mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 00:06:46 +07:00
ca15ca406f
Patch series "mm: cleanup usage of <asm/pgalloc.h>" Most architectures have very similar versions of pXd_alloc_one() and pXd_free_one() for intermediate levels of page table. These patches add generic versions of these functions in <asm-generic/pgalloc.h> and enable use of the generic functions where appropriate. In addition, functions declared and defined in <asm/pgalloc.h> headers are used mostly by core mm and early mm initialization in arch and there is no actual reason to have the <asm/pgalloc.h> included all over the place. The first patch in this series removes unneeded includes of <asm/pgalloc.h> In the end it didn't work out as neatly as I hoped and moving pXd_alloc_track() definitions to <asm-generic/pgalloc.h> would require unnecessary changes to arches that have custom page table allocations, so I've decided to move lib/ioremap.c to mm/ and make pgalloc-track.h local to mm/. This patch (of 8): In most cases <asm/pgalloc.h> header is required only for allocations of page table memory. Most of the .c files that include that header do not use symbols declared in <asm/pgalloc.h> and do not require that header. As for the other header files that used to include <asm/pgalloc.h>, it is possible to move that include into the .c file that actually uses symbols from <asm/pgalloc.h> and drop the include from the header file. The process was somewhat automated using sed -i -E '/[<"]asm\/pgalloc\.h/d' \ $(grep -L -w -f /tmp/xx \ $(git grep -E -l '[<"]asm/pgalloc\.h')) where /tmp/xx contains all the symbols defined in arch/*/include/asm/pgalloc.h. [rppt@linux.ibm.com: fix powerpc warning] Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Cc: Abdul Haleem <abdhalee@linux.vnet.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Joerg Roedel <joro@8bytes.org> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Satheesh Rajendran <sathnaga@linux.vnet.ibm.com> Cc: Stafford Horne <shorne@gmail.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Joerg Roedel <jroedel@suse.de> Cc: Matthew Wilcox <willy@infradead.org> Link: http://lkml.kernel.org/r/20200627143453.31835-1-rppt@kernel.org Link: http://lkml.kernel.org/r/20200627143453.31835-2-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
137 lines
4.2 KiB
C
137 lines
4.2 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _S390_TLB_H
|
|
#define _S390_TLB_H
|
|
|
|
/*
|
|
* TLB flushing on s390 is complicated. The following requirement
|
|
* from the principles of operation is the most arduous:
|
|
*
|
|
* "A valid table entry must not be changed while it is attached
|
|
* to any CPU and may be used for translation by that CPU except to
|
|
* (1) invalidate the entry by using INVALIDATE PAGE TABLE ENTRY,
|
|
* or INVALIDATE DAT TABLE ENTRY, (2) alter bits 56-63 of a page
|
|
* table entry, or (3) make a change by means of a COMPARE AND SWAP
|
|
* AND PURGE instruction that purges the TLB."
|
|
*
|
|
* The modification of a pte of an active mm struct therefore is
|
|
* a two step process: i) invalidate the pte, ii) store the new pte.
|
|
* This is true for the page protection bit as well.
|
|
* The only possible optimization is to flush at the beginning of
|
|
* a tlb_gather_mmu cycle if the mm_struct is currently not in use.
|
|
*
|
|
* Pages used for the page tables is a different story. FIXME: more
|
|
*/
|
|
|
|
void __tlb_remove_table(void *_table);
|
|
static inline void tlb_flush(struct mmu_gather *tlb);
|
|
static inline bool __tlb_remove_page_size(struct mmu_gather *tlb,
|
|
struct page *page, int page_size);
|
|
|
|
#define tlb_start_vma(tlb, vma) do { } while (0)
|
|
#define tlb_end_vma(tlb, vma) do { } while (0)
|
|
|
|
#define tlb_flush tlb_flush
|
|
#define pte_free_tlb pte_free_tlb
|
|
#define pmd_free_tlb pmd_free_tlb
|
|
#define p4d_free_tlb p4d_free_tlb
|
|
#define pud_free_tlb pud_free_tlb
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm-generic/tlb.h>
|
|
|
|
/*
|
|
* Release the page cache reference for a pte removed by
|
|
* tlb_ptep_clear_flush. In both flush modes the tlb for a page cache page
|
|
* has already been freed, so just do free_page_and_swap_cache.
|
|
*/
|
|
static inline bool __tlb_remove_page_size(struct mmu_gather *tlb,
|
|
struct page *page, int page_size)
|
|
{
|
|
free_page_and_swap_cache(page);
|
|
return false;
|
|
}
|
|
|
|
static inline void tlb_flush(struct mmu_gather *tlb)
|
|
{
|
|
__tlb_flush_mm_lazy(tlb->mm);
|
|
}
|
|
|
|
/*
|
|
* pte_free_tlb frees a pte table and clears the CRSTE for the
|
|
* page table from the tlb.
|
|
*/
|
|
static inline void pte_free_tlb(struct mmu_gather *tlb, pgtable_t pte,
|
|
unsigned long address)
|
|
{
|
|
__tlb_adjust_range(tlb, address, PAGE_SIZE);
|
|
tlb->mm->context.flush_mm = 1;
|
|
tlb->freed_tables = 1;
|
|
tlb->cleared_ptes = 1;
|
|
/*
|
|
* page_table_free_rcu takes care of the allocation bit masks
|
|
* of the 2K table fragments in the 4K page table page,
|
|
* then calls tlb_remove_table.
|
|
*/
|
|
page_table_free_rcu(tlb, (unsigned long *) pte, address);
|
|
}
|
|
|
|
/*
|
|
* pmd_free_tlb frees a pmd table and clears the CRSTE for the
|
|
* segment table entry from the tlb.
|
|
* If the mm uses a two level page table the single pmd is freed
|
|
* as the pgd. pmd_free_tlb checks the asce_limit against 2GB
|
|
* to avoid the double free of the pmd in this case.
|
|
*/
|
|
static inline void pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd,
|
|
unsigned long address)
|
|
{
|
|
if (mm_pmd_folded(tlb->mm))
|
|
return;
|
|
pgtable_pmd_page_dtor(virt_to_page(pmd));
|
|
__tlb_adjust_range(tlb, address, PAGE_SIZE);
|
|
tlb->mm->context.flush_mm = 1;
|
|
tlb->freed_tables = 1;
|
|
tlb->cleared_puds = 1;
|
|
tlb_remove_table(tlb, pmd);
|
|
}
|
|
|
|
/*
|
|
* p4d_free_tlb frees a pud table and clears the CRSTE for the
|
|
* region second table entry from the tlb.
|
|
* If the mm uses a four level page table the single p4d is freed
|
|
* as the pgd. p4d_free_tlb checks the asce_limit against 8PB
|
|
* to avoid the double free of the p4d in this case.
|
|
*/
|
|
static inline void p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d,
|
|
unsigned long address)
|
|
{
|
|
if (mm_p4d_folded(tlb->mm))
|
|
return;
|
|
__tlb_adjust_range(tlb, address, PAGE_SIZE);
|
|
tlb->mm->context.flush_mm = 1;
|
|
tlb->freed_tables = 1;
|
|
tlb->cleared_p4ds = 1;
|
|
tlb_remove_table(tlb, p4d);
|
|
}
|
|
|
|
/*
|
|
* pud_free_tlb frees a pud table and clears the CRSTE for the
|
|
* region third table entry from the tlb.
|
|
* If the mm uses a three level page table the single pud is freed
|
|
* as the pgd. pud_free_tlb checks the asce_limit against 4TB
|
|
* to avoid the double free of the pud in this case.
|
|
*/
|
|
static inline void pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
if (mm_pud_folded(tlb->mm))
|
|
return;
|
|
tlb->mm->context.flush_mm = 1;
|
|
tlb->freed_tables = 1;
|
|
tlb->cleared_puds = 1;
|
|
tlb_remove_table(tlb, pud);
|
|
}
|
|
|
|
|
|
#endif /* _S390_TLB_H */
|