr = gate_offset(*val);
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Look for known traps using IST, and substitute them
|
|
* appropriately. The debugger ones are the only ones we care
|
|
* about. Xen will handle faults like double_fault,
|
|
* so we should never see them. Warn if
|
|
* there's an unexpected IST-using fault handler.
|
|
*/
|
|
if (addr == (unsigned long)debug)
|
|
addr = (unsigned long)xen_debug;
|
|
else if (addr == (unsigned long)int3)
|
|
addr = (unsigned long)xen_int3;
|
|
else if (addr == (unsigned long)stack_segment)
|
|
addr = (unsigned long)xen_stack_segment;
|
|
else if (addr == (unsigned long)double_fault) {
|
|
/* Don't need to handle these */
|
|
return 0;
|
|
#ifdef CONFIG_X86_MCE
|
|
} else if (addr == (unsigned long)machine_check) {
|
|
/*
|
|
* when xen hypervisor inject vMCE to guest,
|
|
* use native mce handler to handle it
|
|
*/
|
|
;
|
|
#endif
|
|
} else if (addr == (unsigned long)nmi)
|
|
/*
|
|
* Use the native version as well.
|
|
*/
|
|
;
|
|
else {
|
|
/* Some other trap using IST? */
|
|
if (WARN_ON(val->ist != 0))
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_X86_64 */
|
|
info->address = addr;
|
|
|
|
info->cs = gate_segment(*val);
|
|
info->flags = val->dpl;
|
|
/* interrupt gates clear IF */
|
|
if (val->type == GATE_INTERRUPT)
|
|
info->flags |= 1 << 2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Locations of each CPU's IDT */
|
|
static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
|
|
|
|
/* Set an IDT entry. If the entry is part of the current IDT, then
|
|
also update Xen. */
|
|
static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
|
|
{
|
|
unsigned long p = (unsigned long)&dt[entrynum];
|
|
unsigned long start, end;
|
|
|
|
trace_xen_cpu_write_idt_entry(dt, entrynum, g);
|
|
|
|
preempt_disable();
|
|
|
|
start = __this_cpu_read(idt_desc.address);
|
|
end = start + __this_cpu_read(idt_desc.size) + 1;
|
|
|
|
xen_mc_flush();
|
|
|
|
native_write_idt_entry(dt, entrynum, g);
|
|
|
|
if (p >= start && (p + 8) <= end) {
|
|
struct trap_info info[2];
|
|
|
|
info[1].address = 0;
|
|
|
|
if (cvt_gate_to_trap(entrynum, g, &info[0]))
|
|
if (HYPERVISOR_set_trap_table(info))
|
|
BUG();
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
static void xen_convert_trap_info(const struct desc_ptr *desc,
|
|
struct trap_info *traps)
|
|
{
|
|
unsigned in, out, count;
|
|
|
|
count = (desc->size+1) / sizeof(gate_desc);
|
|
BUG_ON(count > 256);
|
|
|
|
for (in = out = 0; in < count; in++) {
|
|
gate_desc *entry = (gate_desc*)(desc->address) + in;
|
|
|
|
if (cvt_gate_to_trap(in, entry, &traps[out]))
|
|
out++;
|
|
}
|
|
traps[out].address = 0;
|
|
}
|
|
|
|
void xen_copy_trap_info(struct trap_info *traps)
|
|
{
|
|
const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
|
|
|
|
xen_convert_trap_info(desc, traps);
|
|
}
|
|
|
|
/* Load a new IDT into Xen. In principle this can be per-CPU, so we
|
|
hold a spinlock to protect the static traps[] array (static because
|
|
it avoids allocation, and saves stack space). */
|
|
static void xen_load_idt(const struct desc_ptr *desc)
|
|
{
|
|
static DEFINE_SPINLOCK(lock);
|
|
static struct trap_info traps[257];
|
|
|
|
trace_xen_cpu_load_idt(desc);
|
|
|
|
spin_lock(&lock);
|
|
|
|
__get_cpu_var(idt_desc) = *desc;
|
|
|
|
xen_convert_trap_info(desc, traps);
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_set_trap_table(traps))
|
|
BUG();
|
|
|
|
spin_unlock(&lock);
|
|
}
|
|
|
|
/* Write a GDT descriptor entry. Ignore LDT descriptors, since
|
|
they're handled differently. */
|
|
static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
|
|
const void *desc, int type)
|
|
{
|
|
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
|
|
|
|
preempt_disable();
|
|
|
|
switch (type) {
|
|
case DESC_LDT:
|
|
case DESC_TSS:
|
|
/* ignore */
|
|
break;
|
|
|
|
default: {
|
|
xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
|
|
|
|
xen_mc_flush();
|
|
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
|
|
BUG();
|
|
}
|
|
|
|
}
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* Version of write_gdt_entry for use at early boot-time needed to
|
|
* update an entry as simply as possible.
|
|
*/
|
|
static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
|
|
const void *desc, int type)
|
|
{
|
|
trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
|
|
|
|
switch (type) {
|
|
case DESC_LDT:
|
|
case DESC_TSS:
|
|
/* ignore */
|
|
break;
|
|
|
|
default: {
|
|
xmaddr_t maddr = virt_to_machine(&dt[entry]);
|
|
|
|
if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
|
|
dt[entry] = *(struct desc_struct *)desc;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void xen_load_sp0(struct tss_struct *tss,
|
|
struct thread_struct *thread)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
mcs = xen_mc_entry(0);
|
|
MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_set_iopl_mask(unsigned mask)
|
|
{
|
|
struct physdev_set_iopl set_iopl;
|
|
|
|
/* Force the change at ring 0. */
|
|
set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
|
|
HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
|
|
}
|
|
|
|
static void xen_io_delay(void)
|
|
{
|
|
}
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
static unsigned long xen_set_apic_id(unsigned int x)
|
|
{
|
|
WARN_ON(1);
|
|
return x;
|
|
}
|
|
static unsigned int xen_get_apic_id(unsigned long x)
|
|
{
|
|
return ((x)>>24) & 0xFFu;
|
|
}
|
|
static u32 xen_apic_read(u32 reg)
|
|
{
|
|
struct xen_platform_op op = {
|
|
.cmd = XENPF_get_cpuinfo,
|
|
.interface_version = XENPF_INTERFACE_VERSION,
|
|
.u.pcpu_info.xen_cpuid = 0,
|
|
};
|
|
int ret = 0;
|
|
|
|
/* Shouldn't need this as APIC is turned off for PV, and we only
|
|
* get called on the bootup processor. But just in case. */
|
|
if (!xen_initial_domain() || smp_processor_id())
|
|
return 0;
|
|
|
|
if (reg == APIC_LVR)
|
|
return 0x10;
|
|
|
|
if (reg != APIC_ID)
|
|
return 0;
|
|
|
|
ret = HYPERVISOR_dom0_op(&op);
|
|
if (ret)
|
|
return 0;
|
|
|
|
return op.u.pcpu_info.apic_id << 24;
|
|
}
|
|
|
|
static void xen_apic_write(u32 reg, u32 val)
|
|
{
|
|
/* Warn to see if there's any stray references */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static u64 xen_apic_icr_read(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void xen_apic_icr_write(u32 low, u32 id)
|
|
{
|
|
/* Warn to see if there's any stray references */
|
|
WARN_ON(1);
|
|
}
|
|
|
|
static void xen_apic_wait_icr_idle(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static u32 xen_safe_apic_wait_icr_idle(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void set_xen_basic_apic_ops(void)
|
|
{
|
|
apic->read = xen_apic_read;
|
|
apic->write = xen_apic_write;
|
|
apic->icr_read = xen_apic_icr_read;
|
|
apic->icr_write = xen_apic_icr_write;
|
|
apic->wait_icr_idle = xen_apic_wait_icr_idle;
|
|
apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
|
|
apic->set_apic_id = xen_set_apic_id;
|
|
apic->get_apic_id = xen_get_apic_id;
|
|
|
|
#ifdef CONFIG_SMP
|
|
apic->send_IPI_allbutself = xen_send_IPI_allbutself;
|
|
apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
|
|
apic->send_IPI_mask = xen_send_IPI_mask;
|
|
apic->send_IPI_all = xen_send_IPI_all;
|
|
apic->send_IPI_self = xen_send_IPI_self;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
static void xen_clts(void)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
mcs = xen_mc_entry(0);
|
|
|
|
MULTI_fpu_taskswitch(mcs.mc, 0);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
|
|
|
|
static unsigned long xen_read_cr0(void)
|
|
{
|
|
unsigned long cr0 = this_cpu_read(xen_cr0_value);
|
|
|
|
if (unlikely(cr0 == 0)) {
|
|
cr0 = native_read_cr0();
|
|
this_cpu_write(xen_cr0_value, cr0);
|
|
}
|
|
|
|
return cr0;
|
|
}
|
|
|
|
static void xen_write_cr0(unsigned long cr0)
|
|
{
|
|
struct multicall_space mcs;
|
|
|
|
this_cpu_write(xen_cr0_value, cr0);
|
|
|
|
/* Only pay attention to cr0.TS; everything else is
|
|
ignored. */
|
|
mcs = xen_mc_entry(0);
|
|
|
|
MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
|
|
|
|
xen_mc_issue(PARAVIRT_LAZY_CPU);
|
|
}
|
|
|
|
static void xen_write_cr4(unsigned long cr4)
|
|
{
|
|
cr4 &= ~X86_CR4_PGE;
|
|
cr4 &= ~X86_CR4_PSE;
|
|
|
|
native_write_cr4(cr4);
|
|
}
|
|
#ifdef CONFIG_X86_64
|
|
static inline unsigned long xen_read_cr8(void)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void xen_write_cr8(unsigned long val)
|
|
{
|
|
BUG_ON(val);
|
|
}
|
|
#endif
|
|
static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
|
|
{
|
|
int ret;
|
|
|
|
ret = 0;
|
|
|
|
switch (msr) {
|
|
#ifdef CONFIG_X86_64
|
|
unsigned which;
|
|
u64 base;
|
|
|
|
case MSR_FS_BASE: which = SEGBASE_FS; goto set;
|
|
case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
|
|
case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
|
|
|
|
set:
|
|
base = ((u64)high << 32) | low;
|
|
if (HYPERVISOR_set_segment_base(which, base) != 0)
|
|
ret = -EIO;
|
|
break;
|
|
#endif
|
|
|
|
case MSR_STAR:
|
|
case MSR_CSTAR:
|
|
case MSR_LSTAR:
|
|
case MSR_SYSCALL_MASK:
|
|
case MSR_IA32_SYSENTER_CS:
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
/* Fast syscall setup is all done in hypercalls, so
|
|
these are all ignored. Stub them out here to stop
|
|
Xen console noise. */
|
|
break;
|
|
|
|
case MSR_IA32_CR_PAT:
|
|
if (smp_processor_id() == 0)
|
|
xen_set_pat(((u64)high << 32) | low);
|
|
break;
|
|
|
|
default:
|
|
ret = native_write_msr_safe(msr, low, high);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void xen_setup_shared_info(void)
|
|
{
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
|
|
set_fixmap(FIX_PARAVIRT_BOOTMAP,
|
|
xen_start_info->shared_info);
|
|
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
|
|
} else
|
|
HYPERVISOR_shared_info =
|
|
(struct shared_info *)__va(xen_start_info->shared_info);
|
|
|
|
#ifndef CONFIG_SMP
|
|
/* In UP this is as good a place as any to set up shared info */
|
|
xen_setup_vcpu_info_placement();
|
|
#endif
|
|
|
|
xen_setup_mfn_list_list();
|
|
}
|
|
|
|
/* This is called once we have the cpu_possible_mask */
|
|
void xen_setup_vcpu_info_placement(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
xen_vcpu_setup(cpu);
|
|
|
|
/* xen_vcpu_setup managed to place the vcpu_info within the
|
|
percpu area for all cpus, so make use of it */
|
|
if (have_vcpu_info_placement) {
|
|
pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
|
|
pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
|
|
pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
|
|
pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
|
|
pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
|
|
}
|
|
}
|
|
|
|
static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
|
|
unsigned long addr, unsigned len)
|
|
{
|
|
char *start, *end, *reloc;
|
|
unsigned ret;
|
|
|
|
start = end = reloc = NULL;
|
|
|
|
#define SITE(op, x) \
|
|
case PARAVIRT_PATCH(op.x): \
|
|
if (have_vcpu_info_placement) { \
|
|
start = (char *)xen_##x##_direct; \
|
|
end = xen_##x##_direct_end; \
|
|
reloc = xen_##x##_direct_reloc; \
|
|
} \
|
|
goto patch_site
|
|
|
|
switch (type) {
|
|
SITE(pv_irq_ops, irq_enable);
|
|
SITE(pv_irq_ops, irq_disable);
|
|
SITE(pv_irq_ops, save_fl);
|
|
SITE(pv_irq_ops, restore_fl);
|
|
#undef SITE
|
|
|
|
patch_site:
|
|
if (start == NULL || (end-start) > len)
|
|
goto default_patch;
|
|
|
|
ret = paravirt_patch_insns(insnbuf, len, start, end);
|
|
|
|
/* Note: because reloc is assigned from something that
|
|
appears to be an array, gcc assumes it's non-null,
|
|
but doesn't know its relationship with start and
|
|
end. */
|
|
if (reloc > start && reloc < end) {
|
|
int reloc_off = reloc - start;
|
|
long *relocp = (long *)(insnbuf + reloc_off);
|
|
long delta = start - (char *)addr;
|
|
|
|
*relocp += delta;
|
|
}
|
|
break;
|
|
|
|
default_patch:
|
|
default:
|
|
ret = paravirt_patch_default(type, clobbers, insnbuf,
|
|
addr, len);
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct pv_info xen_info __initconst = {
|
|
.paravirt_enabled = 1,
|
|
.shared_kernel_pmd = 0,
|
|
|
|
#ifdef CONFIG_X86_64
|
|
.extra_user_64bit_cs = FLAT_USER_CS64,
|
|
#endif
|
|
|
|
.name = "Xen",
|
|
};
|
|
|
|
static const struct pv_init_ops xen_init_ops __initconst = {
|
|
.patch = xen_patch,
|
|
};
|
|
|
|
static const struct pv_cpu_ops xen_cpu_ops __initconst = {
|
|
.cpuid = xen_cpuid,
|
|
|
|
.set_debugreg = xen_set_debugreg,
|
|
.get_debugreg = xen_get_debugreg,
|
|
|
|
.clts = xen_clts,
|
|
|
|
.read_cr0 = xen_read_cr0,
|
|
.write_cr0 = xen_write_cr0,
|
|
|
|
.read_cr4 = native_read_cr4,
|
|
.read_cr4_safe = native_read_cr4_safe,
|
|
.write_cr4 = xen_write_cr4,
|
|
|
|
#ifdef CONFIG_X86_64
|
|
.read_cr8 = xen_read_cr8,
|
|
.write_cr8 = xen_write_cr8,
|
|
#endif
|
|
|
|
.wbinvd = native_wbinvd,
|
|
|
|
.read_msr = native_read_msr_safe,
|
|
.write_msr = xen_write_msr_safe,
|
|
|
|
.read_tsc = native_read_tsc,
|
|
.read_pmc = native_read_pmc,
|
|
|
|
.read_tscp = native_read_tscp,
|
|
|
|
.iret = xen_iret,
|
|
.irq_enable_sysexit = xen_sysexit,
|
|
#ifdef CONFIG_X86_64
|
|
.usergs_sysret32 = xen_sysret32,
|
|
.usergs_sysret64 = xen_sysret64,
|
|
#endif
|
|
|
|
.load_tr_desc = paravirt_nop,
|
|
.set_ldt = xen_set_ldt,
|
|
.load_gdt = xen_load_gdt,
|
|
.load_idt = xen_load_idt,
|
|
.load_tls = xen_load_tls,
|
|
#ifdef CONFIG_X86_64
|
|
.load_gs_index = xen_load_gs_index,
|
|
#endif
|
|
|
|
.alloc_ldt = xen_alloc_ldt,
|
|
.free_ldt = xen_free_ldt,
|
|
|
|
.store_idt = native_store_idt,
|
|
.store_tr = xen_store_tr,
|
|
|
|
.write_ldt_entry = xen_write_ldt_entry,
|
|
.write_gdt_entry = xen_write_gdt_entry,
|
|
.write_idt_entry = xen_write_idt_entry,
|
|
.load_sp0 = xen_load_sp0,
|
|
|
|
.set_iopl_mask = xen_set_iopl_mask,
|
|
.io_delay = xen_io_delay,
|
|
|
|
/* Xen takes care of %gs when switching to usermode for us */
|
|
.swapgs = paravirt_nop,
|
|
|
|
.start_context_switch = paravirt_start_context_switch,
|
|
.end_context_switch = xen_end_context_switch,
|
|
};
|
|
|
|
static const struct pv_apic_ops xen_apic_ops __initconst = {
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
.startup_ipi_hook = paravirt_nop,
|
|
#endif
|
|
};
|
|
|
|
static void xen_reboot(int reason)
|
|
{
|
|
struct sched_shutdown r = { .reason = reason };
|
|
|
|
if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
|
|
BUG();
|
|
}
|
|
|
|
static void xen_restart(char *msg)
|
|
{
|
|
xen_reboot(SHUTDOWN_reboot);
|
|
}
|
|
|
|
static void xen_emergency_restart(void)
|
|
{
|
|
xen_reboot(SHUTDOWN_reboot);
|
|
}
|
|
|
|
static void xen_machine_halt(void)
|
|
{
|
|
xen_reboot(SHUTDOWN_poweroff);
|
|
}
|
|
|
|
static void xen_machine_power_off(void)
|
|
{
|
|
if (pm_power_off)
|
|
pm_power_off();
|
|
xen_reboot(SHUTDOWN_poweroff);
|
|
}
|
|
|
|
static void xen_crash_shutdown(struct pt_regs *regs)
|
|
{
|
|
xen_reboot(SHUTDOWN_crash);
|
|
}
|
|
|
|
static int
|
|
xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
|
|
{
|
|
xen_reboot(SHUTDOWN_crash);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block xen_panic_block = {
|
|
.notifier_call= xen_panic_event,
|
|
};
|
|
|
|
int xen_panic_handler_init(void)
|
|
{
|
|
atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
|
|
return 0;
|
|
}
|
|
|
|
static const struct machine_ops xen_machine_ops __initconst = {
|
|
.restart = xen_restart,
|
|
.halt = xen_machine_halt,
|
|
.power_off = xen_machine_power_off,
|
|
.shutdown = xen_machine_halt,
|
|
.crash_shutdown = xen_crash_shutdown,
|
|
.emergency_restart = xen_emergency_restart,
|
|
};
|
|
|
|
static void __init xen_boot_params_init_edd(void)
|
|
{
|
|
#if IS_ENABLED(CONFIG_EDD)
|
|
struct xen_platform_op op;
|
|
struct edd_info *edd_info;
|
|
u32 *mbr_signature;
|
|
unsigned nr;
|
|
int ret;
|
|
|
|
edd_info = boot_params.eddbuf;
|
|
mbr_signature = boot_params.edd_mbr_sig_buffer;
|
|
|
|
op.cmd = XENPF_firmware_info;
|
|
|
|
op.u.firmware_info.type = XEN_FW_DISK_INFO;
|
|
for (nr = 0; nr < EDDMAXNR; nr++) {
|
|
struct edd_info *info = edd_info + nr;
|
|
|
|
op.u.firmware_info.index = nr;
|
|
info->params.length = sizeof(info->params);
|
|
set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
|
|
&info->params);
|
|
ret = HYPERVISOR_dom0_op(&op);
|
|
if (ret)
|
|
break;
|
|
|
|
#define C(x) info->x = op.u.firmware_info.u.disk_info.x
|
|
C(device);
|
|
C(version);
|
|
C(interface_support);
|
|
C(legacy_max_cylinder);
|
|
C(legacy_max_head);
|
|
C(legacy_sectors_per_track);
|
|
#undef C
|
|
}
|
|
boot_params.eddbuf_entries = nr;
|
|
|
|
op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
|
|
for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
|
|
op.u.firmware_info.index = nr;
|
|
ret = HYPERVISOR_dom0_op(&op);
|
|
if (ret)
|
|
break;
|
|
mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
|
|
}
|
|
boot_params.edd_mbr_sig_buf_entries = nr;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set up the GDT and segment registers for -fstack-protector. Until
|
|
* we do this, we have to be careful not to call any stack-protected
|
|
* function, which is most of the kernel.
|
|
*/
|
|
static void __init xen_setup_stackprotector(void)
|
|
{
|
|
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
|
|
pv_cpu_ops.load_gdt = xen_load_gdt_boot;
|
|
|
|
setup_stack_canary_segment(0);
|
|
switch_to_new_gdt(0);
|
|
|
|
pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
|
|
pv_cpu_ops.load_gdt = xen_load_gdt;
|
|
}
|
|
|
|
/* First C function to be called on Xen boot */
|
|
asmlinkage void __init xen_start_kernel(void)
|
|
{
|
|
struct physdev_set_iopl set_iopl;
|
|
int rc;
|
|
|
|
if (!xen_start_info)
|
|
return;
|
|
|
|
xen_domain_type = XEN_PV_DOMAIN;
|
|
|
|
xen_setup_machphys_mapping();
|
|
|
|
/* Install Xen paravirt ops */
|
|
pv_info = xen_info;
|
|
pv_init_ops = xen_init_ops;
|
|
pv_cpu_ops = xen_cpu_ops;
|
|
pv_apic_ops = xen_apic_ops;
|
|
|
|
x86_init.resources.memory_setup = xen_memory_setup;
|
|
x86_init.oem.arch_setup = xen_arch_setup;
|
|
x86_init.oem.banner = xen_banner;
|
|
|
|
xen_init_time_ops();
|
|
|
|
/*
|
|
* Set up some pagetable state before starting to set any ptes.
|
|
*/
|
|
|
|
xen_init_mmu_ops();
|
|
|
|
/* Prevent unwanted bits from being set in PTEs. */
|
|
__supported_pte_mask &= ~_PAGE_GLOBAL;
|
|
#if 0
|
|
if (!xen_initial_domain())
|
|
#endif
|
|
__supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
|
|
|
|
__supported_pte_mask |= _PAGE_IOMAP;
|
|
|
|
/*
|
|
* Prevent page tables from being allocated in highmem, even
|
|
* if CONFIG_HIGHPTE is enabled.
|
|
*/
|
|
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
|
|
|
|
/* Work out if we support NX */
|
|
x86_configure_nx();
|
|
|
|
xen_setup_features();
|
|
|
|
/* Get mfn list */
|
|
if (!xen_feature(XENFEAT_auto_translated_physmap))
|
|
xen_build_dynamic_phys_to_machine();
|
|
|
|
/*
|
|
* Set up kernel GDT and segment registers, mainly so that
|
|
* -fstack-protector code can be executed.
|
|
*/
|
|
xen_setup_stackprotector();
|
|
|
|
xen_init_irq_ops();
|
|
xen_init_cpuid_mask();
|
|
|
|
#ifdef CONFIG_X86_LOCAL_APIC
|
|
/*
|
|
* set up the basic apic ops.
|
|
*/
|
|
set_xen_basic_apic_ops();
|
|
#endif
|
|
|
|
if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
|
|
pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
|
|
pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
|
|
}
|
|
|
|
machine_ops = xen_machine_ops;
|
|
|
|
/*
|
|
* The only reliable way to retain the initial address of the
|
|
* percpu gdt_page is to remember it here, so we can go and
|
|
* mark it RW later, when the initial percpu area is freed.
|
|
*/
|
|
xen_initial_gdt = &per_cpu(gdt_page, 0);
|
|
|
|
xen_smp_init();
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
/*
|
|
* The pages we from Xen are not related to machine pages, so
|
|
* any NUMA information the kernel tries to get from ACPI will
|
|
* be meaningless. Prevent it from trying.
|
|
*/
|
|
acpi_numa = -1;
|
|
#endif
|
|
#ifdef CONFIG_X86_PAT
|
|
/*
|
|
* For right now disable the PAT. We should remove this once
|
|
* git commit 8eaffa67b43e99ae581622c5133e20b0f48bcef1
|
|
* (xen/pat: Disable PAT support for now) is reverted.
|
|
*/
|
|
pat_enabled = 0;
|
|
#endif
|
|
/* Don't do the full vcpu_info placement stuff until we have a
|
|
possible map and a non-dummy shared_info. */
|
|
per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
|
|
|
|
local_irq_disable();
|
|
early_boot_irqs_disabled = true;
|
|
|
|
xen_raw_console_write("mapping kernel into physical memory\n");
|
|
xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base, xen_start_info->nr_pages);
|
|
|
|
/* Allocate and initialize top and mid mfn levels for p2m structure */
|
|
xen_build_mfn_list_list();
|
|
|
|
/* keep using Xen gdt for now; no urgent need to change it */
|
|
|
|
#ifdef CONFIG_X86_32
|
|
pv_info.kernel_rpl = 1;
|
|
if (xen_feature(XENFEAT_supervisor_mode_kernel))
|
|
pv_info.kernel_rpl = 0;
|
|
#else
|
|
pv_info.kernel_rpl = 0;
|
|
#endif
|
|
/* set the limit of our address space */
|
|
xen_reserve_top();
|
|
|
|
/* We used to do this in xen_arch_setup, but that is too late on AMD
|
|
* were early_cpu_init (run before ->arch_setup()) calls early_amd_init
|
|
* which pokes 0xcf8 port.
|
|
*/
|
|
set_iopl.iopl = 1;
|
|
rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
|
|
if (rc != 0)
|
|
xen_raw_printk("physdev_op failed %d\n", rc);
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/* set up basic CPUID stuff */
|
|
cpu_detect(&new_cpu_data);
|
|
set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
|
|
new_cpu_data.wp_works_ok = 1;
|
|
new_cpu_data.x86_capability[0] = cpuid_edx(1);
|
|
#endif
|
|
|
|
/* Poke various useful things into boot_params */
|
|
boot_params.hdr.type_of_loader = (9 << 4) | 0;
|
|
boot_params.hdr.ramdisk_image = xen_start_info->mod_start
|
|
? __pa(xen_start_info->mod_start) : 0;
|
|
boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
|
|
boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
|
|
|
|
if (!xen_initial_domain()) {
|
|
add_preferred_console("xenboot", 0, NULL);
|
|
add_preferred_console("tty", 0, NULL);
|
|
add_preferred_console("hvc", 0, NULL);
|
|
if (pci_xen)
|
|
x86_init.pci.arch_init = pci_xen_init;
|
|
} else {
|
|
const struct dom0_vga_console_info *info =
|
|
(void *)((char *)xen_start_info +
|
|
xen_start_info->console.dom0.info_off);
|
|
struct xen_platform_op op = {
|
|
.cmd = XENPF_firmware_info,
|
|
.interface_version = XENPF_INTERFACE_VERSION,
|
|
.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
|
|
};
|
|
|
|
xen_init_vga(info, xen_start_info->console.dom0.info_size);
|
|
xen_start_info->console.domU.mfn = 0;
|
|
xen_start_info->console.domU.evtchn = 0;
|
|
|
|
if (HYPERVISOR_dom0_op(&op) == 0)
|
|
boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
|
|
|
|
xen_init_apic();
|
|
|
|
/* Make sure ACS will be enabled */
|
|
pci_request_acs();
|
|
|
|
xen_acpi_sleep_register();
|
|
|
|
/* Avoid searching for BIOS MP tables */
|
|
x86_init.mpparse.find_smp_config = x86_init_noop;
|
|
x86_init.mpparse.get_smp_config = x86_init_uint_noop;
|
|
|
|
xen_boot_params_init_edd();
|
|
}
|
|
#ifdef CONFIG_PCI
|
|
/* PCI BIOS service won't work from a PV guest. */
|
|
pci_probe &= ~PCI_PROBE_BIOS;
|
|
#endif
|
|
xen_raw_console_write("about to get started...\n");
|
|
|
|
xen_setup_runstate_info(0);
|
|
|
|
/* Start the world */
|
|
#ifdef CONFIG_X86_32
|
|
i386_start_kernel();
|
|
#else
|
|
x86_64_start_reservations((char *)__pa_symbol(&boot_params));
|
|
#endif
|
|
}
|
|
|
|
void __ref xen_hvm_init_shared_info(void)
|
|
{
|
|
int cpu;
|
|
struct xen_add_to_physmap xatp;
|
|
static struct shared_info *shared_info_page = 0;
|
|
|
|
if (!shared_info_page)
|
|
shared_info_page = (struct shared_info *)
|
|
extend_brk(PAGE_SIZE, PAGE_SIZE);
|
|
xatp.domid = DOMID_SELF;
|
|
xatp.idx = 0;
|
|
xatp.space = XENMAPSPACE_shared_info;
|
|
xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
|
|
if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
|
|
BUG();
|
|
|
|
HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
|
|
|
|
/* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
|
|
* page, we use it in the event channel upcall and in some pvclock
|
|
* related functions. We don't need the vcpu_info placement
|
|
* optimizations because we don't use any pv_mmu or pv_irq op on
|
|
* HVM.
|
|
* When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
|
|
* online but xen_hvm_init_shared_info is run at resume time too and
|
|
* in that case multiple vcpus might be online. */
|
|
for_each_online_cpu(cpu) {
|
|
/* Leave it to be NULL. */
|
|
if (cpu >= MAX_VIRT_CPUS)
|
|
continue;
|
|
per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_XEN_PVHVM
|
|
static void __init init_hvm_pv_info(void)
|
|
{
|
|
int major, minor;
|
|
uint32_t eax, ebx, ecx, edx, pages, msr, base;
|
|
u64 pfn;
|
|
|
|
base = xen_cpuid_base();
|
|
cpuid(base + 1, &eax, &ebx, &ecx, &edx);
|
|
|
|
major = eax >> 16;
|
|
minor = eax & 0xffff;
|
|
printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
|
|
|
|
cpuid(base + 2, &pages, &msr, &ecx, &edx);
|
|
|
|
pfn = __pa(hypercall_page);
|
|
wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
|
|
|
|
xen_setup_features();
|
|
|
|
pv_info.name = "Xen HVM";
|
|
|
|
xen_domain_type = XEN_HVM_DOMAIN;
|
|
}
|
|
|
|
static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
|
|
void *hcpu)
|
|
{
|
|
int cpu = (long)hcpu;
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
xen_vcpu_setup(cpu);
|
|
if (xen_have_vector_callback) {
|
|
if (xen_feature(XENFEAT_hvm_safe_pvclock))
|
|
xen_setup_timer(cpu);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block xen_hvm_cpu_notifier = {
|
|
.notifier_call = xen_hvm_cpu_notify,
|
|
};
|
|
|
|
static void __init xen_hvm_guest_init(void)
|
|
{
|
|
init_hvm_pv_info();
|
|
|
|
xen_hvm_init_shared_info();
|
|
|
|
xen_panic_handler_init();
|
|
|
|
if (xen_feature(XENFEAT_hvm_callback_vector))
|
|
xen_have_vector_callback = 1;
|
|
xen_hvm_smp_init();
|
|
register_cpu_notifier(&xen_hvm_cpu_notifier);
|
|
xen_unplug_emulated_devices();
|
|
x86_init.irqs.intr_init = xen_init_IRQ;
|
|
xen_hvm_init_time_ops();
|
|
xen_hvm_init_mmu_ops();
|
|
}
|
|
|
|
static uint32_t __init xen_hvm_platform(void)
|
|
{
|
|
if (xen_pv_domain())
|
|
return 0;
|
|
|
|
return xen_cpuid_base();
|
|
}
|
|
|
|
bool xen_hvm_need_lapic(void)
|
|
{
|
|
if (xen_pv_domain())
|
|
return false;
|
|
if (!xen_hvm_domain())
|
|
return false;
|
|
if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
|
|
return false;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
|
|
|
|
const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
|
|
.name = "Xen HVM",
|
|
.detect = xen_hvm_platform,
|
|
.init_platform = xen_hvm_guest_init,
|
|
.x2apic_available = xen_x2apic_para_available,
|
|
};
|
|
EXPORT_SYMBOL(x86_hyper_xen_hvm);
|
|
#endif
|