mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
8a7f97b902
Add check for the return value of memblock_alloc*() functions and call panic() in case of error. The panic message repeats the one used by panicing memblock allocators with adjustment of parameters to include only relevant ones. The replacement was mostly automated with semantic patches like the one below with manual massaging of format strings. @@ expression ptr, size, align; @@ ptr = memblock_alloc(size, align); + if (!ptr) + panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align); [anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type] Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org [rppt@linux.ibm.com: fix format strings for panics after memblock_alloc] Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com [rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails] Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx [akpm@linux-foundation.org: fix xtensa printk warning] Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky] Acked-by: Paul Burton <paul.burton@mips.com> [MIPS] Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390] Reviewed-by: Juergen Gross <jgross@suse.com> [Xen] Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa] Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christophe Leroy <christophe.leroy@c-s.fr> Cc: Christoph Hellwig <hch@lst.de> Cc: "David S. Miller" <davem@davemloft.net> Cc: Dennis Zhou <dennis@kernel.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Mark Salter <msalter@redhat.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Petr Mladek <pmladek@suse.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Rob Herring <robh+dt@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1080 lines
27 KiB
C
1080 lines
27 KiB
C
/*
|
|
* Page table handling routines for radix page table.
|
|
*
|
|
* Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "radix-mmu: " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/string_helpers.h>
|
|
#include <linux/stop_machine.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/firmware.h>
|
|
#include <asm/powernv.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/trace.h>
|
|
|
|
#include <trace/events/thp.h>
|
|
|
|
unsigned int mmu_pid_bits;
|
|
unsigned int mmu_base_pid;
|
|
|
|
static int native_register_process_table(unsigned long base, unsigned long pg_sz,
|
|
unsigned long table_size)
|
|
{
|
|
unsigned long patb0, patb1;
|
|
|
|
patb0 = be64_to_cpu(partition_tb[0].patb0);
|
|
patb1 = base | table_size | PATB_GR;
|
|
|
|
mmu_partition_table_set_entry(0, patb0, patb1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __ref void *early_alloc_pgtable(unsigned long size, int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
|
|
phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
|
|
void *ptr;
|
|
|
|
if (region_start)
|
|
min_addr = region_start;
|
|
if (region_end)
|
|
max_addr = region_end;
|
|
|
|
ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
|
|
|
|
if (!ptr)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
|
|
__func__, size, size, nid, &min_addr, &max_addr);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static int early_map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size,
|
|
int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
unsigned long pfn = pa >> PAGE_SHIFT;
|
|
pgd_t *pgdp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
pgdp = pgd_offset_k(ea);
|
|
if (pgd_none(*pgdp)) {
|
|
pudp = early_alloc_pgtable(PUD_TABLE_SIZE, nid,
|
|
region_start, region_end);
|
|
pgd_populate(&init_mm, pgdp, pudp);
|
|
}
|
|
pudp = pud_offset(pgdp, ea);
|
|
if (map_page_size == PUD_SIZE) {
|
|
ptep = (pte_t *)pudp;
|
|
goto set_the_pte;
|
|
}
|
|
if (pud_none(*pudp)) {
|
|
pmdp = early_alloc_pgtable(PMD_TABLE_SIZE, nid,
|
|
region_start, region_end);
|
|
pud_populate(&init_mm, pudp, pmdp);
|
|
}
|
|
pmdp = pmd_offset(pudp, ea);
|
|
if (map_page_size == PMD_SIZE) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto set_the_pte;
|
|
}
|
|
if (!pmd_present(*pmdp)) {
|
|
ptep = early_alloc_pgtable(PAGE_SIZE, nid,
|
|
region_start, region_end);
|
|
pmd_populate_kernel(&init_mm, pmdp, ptep);
|
|
}
|
|
ptep = pte_offset_kernel(pmdp, ea);
|
|
|
|
set_the_pte:
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
|
|
smp_wmb();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* nid, region_start, and region_end are hints to try to place the page
|
|
* table memory in the same node or region.
|
|
*/
|
|
static int __map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size,
|
|
int nid,
|
|
unsigned long region_start, unsigned long region_end)
|
|
{
|
|
unsigned long pfn = pa >> PAGE_SHIFT;
|
|
pgd_t *pgdp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
/*
|
|
* Make sure task size is correct as per the max adddr
|
|
*/
|
|
BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
|
|
|
|
if (unlikely(!slab_is_available()))
|
|
return early_map_kernel_page(ea, pa, flags, map_page_size,
|
|
nid, region_start, region_end);
|
|
|
|
/*
|
|
* Should make page table allocation functions be able to take a
|
|
* node, so we can place kernel page tables on the right nodes after
|
|
* boot.
|
|
*/
|
|
pgdp = pgd_offset_k(ea);
|
|
pudp = pud_alloc(&init_mm, pgdp, ea);
|
|
if (!pudp)
|
|
return -ENOMEM;
|
|
if (map_page_size == PUD_SIZE) {
|
|
ptep = (pte_t *)pudp;
|
|
goto set_the_pte;
|
|
}
|
|
pmdp = pmd_alloc(&init_mm, pudp, ea);
|
|
if (!pmdp)
|
|
return -ENOMEM;
|
|
if (map_page_size == PMD_SIZE) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto set_the_pte;
|
|
}
|
|
ptep = pte_alloc_kernel(pmdp, ea);
|
|
if (!ptep)
|
|
return -ENOMEM;
|
|
|
|
set_the_pte:
|
|
set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
|
|
smp_wmb();
|
|
return 0;
|
|
}
|
|
|
|
int radix__map_kernel_page(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags,
|
|
unsigned int map_page_size)
|
|
{
|
|
return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
void radix__change_memory_range(unsigned long start, unsigned long end,
|
|
unsigned long clear)
|
|
{
|
|
unsigned long idx;
|
|
pgd_t *pgdp;
|
|
pud_t *pudp;
|
|
pmd_t *pmdp;
|
|
pte_t *ptep;
|
|
|
|
start = ALIGN_DOWN(start, PAGE_SIZE);
|
|
end = PAGE_ALIGN(end); // aligns up
|
|
|
|
pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
|
|
start, end, clear);
|
|
|
|
for (idx = start; idx < end; idx += PAGE_SIZE) {
|
|
pgdp = pgd_offset_k(idx);
|
|
pudp = pud_alloc(&init_mm, pgdp, idx);
|
|
if (!pudp)
|
|
continue;
|
|
if (pud_huge(*pudp)) {
|
|
ptep = (pte_t *)pudp;
|
|
goto update_the_pte;
|
|
}
|
|
pmdp = pmd_alloc(&init_mm, pudp, idx);
|
|
if (!pmdp)
|
|
continue;
|
|
if (pmd_huge(*pmdp)) {
|
|
ptep = pmdp_ptep(pmdp);
|
|
goto update_the_pte;
|
|
}
|
|
ptep = pte_alloc_kernel(pmdp, idx);
|
|
if (!ptep)
|
|
continue;
|
|
update_the_pte:
|
|
radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
|
|
}
|
|
|
|
radix__flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
void radix__mark_rodata_ro(void)
|
|
{
|
|
unsigned long start, end;
|
|
|
|
start = (unsigned long)_stext;
|
|
end = (unsigned long)__init_begin;
|
|
|
|
radix__change_memory_range(start, end, _PAGE_WRITE);
|
|
}
|
|
|
|
void radix__mark_initmem_nx(void)
|
|
{
|
|
unsigned long start = (unsigned long)__init_begin;
|
|
unsigned long end = (unsigned long)__init_end;
|
|
|
|
radix__change_memory_range(start, end, _PAGE_EXEC);
|
|
}
|
|
#endif /* CONFIG_STRICT_KERNEL_RWX */
|
|
|
|
static inline void __meminit
|
|
print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
|
|
{
|
|
char buf[10];
|
|
|
|
if (end <= start)
|
|
return;
|
|
|
|
string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
|
|
|
|
pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
|
|
exec ? " (exec)" : "");
|
|
}
|
|
|
|
static unsigned long next_boundary(unsigned long addr, unsigned long end)
|
|
{
|
|
#ifdef CONFIG_STRICT_KERNEL_RWX
|
|
if (addr < __pa_symbol(__init_begin))
|
|
return __pa_symbol(__init_begin);
|
|
#endif
|
|
return end;
|
|
}
|
|
|
|
static int __meminit create_physical_mapping(unsigned long start,
|
|
unsigned long end,
|
|
int nid)
|
|
{
|
|
unsigned long vaddr, addr, mapping_size = 0;
|
|
bool prev_exec, exec = false;
|
|
pgprot_t prot;
|
|
int psize;
|
|
|
|
start = _ALIGN_UP(start, PAGE_SIZE);
|
|
for (addr = start; addr < end; addr += mapping_size) {
|
|
unsigned long gap, previous_size;
|
|
int rc;
|
|
|
|
gap = next_boundary(addr, end) - addr;
|
|
previous_size = mapping_size;
|
|
prev_exec = exec;
|
|
|
|
if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
|
|
mmu_psize_defs[MMU_PAGE_1G].shift) {
|
|
mapping_size = PUD_SIZE;
|
|
psize = MMU_PAGE_1G;
|
|
} else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
|
|
mmu_psize_defs[MMU_PAGE_2M].shift) {
|
|
mapping_size = PMD_SIZE;
|
|
psize = MMU_PAGE_2M;
|
|
} else {
|
|
mapping_size = PAGE_SIZE;
|
|
psize = mmu_virtual_psize;
|
|
}
|
|
|
|
vaddr = (unsigned long)__va(addr);
|
|
|
|
if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
|
|
overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
|
|
prot = PAGE_KERNEL_X;
|
|
exec = true;
|
|
} else {
|
|
prot = PAGE_KERNEL;
|
|
exec = false;
|
|
}
|
|
|
|
if (mapping_size != previous_size || exec != prev_exec) {
|
|
print_mapping(start, addr, previous_size, prev_exec);
|
|
start = addr;
|
|
}
|
|
|
|
rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
|
|
if (rc)
|
|
return rc;
|
|
|
|
update_page_count(psize, 1);
|
|
}
|
|
|
|
print_mapping(start, addr, mapping_size, exec);
|
|
return 0;
|
|
}
|
|
|
|
void __init radix_init_pgtable(void)
|
|
{
|
|
unsigned long rts_field;
|
|
struct memblock_region *reg;
|
|
|
|
/* We don't support slb for radix */
|
|
mmu_slb_size = 0;
|
|
/*
|
|
* Create the linear mapping, using standard page size for now
|
|
*/
|
|
for_each_memblock(memory, reg) {
|
|
/*
|
|
* The memblock allocator is up at this point, so the
|
|
* page tables will be allocated within the range. No
|
|
* need or a node (which we don't have yet).
|
|
*/
|
|
WARN_ON(create_physical_mapping(reg->base,
|
|
reg->base + reg->size,
|
|
-1));
|
|
}
|
|
|
|
/* Find out how many PID bits are supported */
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
if (!mmu_pid_bits)
|
|
mmu_pid_bits = 20;
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
/*
|
|
* When KVM is possible, we only use the top half of the
|
|
* PID space to avoid collisions between host and guest PIDs
|
|
* which can cause problems due to prefetch when exiting the
|
|
* guest with AIL=3
|
|
*/
|
|
mmu_base_pid = 1 << (mmu_pid_bits - 1);
|
|
#else
|
|
mmu_base_pid = 1;
|
|
#endif
|
|
} else {
|
|
/* The guest uses the bottom half of the PID space */
|
|
if (!mmu_pid_bits)
|
|
mmu_pid_bits = 19;
|
|
mmu_base_pid = 1;
|
|
}
|
|
|
|
/*
|
|
* Allocate Partition table and process table for the
|
|
* host.
|
|
*/
|
|
BUG_ON(PRTB_SIZE_SHIFT > 36);
|
|
process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
|
|
/*
|
|
* Fill in the process table.
|
|
*/
|
|
rts_field = radix__get_tree_size();
|
|
process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
|
|
/*
|
|
* Fill in the partition table. We are suppose to use effective address
|
|
* of process table here. But our linear mapping also enable us to use
|
|
* physical address here.
|
|
*/
|
|
register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
|
|
pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
|
|
asm volatile("ptesync" : : : "memory");
|
|
asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
|
|
"r" (TLBIEL_INVAL_SET_LPID), "r" (0));
|
|
asm volatile("eieio; tlbsync; ptesync" : : : "memory");
|
|
trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID, 0, 2, 1, 1);
|
|
|
|
/*
|
|
* The init_mm context is given the first available (non-zero) PID,
|
|
* which is the "guard PID" and contains no page table. PIDR should
|
|
* never be set to zero because that duplicates the kernel address
|
|
* space at the 0x0... offset (quadrant 0)!
|
|
*
|
|
* An arbitrary PID that may later be allocated by the PID allocator
|
|
* for userspace processes must not be used either, because that
|
|
* would cause stale user mappings for that PID on CPUs outside of
|
|
* the TLB invalidation scheme (because it won't be in mm_cpumask).
|
|
*
|
|
* So permanently carve out one PID for the purpose of a guard PID.
|
|
*/
|
|
init_mm.context.id = mmu_base_pid;
|
|
mmu_base_pid++;
|
|
}
|
|
|
|
static void __init radix_init_partition_table(void)
|
|
{
|
|
unsigned long rts_field, dw0;
|
|
|
|
mmu_partition_table_init();
|
|
rts_field = radix__get_tree_size();
|
|
dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
|
|
mmu_partition_table_set_entry(0, dw0, 0);
|
|
|
|
pr_info("Initializing Radix MMU\n");
|
|
pr_info("Partition table %p\n", partition_tb);
|
|
}
|
|
|
|
void __init radix_init_native(void)
|
|
{
|
|
register_process_table = native_register_process_table;
|
|
}
|
|
|
|
static int __init get_idx_from_shift(unsigned int shift)
|
|
{
|
|
int idx = -1;
|
|
|
|
switch (shift) {
|
|
case 0xc:
|
|
idx = MMU_PAGE_4K;
|
|
break;
|
|
case 0x10:
|
|
idx = MMU_PAGE_64K;
|
|
break;
|
|
case 0x15:
|
|
idx = MMU_PAGE_2M;
|
|
break;
|
|
case 0x1e:
|
|
idx = MMU_PAGE_1G;
|
|
break;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static int __init radix_dt_scan_page_sizes(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data)
|
|
{
|
|
int size = 0;
|
|
int shift, idx;
|
|
unsigned int ap;
|
|
const __be32 *prop;
|
|
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
|
|
/* We are scanning "cpu" nodes only */
|
|
if (type == NULL || strcmp(type, "cpu") != 0)
|
|
return 0;
|
|
|
|
/* Find MMU PID size */
|
|
prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
|
|
if (prop && size == 4)
|
|
mmu_pid_bits = be32_to_cpup(prop);
|
|
|
|
/* Grab page size encodings */
|
|
prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
|
|
if (!prop)
|
|
return 0;
|
|
|
|
pr_info("Page sizes from device-tree:\n");
|
|
for (; size >= 4; size -= 4, ++prop) {
|
|
|
|
struct mmu_psize_def *def;
|
|
|
|
/* top 3 bit is AP encoding */
|
|
shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
|
|
ap = be32_to_cpu(prop[0]) >> 29;
|
|
pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
|
|
|
|
idx = get_idx_from_shift(shift);
|
|
if (idx < 0)
|
|
continue;
|
|
|
|
def = &mmu_psize_defs[idx];
|
|
def->shift = shift;
|
|
def->ap = ap;
|
|
}
|
|
|
|
/* needed ? */
|
|
cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
|
|
return 1;
|
|
}
|
|
|
|
void __init radix__early_init_devtree(void)
|
|
{
|
|
int rc;
|
|
|
|
/*
|
|
* Try to find the available page sizes in the device-tree
|
|
*/
|
|
rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
|
|
if (rc != 0) /* Found */
|
|
goto found;
|
|
/*
|
|
* let's assume we have page 4k and 64k support
|
|
*/
|
|
mmu_psize_defs[MMU_PAGE_4K].shift = 12;
|
|
mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
|
|
|
|
mmu_psize_defs[MMU_PAGE_64K].shift = 16;
|
|
mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
|
|
found:
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
if (mmu_psize_defs[MMU_PAGE_2M].shift) {
|
|
/*
|
|
* map vmemmap using 2M if available
|
|
*/
|
|
mmu_vmemmap_psize = MMU_PAGE_2M;
|
|
}
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
return;
|
|
}
|
|
|
|
static void radix_init_amor(void)
|
|
{
|
|
/*
|
|
* In HV mode, we init AMOR (Authority Mask Override Register) so that
|
|
* the hypervisor and guest can setup IAMR (Instruction Authority Mask
|
|
* Register), enable key 0 and set it to 1.
|
|
*
|
|
* AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
|
|
*/
|
|
mtspr(SPRN_AMOR, (3ul << 62));
|
|
}
|
|
|
|
static void radix_init_iamr(void)
|
|
{
|
|
/*
|
|
* Radix always uses key0 of the IAMR to determine if an access is
|
|
* allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
|
|
* fetch.
|
|
*/
|
|
mtspr(SPRN_IAMR, (1ul << 62));
|
|
}
|
|
|
|
void __init radix__early_init_mmu(void)
|
|
{
|
|
unsigned long lpcr;
|
|
|
|
#ifdef CONFIG_PPC_64K_PAGES
|
|
/* PAGE_SIZE mappings */
|
|
mmu_virtual_psize = MMU_PAGE_64K;
|
|
#else
|
|
mmu_virtual_psize = MMU_PAGE_4K;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
/* vmemmap mapping */
|
|
mmu_vmemmap_psize = mmu_virtual_psize;
|
|
#endif
|
|
/*
|
|
* initialize page table size
|
|
*/
|
|
__pte_index_size = RADIX_PTE_INDEX_SIZE;
|
|
__pmd_index_size = RADIX_PMD_INDEX_SIZE;
|
|
__pud_index_size = RADIX_PUD_INDEX_SIZE;
|
|
__pgd_index_size = RADIX_PGD_INDEX_SIZE;
|
|
__pud_cache_index = RADIX_PUD_INDEX_SIZE;
|
|
__pte_table_size = RADIX_PTE_TABLE_SIZE;
|
|
__pmd_table_size = RADIX_PMD_TABLE_SIZE;
|
|
__pud_table_size = RADIX_PUD_TABLE_SIZE;
|
|
__pgd_table_size = RADIX_PGD_TABLE_SIZE;
|
|
|
|
__pmd_val_bits = RADIX_PMD_VAL_BITS;
|
|
__pud_val_bits = RADIX_PUD_VAL_BITS;
|
|
__pgd_val_bits = RADIX_PGD_VAL_BITS;
|
|
|
|
__kernel_virt_start = RADIX_KERN_VIRT_START;
|
|
__kernel_virt_size = RADIX_KERN_VIRT_SIZE;
|
|
__vmalloc_start = RADIX_VMALLOC_START;
|
|
__vmalloc_end = RADIX_VMALLOC_END;
|
|
__kernel_io_start = RADIX_KERN_IO_START;
|
|
vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
|
|
ioremap_bot = IOREMAP_BASE;
|
|
|
|
#ifdef CONFIG_PCI
|
|
pci_io_base = ISA_IO_BASE;
|
|
#endif
|
|
__pte_frag_nr = RADIX_PTE_FRAG_NR;
|
|
__pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
|
|
__pmd_frag_nr = RADIX_PMD_FRAG_NR;
|
|
__pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
radix_init_native();
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
|
|
radix_init_partition_table();
|
|
radix_init_amor();
|
|
} else {
|
|
radix_init_pseries();
|
|
}
|
|
|
|
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
|
|
|
|
radix_init_iamr();
|
|
radix_init_pgtable();
|
|
/* Switch to the guard PID before turning on MMU */
|
|
radix__switch_mmu_context(NULL, &init_mm);
|
|
if (cpu_has_feature(CPU_FTR_HVMODE))
|
|
tlbiel_all();
|
|
}
|
|
|
|
void radix__early_init_mmu_secondary(void)
|
|
{
|
|
unsigned long lpcr;
|
|
/*
|
|
* update partition table control register and UPRT
|
|
*/
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
|
|
|
|
mtspr(SPRN_PTCR,
|
|
__pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
|
|
radix_init_amor();
|
|
}
|
|
radix_init_iamr();
|
|
|
|
radix__switch_mmu_context(NULL, &init_mm);
|
|
if (cpu_has_feature(CPU_FTR_HVMODE))
|
|
tlbiel_all();
|
|
}
|
|
|
|
void radix__mmu_cleanup_all(void)
|
|
{
|
|
unsigned long lpcr;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR)) {
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
|
|
mtspr(SPRN_PTCR, 0);
|
|
powernv_set_nmmu_ptcr(0);
|
|
radix__flush_tlb_all();
|
|
}
|
|
}
|
|
|
|
void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
|
|
phys_addr_t first_memblock_size)
|
|
{
|
|
/* We don't currently support the first MEMBLOCK not mapping 0
|
|
* physical on those processors
|
|
*/
|
|
BUG_ON(first_memblock_base != 0);
|
|
|
|
/*
|
|
* Radix mode is not limited by RMA / VRMA addressing.
|
|
*/
|
|
ppc64_rma_size = ULONG_MAX;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
|
|
{
|
|
pte_t *pte;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PTE; i++) {
|
|
pte = pte_start + i;
|
|
if (!pte_none(*pte))
|
|
return;
|
|
}
|
|
|
|
pte_free_kernel(&init_mm, pte_start);
|
|
pmd_clear(pmd);
|
|
}
|
|
|
|
static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
|
|
{
|
|
pmd_t *pmd;
|
|
int i;
|
|
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
pmd = pmd_start + i;
|
|
if (!pmd_none(*pmd))
|
|
return;
|
|
}
|
|
|
|
pmd_free(&init_mm, pmd_start);
|
|
pud_clear(pud);
|
|
}
|
|
|
|
struct change_mapping_params {
|
|
pte_t *pte;
|
|
unsigned long start;
|
|
unsigned long end;
|
|
unsigned long aligned_start;
|
|
unsigned long aligned_end;
|
|
};
|
|
|
|
static int __meminit stop_machine_change_mapping(void *data)
|
|
{
|
|
struct change_mapping_params *params =
|
|
(struct change_mapping_params *)data;
|
|
|
|
if (!data)
|
|
return -1;
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
pte_clear(&init_mm, params->aligned_start, params->pte);
|
|
create_physical_mapping(params->aligned_start, params->start, -1);
|
|
create_physical_mapping(params->end, params->aligned_end, -1);
|
|
spin_lock(&init_mm.page_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void remove_pte_table(pte_t *pte_start, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
pte_t *pte;
|
|
|
|
pte = pte_start + pte_index(addr);
|
|
for (; addr < end; addr = next, pte++) {
|
|
next = (addr + PAGE_SIZE) & PAGE_MASK;
|
|
if (next > end)
|
|
next = end;
|
|
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
|
|
if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
|
|
/*
|
|
* The vmemmap_free() and remove_section_mapping()
|
|
* codepaths call us with aligned addresses.
|
|
*/
|
|
WARN_ONCE(1, "%s: unaligned range\n", __func__);
|
|
continue;
|
|
}
|
|
|
|
pte_clear(&init_mm, addr, pte);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* clear the pte and potentially split the mapping helper
|
|
*/
|
|
static void __meminit split_kernel_mapping(unsigned long addr, unsigned long end,
|
|
unsigned long size, pte_t *pte)
|
|
{
|
|
unsigned long mask = ~(size - 1);
|
|
unsigned long aligned_start = addr & mask;
|
|
unsigned long aligned_end = addr + size;
|
|
struct change_mapping_params params;
|
|
bool split_region = false;
|
|
|
|
if ((end - addr) < size) {
|
|
/*
|
|
* We're going to clear the PTE, but not flushed
|
|
* the mapping, time to remap and flush. The
|
|
* effects if visible outside the processor or
|
|
* if we are running in code close to the
|
|
* mapping we cleared, we are in trouble.
|
|
*/
|
|
if (overlaps_kernel_text(aligned_start, addr) ||
|
|
overlaps_kernel_text(end, aligned_end)) {
|
|
/*
|
|
* Hack, just return, don't pte_clear
|
|
*/
|
|
WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
|
|
"text, not splitting\n", addr, end);
|
|
return;
|
|
}
|
|
split_region = true;
|
|
}
|
|
|
|
if (split_region) {
|
|
params.pte = pte;
|
|
params.start = addr;
|
|
params.end = end;
|
|
params.aligned_start = addr & ~(size - 1);
|
|
params.aligned_end = min_t(unsigned long, aligned_end,
|
|
(unsigned long)__va(memblock_end_of_DRAM()));
|
|
stop_machine(stop_machine_change_mapping, ¶ms, NULL);
|
|
return;
|
|
}
|
|
|
|
pte_clear(&init_mm, addr, pte);
|
|
}
|
|
|
|
static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
pte_t *pte_base;
|
|
pmd_t *pmd;
|
|
|
|
pmd = pmd_start + pmd_index(addr);
|
|
for (; addr < end; addr = next, pmd++) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
if (!pmd_present(*pmd))
|
|
continue;
|
|
|
|
if (pmd_huge(*pmd)) {
|
|
split_kernel_mapping(addr, end, PMD_SIZE, (pte_t *)pmd);
|
|
continue;
|
|
}
|
|
|
|
pte_base = (pte_t *)pmd_page_vaddr(*pmd);
|
|
remove_pte_table(pte_base, addr, next);
|
|
free_pte_table(pte_base, pmd);
|
|
}
|
|
}
|
|
|
|
static void remove_pud_table(pud_t *pud_start, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmd_base;
|
|
pud_t *pud;
|
|
|
|
pud = pud_start + pud_index(addr);
|
|
for (; addr < end; addr = next, pud++) {
|
|
next = pud_addr_end(addr, end);
|
|
|
|
if (!pud_present(*pud))
|
|
continue;
|
|
|
|
if (pud_huge(*pud)) {
|
|
split_kernel_mapping(addr, end, PUD_SIZE, (pte_t *)pud);
|
|
continue;
|
|
}
|
|
|
|
pmd_base = (pmd_t *)pud_page_vaddr(*pud);
|
|
remove_pmd_table(pmd_base, addr, next);
|
|
free_pmd_table(pmd_base, pud);
|
|
}
|
|
}
|
|
|
|
static void __meminit remove_pagetable(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long addr, next;
|
|
pud_t *pud_base;
|
|
pgd_t *pgd;
|
|
|
|
spin_lock(&init_mm.page_table_lock);
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pgd_addr_end(addr, end);
|
|
|
|
pgd = pgd_offset_k(addr);
|
|
if (!pgd_present(*pgd))
|
|
continue;
|
|
|
|
if (pgd_huge(*pgd)) {
|
|
split_kernel_mapping(addr, end, PGDIR_SIZE, (pte_t *)pgd);
|
|
continue;
|
|
}
|
|
|
|
pud_base = (pud_t *)pgd_page_vaddr(*pgd);
|
|
remove_pud_table(pud_base, addr, next);
|
|
}
|
|
|
|
spin_unlock(&init_mm.page_table_lock);
|
|
radix__flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
int __meminit radix__create_section_mapping(unsigned long start, unsigned long end, int nid)
|
|
{
|
|
return create_physical_mapping(start, end, nid);
|
|
}
|
|
|
|
int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
|
|
{
|
|
remove_pagetable(start, end);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
|
|
pgprot_t flags, unsigned int map_page_size,
|
|
int nid)
|
|
{
|
|
return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
|
|
}
|
|
|
|
int __meminit radix__vmemmap_create_mapping(unsigned long start,
|
|
unsigned long page_size,
|
|
unsigned long phys)
|
|
{
|
|
/* Create a PTE encoding */
|
|
unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
|
|
int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
|
|
int ret;
|
|
|
|
ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
|
|
BUG_ON(ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
|
|
{
|
|
remove_pagetable(start, start + page_size);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
|
|
unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
|
|
pmd_t *pmdp, unsigned long clr,
|
|
unsigned long set)
|
|
{
|
|
unsigned long old;
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
#endif
|
|
|
|
old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
|
|
trace_hugepage_update(addr, old, clr, set);
|
|
|
|
return old;
|
|
}
|
|
|
|
pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
|
|
pmd_t *pmdp)
|
|
|
|
{
|
|
pmd_t pmd;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
|
|
VM_BUG_ON(pmd_devmap(*pmdp));
|
|
/*
|
|
* khugepaged calls this for normal pmd
|
|
*/
|
|
pmd = *pmdp;
|
|
pmd_clear(pmdp);
|
|
|
|
/*FIXME!! Verify whether we need this kick below */
|
|
serialize_against_pte_lookup(vma->vm_mm);
|
|
|
|
radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
|
|
|
|
return pmd;
|
|
}
|
|
|
|
/*
|
|
* For us pgtable_t is pte_t *. Inorder to save the deposisted
|
|
* page table, we consider the allocated page table as a list
|
|
* head. On withdraw we need to make sure we zero out the used
|
|
* list_head memory area.
|
|
*/
|
|
void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
|
|
pgtable_t pgtable)
|
|
{
|
|
struct list_head *lh = (struct list_head *) pgtable;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
|
|
/* FIFO */
|
|
if (!pmd_huge_pte(mm, pmdp))
|
|
INIT_LIST_HEAD(lh);
|
|
else
|
|
list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
|
|
pmd_huge_pte(mm, pmdp) = pgtable;
|
|
}
|
|
|
|
pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
|
|
{
|
|
pte_t *ptep;
|
|
pgtable_t pgtable;
|
|
struct list_head *lh;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmdp));
|
|
|
|
/* FIFO */
|
|
pgtable = pmd_huge_pte(mm, pmdp);
|
|
lh = (struct list_head *) pgtable;
|
|
if (list_empty(lh))
|
|
pmd_huge_pte(mm, pmdp) = NULL;
|
|
else {
|
|
pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
|
|
list_del(lh);
|
|
}
|
|
ptep = (pte_t *) pgtable;
|
|
*ptep = __pte(0);
|
|
ptep++;
|
|
*ptep = __pte(0);
|
|
return pgtable;
|
|
}
|
|
|
|
|
|
pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
pmd_t old_pmd;
|
|
unsigned long old;
|
|
|
|
old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
|
|
old_pmd = __pmd(old);
|
|
/*
|
|
* Serialize against find_current_mm_pte which does lock-less
|
|
* lookup in page tables with local interrupts disabled. For huge pages
|
|
* it casts pmd_t to pte_t. Since format of pte_t is different from
|
|
* pmd_t we want to prevent transit from pmd pointing to page table
|
|
* to pmd pointing to huge page (and back) while interrupts are disabled.
|
|
* We clear pmd to possibly replace it with page table pointer in
|
|
* different code paths. So make sure we wait for the parallel
|
|
* find_current_mm_pte to finish.
|
|
*/
|
|
serialize_against_pte_lookup(mm);
|
|
return old_pmd;
|
|
}
|
|
|
|
int radix__has_transparent_hugepage(void)
|
|
{
|
|
/* For radix 2M at PMD level means thp */
|
|
if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
|
|
|
|
void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
|
|
pte_t entry, unsigned long address, int psize)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED |
|
|
_PAGE_RW | _PAGE_EXEC);
|
|
|
|
unsigned long change = pte_val(entry) ^ pte_val(*ptep);
|
|
/*
|
|
* To avoid NMMU hang while relaxing access, we need mark
|
|
* the pte invalid in between.
|
|
*/
|
|
if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
|
|
unsigned long old_pte, new_pte;
|
|
|
|
old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
|
|
/*
|
|
* new value of pte
|
|
*/
|
|
new_pte = old_pte | set;
|
|
radix__flush_tlb_page_psize(mm, address, psize);
|
|
__radix_pte_update(ptep, _PAGE_INVALID, new_pte);
|
|
} else {
|
|
__radix_pte_update(ptep, 0, set);
|
|
/*
|
|
* Book3S does not require a TLB flush when relaxing access
|
|
* restrictions when the address space is not attached to a
|
|
* NMMU, because the core MMU will reload the pte after taking
|
|
* an access fault, which is defined by the architectue.
|
|
*/
|
|
}
|
|
/* See ptesync comment in radix__set_pte_at */
|
|
}
|
|
|
|
void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep,
|
|
pte_t old_pte, pte_t pte)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
|
|
/*
|
|
* To avoid NMMU hang while relaxing access we need to flush the tlb before
|
|
* we set the new value. We need to do this only for radix, because hash
|
|
* translation does flush when updating the linux pte.
|
|
*/
|
|
if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
|
|
(atomic_read(&mm->context.copros) > 0))
|
|
radix__flush_tlb_page(vma, addr);
|
|
|
|
set_pte_at(mm, addr, ptep, pte);
|
|
}
|