linux_dsm_epyc7002/drivers/crypto/nx/nx-sha256.c
Leonidas S. Barbosa 000851119e crypto: nx - Fix SHA concurrence issue and sg limit bounds
NX SHA algorithms stores the message digest into tfm what
cause a concurrence issue where hashes may be replaced by others.
This patch cleans up the cases where it's handling unnecessarily shared
variables in nx context and copies the current msg digest to a sctx->state
in order to safetly handle with the hashe's state.

Also fixes and does some clean ups regarding the right sg max limit
and bounds to the sg list avoind a memory crash.

Signed-off-by: Leonidas S. Barbosa <leosilva@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2014-11-06 23:15:02 +08:00

275 lines
7.2 KiB
C

/**
* SHA-256 routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 only.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <linux/module.h>
#include <asm/vio.h>
#include <asm/byteorder.h>
#include "nx_csbcpb.h"
#include "nx.h"
static int nx_sha256_init(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
int len;
int rc;
nx_ctx_init(nx_ctx, HCOP_FC_SHA);
memset(sctx, 0, sizeof *sctx);
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
len = SHA256_DIGEST_SIZE;
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
&nx_ctx->op.outlen,
&len,
(u8 *) sctx->state,
NX_DS_SHA256);
if (rc)
goto out;
sctx->state[0] = __cpu_to_be32(SHA256_H0);
sctx->state[1] = __cpu_to_be32(SHA256_H1);
sctx->state[2] = __cpu_to_be32(SHA256_H2);
sctx->state[3] = __cpu_to_be32(SHA256_H3);
sctx->state[4] = __cpu_to_be32(SHA256_H4);
sctx->state[5] = __cpu_to_be32(SHA256_H5);
sctx->state[6] = __cpu_to_be32(SHA256_H6);
sctx->state[7] = __cpu_to_be32(SHA256_H7);
sctx->count = 0;
out:
return 0;
}
static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
u64 to_process = 0, leftover, total;
unsigned long irq_flags;
int rc = 0;
int data_len;
u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* 2 cases for total data len:
* 1: < SHA256_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
*/
total = (sctx->count % SHA256_BLOCK_SIZE) + len;
if (total < SHA256_BLOCK_SIZE) {
memcpy(sctx->buf + buf_len, data, len);
sctx->count += len;
goto out;
}
memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
do {
/*
* to_process: the SHA256_BLOCK_SIZE data chunk to process in
* this update. This value is also restricted by the sg list
* limits.
*/
to_process = total - to_process;
to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
if (buf_len) {
data_len = buf_len;
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
&nx_ctx->op.inlen,
&data_len,
(u8 *) sctx->buf,
NX_DS_SHA256);
if (rc || data_len != buf_len)
goto out;
}
data_len = to_process - buf_len;
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
&nx_ctx->op.inlen,
&data_len,
(u8 *) data,
NX_DS_SHA256);
if (rc)
goto out;
to_process = (data_len + buf_len);
leftover = total - to_process;
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha256.input_partial_digest,
csbcpb->cpb.sha256.message_digest,
SHA256_DIGEST_SIZE);
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops));
total -= to_process;
data += to_process - buf_len;
buf_len = 0;
} while (leftover >= SHA256_BLOCK_SIZE);
/* copy the leftover back into the state struct */
if (leftover)
memcpy(sctx->buf, data, leftover);
sctx->count += len;
memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha256_final(struct shash_desc *desc, u8 *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
unsigned long irq_flags;
int rc;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
if (sctx->count >= SHA256_BLOCK_SIZE) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
} else {
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
}
csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
len = sctx->count & (SHA256_BLOCK_SIZE - 1);
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->in_sg,
&nx_ctx->op.inlen,
&len,
(u8 *) sctx->buf,
NX_DS_SHA256);
if (rc || len != (sctx->count & (SHA256_BLOCK_SIZE - 1)))
goto out;
len = SHA256_DIGEST_SIZE;
rc = nx_sha_build_sg_list(nx_ctx, nx_ctx->out_sg,
&nx_ctx->op.outlen,
&len,
out,
NX_DS_SHA256);
if (rc || len != SHA256_DIGEST_SIZE)
goto out;
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops));
atomic64_add(sctx->count, &(nx_ctx->stats->sha256_bytes));
memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha256_export(struct shash_desc *desc, void *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
static int nx_sha256_import(struct shash_desc *desc, const void *in)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
struct shash_alg nx_shash_sha256_alg = {
.digestsize = SHA256_DIGEST_SIZE,
.init = nx_sha256_init,
.update = nx_sha256_update,
.final = nx_sha256_final,
.export = nx_sha256_export,
.import = nx_sha256_import,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-nx",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_sha_init,
.cra_exit = nx_crypto_ctx_exit,
}
};