linux_dsm_epyc7002/arch/mips/alchemy/common/platform.c
Manuel Lauss b9581b8488 MIPS: Alchemy: rewrite USB platform setup.
Use runtime CPU detection to setup all USB parts.
Remove the Au1200 OTG and UDC platform devices since there are no
drivers for them anyway.
Clean up the USB address mess in the au1000 header.

Signed-off-by: Manuel Lauss <manuel.lauss@googlemail.com>
To: Linux-MIPS <linux-mips@linux-mips.org>
Patchwork: https://patchwork.linux-mips.org/patch/2703/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2011-10-24 23:34:23 +01:00

536 lines
14 KiB
C

/*
* Platform device support for Au1x00 SoCs.
*
* Copyright 2004, Matt Porter <mporter@kernel.crashing.org>
*
* (C) Copyright Embedded Alley Solutions, Inc 2005
* Author: Pantelis Antoniou <pantelis@embeddedalley.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/serial_8250.h>
#include <linux/slab.h>
#include <asm/mach-au1x00/au1xxx.h>
#include <asm/mach-au1x00/au1xxx_dbdma.h>
#include <asm/mach-au1x00/au1100_mmc.h>
#include <asm/mach-au1x00/au1xxx_eth.h>
#include <prom.h>
static void alchemy_8250_pm(struct uart_port *port, unsigned int state,
unsigned int old_state)
{
#ifdef CONFIG_SERIAL_8250
switch (state) {
case 0:
alchemy_uart_enable(CPHYSADDR(port->membase));
serial8250_do_pm(port, state, old_state);
break;
case 3: /* power off */
serial8250_do_pm(port, state, old_state);
alchemy_uart_disable(CPHYSADDR(port->membase));
break;
default:
serial8250_do_pm(port, state, old_state);
break;
}
#endif
}
#define PORT(_base, _irq) \
{ \
.mapbase = _base, \
.irq = _irq, \
.regshift = 2, \
.iotype = UPIO_AU, \
.flags = UPF_SKIP_TEST | UPF_IOREMAP | \
UPF_FIXED_TYPE, \
.type = PORT_16550A, \
.pm = alchemy_8250_pm, \
}
static struct plat_serial8250_port au1x00_uart_data[][4] __initdata = {
[ALCHEMY_CPU_AU1000] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1000_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1000_UART1_INT),
PORT(AU1000_UART2_PHYS_ADDR, AU1000_UART2_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1000_UART3_INT),
},
[ALCHEMY_CPU_AU1500] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1500_UART0_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1500_UART3_INT),
},
[ALCHEMY_CPU_AU1100] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1100_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1100_UART1_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1100_UART3_INT),
},
[ALCHEMY_CPU_AU1550] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1550_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1550_UART1_INT),
PORT(AU1000_UART3_PHYS_ADDR, AU1550_UART3_INT),
},
[ALCHEMY_CPU_AU1200] = {
PORT(AU1000_UART0_PHYS_ADDR, AU1200_UART0_INT),
PORT(AU1000_UART1_PHYS_ADDR, AU1200_UART1_INT),
},
};
static struct platform_device au1xx0_uart_device = {
.name = "serial8250",
.id = PLAT8250_DEV_AU1X00,
};
static void __init alchemy_setup_uarts(int ctype)
{
unsigned int uartclk = get_au1x00_uart_baud_base() * 16;
int s = sizeof(struct plat_serial8250_port);
int c = alchemy_get_uarts(ctype);
struct plat_serial8250_port *ports;
ports = kzalloc(s * (c + 1), GFP_KERNEL);
if (!ports) {
printk(KERN_INFO "Alchemy: no memory for UART data\n");
return;
}
memcpy(ports, au1x00_uart_data[ctype], s * c);
au1xx0_uart_device.dev.platform_data = ports;
/* Fill up uartclk. */
for (s = 0; s < c; s++)
ports[s].uartclk = uartclk;
if (platform_device_register(&au1xx0_uart_device))
printk(KERN_INFO "Alchemy: failed to register UARTs\n");
}
/* The dmamask must be set for OHCI/EHCI to work */
static u64 alchemy_ohci_dmamask = DMA_BIT_MASK(32);
static u64 __maybe_unused alchemy_ehci_dmamask = DMA_BIT_MASK(32);
static unsigned long alchemy_ohci_data[][2] __initdata = {
[ALCHEMY_CPU_AU1000] = { AU1000_USB_OHCI_PHYS_ADDR, AU1000_USB_HOST_INT },
[ALCHEMY_CPU_AU1500] = { AU1000_USB_OHCI_PHYS_ADDR, AU1500_USB_HOST_INT },
[ALCHEMY_CPU_AU1100] = { AU1000_USB_OHCI_PHYS_ADDR, AU1100_USB_HOST_INT },
[ALCHEMY_CPU_AU1550] = { AU1550_USB_OHCI_PHYS_ADDR, AU1550_USB_HOST_INT },
[ALCHEMY_CPU_AU1200] = { AU1200_USB_OHCI_PHYS_ADDR, AU1200_USB_INT },
};
static unsigned long alchemy_ehci_data[][2] __initdata = {
[ALCHEMY_CPU_AU1200] = { AU1200_USB_EHCI_PHYS_ADDR, AU1200_USB_INT },
};
static int __init _new_usbres(struct resource **r, struct platform_device **d)
{
*r = kzalloc(sizeof(struct resource) * 2, GFP_KERNEL);
if (!*r)
return -ENOMEM;
*d = kzalloc(sizeof(struct platform_device), GFP_KERNEL);
if (!*d) {
kfree(*r);
return -ENOMEM;
}
(*d)->dev.coherent_dma_mask = DMA_BIT_MASK(32);
(*d)->num_resources = 2;
(*d)->resource = *r;
return 0;
}
static void __init alchemy_setup_usb(int ctype)
{
struct resource *res;
struct platform_device *pdev;
/* setup OHCI0. Every variant has one */
if (_new_usbres(&res, &pdev))
return;
res[0].start = alchemy_ohci_data[ctype][0];
res[0].end = res[0].start + 0x100 - 1;
res[0].flags = IORESOURCE_MEM;
res[1].start = alchemy_ohci_data[ctype][1];
res[1].end = res[1].start;
res[1].flags = IORESOURCE_IRQ;
pdev->name = "au1xxx-ohci";
pdev->id = 0;
pdev->dev.dma_mask = &alchemy_ohci_dmamask;
if (platform_device_register(pdev))
printk(KERN_INFO "Alchemy USB: cannot add OHCI0\n");
/* setup EHCI0: Au1200 */
if (ctype == ALCHEMY_CPU_AU1200) {
if (_new_usbres(&res, &pdev))
return;
res[0].start = alchemy_ehci_data[ctype][0];
res[0].end = res[0].start + 0x100 - 1;
res[0].flags = IORESOURCE_MEM;
res[1].start = alchemy_ehci_data[ctype][1];
res[1].end = res[1].start;
res[1].flags = IORESOURCE_IRQ;
pdev->name = "au1xxx-ehci";
pdev->id = 0;
pdev->dev.dma_mask = &alchemy_ehci_dmamask;
if (platform_device_register(pdev))
printk(KERN_INFO "Alchemy USB: cannot add EHCI0\n");
}
}
/*** AU1100 LCD controller ***/
#ifdef CONFIG_FB_AU1100
static struct resource au1100_lcd_resources[] = {
[0] = {
.start = LCD_PHYS_ADDR,
.end = LCD_PHYS_ADDR + 0x800 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1100_LCD_INT,
.end = AU1100_LCD_INT,
.flags = IORESOURCE_IRQ,
}
};
static u64 au1100_lcd_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1100_lcd_device = {
.name = "au1100-lcd",
.id = 0,
.dev = {
.dma_mask = &au1100_lcd_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1100_lcd_resources),
.resource = au1100_lcd_resources,
};
#endif
#ifdef CONFIG_SOC_AU1200
static struct resource au1200_lcd_resources[] = {
[0] = {
.start = LCD_PHYS_ADDR,
.end = LCD_PHYS_ADDR + 0x800 - 1,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_LCD_INT,
.end = AU1200_LCD_INT,
.flags = IORESOURCE_IRQ,
}
};
static u64 au1200_lcd_dmamask = DMA_BIT_MASK(32);
static struct platform_device au1200_lcd_device = {
.name = "au1200-lcd",
.id = 0,
.dev = {
.dma_mask = &au1200_lcd_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
},
.num_resources = ARRAY_SIZE(au1200_lcd_resources),
.resource = au1200_lcd_resources,
};
static u64 au1xxx_mmc_dmamask = DMA_BIT_MASK(32);
extern struct au1xmmc_platform_data au1xmmc_platdata[2];
static struct resource au1200_mmc0_resources[] = {
[0] = {
.start = AU1100_SD0_PHYS_ADDR,
.end = AU1100_SD0_PHYS_ADDR + 0xfff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_SD_INT,
.end = AU1200_SD_INT,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = DSCR_CMD0_SDMS_TX0,
.end = DSCR_CMD0_SDMS_TX0,
.flags = IORESOURCE_DMA,
},
[3] = {
.start = DSCR_CMD0_SDMS_RX0,
.end = DSCR_CMD0_SDMS_RX0,
.flags = IORESOURCE_DMA,
}
};
static struct platform_device au1200_mmc0_device = {
.name = "au1xxx-mmc",
.id = 0,
.dev = {
.dma_mask = &au1xxx_mmc_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
.platform_data = &au1xmmc_platdata[0],
},
.num_resources = ARRAY_SIZE(au1200_mmc0_resources),
.resource = au1200_mmc0_resources,
};
#ifndef CONFIG_MIPS_DB1200
static struct resource au1200_mmc1_resources[] = {
[0] = {
.start = AU1100_SD1_PHYS_ADDR,
.end = AU1100_SD1_PHYS_ADDR + 0xfff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = AU1200_SD_INT,
.end = AU1200_SD_INT,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = DSCR_CMD0_SDMS_TX1,
.end = DSCR_CMD0_SDMS_TX1,
.flags = IORESOURCE_DMA,
},
[3] = {
.start = DSCR_CMD0_SDMS_RX1,
.end = DSCR_CMD0_SDMS_RX1,
.flags = IORESOURCE_DMA,
}
};
static struct platform_device au1200_mmc1_device = {
.name = "au1xxx-mmc",
.id = 1,
.dev = {
.dma_mask = &au1xxx_mmc_dmamask,
.coherent_dma_mask = DMA_BIT_MASK(32),
.platform_data = &au1xmmc_platdata[1],
},
.num_resources = ARRAY_SIZE(au1200_mmc1_resources),
.resource = au1200_mmc1_resources,
};
#endif /* #ifndef CONFIG_MIPS_DB1200 */
#endif /* #ifdef CONFIG_SOC_AU1200 */
/* All Alchemy demoboards with I2C have this #define in their headers */
#ifdef SMBUS_PSC_BASE
static struct resource pbdb_smbus_resources[] = {
{
.start = CPHYSADDR(SMBUS_PSC_BASE),
.end = CPHYSADDR(SMBUS_PSC_BASE + 0xfffff),
.flags = IORESOURCE_MEM,
},
};
static struct platform_device pbdb_smbus_device = {
.name = "au1xpsc_smbus",
.id = 0, /* bus number */
.num_resources = ARRAY_SIZE(pbdb_smbus_resources),
.resource = pbdb_smbus_resources,
};
#endif
/* Macro to help defining the Ethernet MAC resources */
#define MAC_RES_COUNT 4 /* MAC regs, MAC en, MAC INT, MACDMA regs */
#define MAC_RES(_base, _enable, _irq, _macdma) \
{ \
.start = _base, \
.end = _base + 0xffff, \
.flags = IORESOURCE_MEM, \
}, \
{ \
.start = _enable, \
.end = _enable + 0x3, \
.flags = IORESOURCE_MEM, \
}, \
{ \
.start = _irq, \
.end = _irq, \
.flags = IORESOURCE_IRQ \
}, \
{ \
.start = _macdma, \
.end = _macdma + 0x1ff, \
.flags = IORESOURCE_MEM, \
}
static struct resource au1xxx_eth0_resources[][MAC_RES_COUNT] __initdata = {
[ALCHEMY_CPU_AU1000] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1000_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1500] = {
MAC_RES(AU1500_MAC0_PHYS_ADDR,
AU1500_MACEN_PHYS_ADDR,
AU1500_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1100] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1100_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1550] = {
MAC_RES(AU1000_MAC0_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR,
AU1550_MAC0_DMA_INT,
AU1000_MACDMA0_PHYS_ADDR)
},
};
static struct au1000_eth_platform_data au1xxx_eth0_platform_data = {
.phy1_search_mac0 = 1,
};
static struct platform_device au1xxx_eth0_device = {
.name = "au1000-eth",
.id = 0,
.num_resources = MAC_RES_COUNT,
.dev.platform_data = &au1xxx_eth0_platform_data,
};
static struct resource au1xxx_eth1_resources[][MAC_RES_COUNT] __initdata = {
[ALCHEMY_CPU_AU1000] = {
MAC_RES(AU1000_MAC1_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR + 4,
AU1000_MAC1_DMA_INT,
AU1000_MACDMA1_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1500] = {
MAC_RES(AU1500_MAC1_PHYS_ADDR,
AU1500_MACEN_PHYS_ADDR + 4,
AU1500_MAC1_DMA_INT,
AU1000_MACDMA1_PHYS_ADDR)
},
[ALCHEMY_CPU_AU1550] = {
MAC_RES(AU1000_MAC1_PHYS_ADDR,
AU1000_MACEN_PHYS_ADDR + 4,
AU1550_MAC1_DMA_INT,
AU1000_MACDMA1_PHYS_ADDR)
},
};
static struct au1000_eth_platform_data au1xxx_eth1_platform_data = {
.phy1_search_mac0 = 1,
};
static struct platform_device au1xxx_eth1_device = {
.name = "au1000-eth",
.id = 1,
.num_resources = MAC_RES_COUNT,
.dev.platform_data = &au1xxx_eth1_platform_data,
};
void __init au1xxx_override_eth_cfg(unsigned int port,
struct au1000_eth_platform_data *eth_data)
{
if (!eth_data || port > 1)
return;
if (port == 0)
memcpy(&au1xxx_eth0_platform_data, eth_data,
sizeof(struct au1000_eth_platform_data));
else
memcpy(&au1xxx_eth1_platform_data, eth_data,
sizeof(struct au1000_eth_platform_data));
}
static void __init alchemy_setup_macs(int ctype)
{
int ret, i;
unsigned char ethaddr[6];
struct resource *macres;
/* Handle 1st MAC */
if (alchemy_get_macs(ctype) < 1)
return;
macres = kmalloc(sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL);
if (!macres) {
printk(KERN_INFO "Alchemy: no memory for MAC0 resources\n");
return;
}
memcpy(macres, au1xxx_eth0_resources[ctype],
sizeof(struct resource) * MAC_RES_COUNT);
au1xxx_eth0_device.resource = macres;
i = prom_get_ethernet_addr(ethaddr);
if (!i && !is_valid_ether_addr(au1xxx_eth0_platform_data.mac))
memcpy(au1xxx_eth0_platform_data.mac, ethaddr, 6);
ret = platform_device_register(&au1xxx_eth0_device);
if (ret)
printk(KERN_INFO "Alchemy: failed to register MAC0\n");
/* Handle 2nd MAC */
if (alchemy_get_macs(ctype) < 2)
return;
macres = kmalloc(sizeof(struct resource) * MAC_RES_COUNT, GFP_KERNEL);
if (!macres) {
printk(KERN_INFO "Alchemy: no memory for MAC1 resources\n");
return;
}
memcpy(macres, au1xxx_eth1_resources[ctype],
sizeof(struct resource) * MAC_RES_COUNT);
au1xxx_eth1_device.resource = macres;
ethaddr[5] += 1; /* next addr for 2nd MAC */
if (!i && !is_valid_ether_addr(au1xxx_eth1_platform_data.mac))
memcpy(au1xxx_eth1_platform_data.mac, ethaddr, 6);
/* Register second MAC if enabled in pinfunc */
if (!(au_readl(SYS_PINFUNC) & (u32)SYS_PF_NI2)) {
ret = platform_device_register(&au1xxx_eth1_device);
if (ret)
printk(KERN_INFO "Alchemy: failed to register MAC1\n");
}
}
static struct platform_device *au1xxx_platform_devices[] __initdata = {
#ifdef CONFIG_FB_AU1100
&au1100_lcd_device,
#endif
#ifdef CONFIG_SOC_AU1200
&au1200_lcd_device,
&au1200_mmc0_device,
#ifndef CONFIG_MIPS_DB1200
&au1200_mmc1_device,
#endif
#endif
#ifdef SMBUS_PSC_BASE
&pbdb_smbus_device,
#endif
};
static int __init au1xxx_platform_init(void)
{
int err, ctype = alchemy_get_cputype();
alchemy_setup_uarts(ctype);
alchemy_setup_macs(ctype);
alchemy_setup_usb(ctype);
err = platform_add_devices(au1xxx_platform_devices,
ARRAY_SIZE(au1xxx_platform_devices));
return err;
}
arch_initcall(au1xxx_platform_init);