linux_dsm_epyc7002/drivers/rtc/rtc-pcf2123.c
Christophe JAILLET 83ab7dad06 rtc: pcf2123: Add missing error code assignment before test
It is likely that checking the result of 'pcf2123_write_reg' is expected
here.
Also fix a small style issue. The '{' at the beginning of the function
is misplaced.

Fixes: 809b453b76 ("rtc: pcf2123: clean up writes to the rtc chip")

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
2016-08-31 18:21:34 +02:00

475 lines
12 KiB
C

/*
* An SPI driver for the Philips PCF2123 RTC
* Copyright 2009 Cyber Switching, Inc.
*
* Author: Chris Verges <chrisv@cyberswitching.com>
* Maintainers: http://www.cyberswitching.com
*
* based on the RS5C348 driver in this same directory.
*
* Thanks to Christian Pellegrin <chripell@fsfe.org> for
* the sysfs contributions to this driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Please note that the CS is active high, so platform data
* should look something like:
*
* static struct spi_board_info ek_spi_devices[] = {
* ...
* {
* .modalias = "rtc-pcf2123",
* .chip_select = 1,
* .controller_data = (void *)AT91_PIN_PA10,
* .max_speed_hz = 1000 * 1000,
* .mode = SPI_CS_HIGH,
* .bus_num = 0,
* },
* ...
*};
*
*/
#include <linux/bcd.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/rtc.h>
#include <linux/spi/spi.h>
#include <linux/module.h>
#include <linux/sysfs.h>
/* REGISTERS */
#define PCF2123_REG_CTRL1 (0x00) /* Control Register 1 */
#define PCF2123_REG_CTRL2 (0x01) /* Control Register 2 */
#define PCF2123_REG_SC (0x02) /* datetime */
#define PCF2123_REG_MN (0x03)
#define PCF2123_REG_HR (0x04)
#define PCF2123_REG_DM (0x05)
#define PCF2123_REG_DW (0x06)
#define PCF2123_REG_MO (0x07)
#define PCF2123_REG_YR (0x08)
#define PCF2123_REG_ALRM_MN (0x09) /* Alarm Registers */
#define PCF2123_REG_ALRM_HR (0x0a)
#define PCF2123_REG_ALRM_DM (0x0b)
#define PCF2123_REG_ALRM_DW (0x0c)
#define PCF2123_REG_OFFSET (0x0d) /* Clock Rate Offset Register */
#define PCF2123_REG_TMR_CLKOUT (0x0e) /* Timer Registers */
#define PCF2123_REG_CTDWN_TMR (0x0f)
/* PCF2123_REG_CTRL1 BITS */
#define CTRL1_CLEAR (0) /* Clear */
#define CTRL1_CORR_INT BIT(1) /* Correction irq enable */
#define CTRL1_12_HOUR BIT(2) /* 12 hour time */
#define CTRL1_SW_RESET (BIT(3) | BIT(4) | BIT(6)) /* Software reset */
#define CTRL1_STOP BIT(5) /* Stop the clock */
#define CTRL1_EXT_TEST BIT(7) /* External clock test mode */
/* PCF2123_REG_CTRL2 BITS */
#define CTRL2_TIE BIT(0) /* Countdown timer irq enable */
#define CTRL2_AIE BIT(1) /* Alarm irq enable */
#define CTRL2_TF BIT(2) /* Countdown timer flag */
#define CTRL2_AF BIT(3) /* Alarm flag */
#define CTRL2_TI_TP BIT(4) /* Irq pin generates pulse */
#define CTRL2_MSF BIT(5) /* Minute or second irq flag */
#define CTRL2_SI BIT(6) /* Second irq enable */
#define CTRL2_MI BIT(7) /* Minute irq enable */
/* PCF2123_REG_SC BITS */
#define OSC_HAS_STOPPED BIT(7) /* Clock has been stopped */
/* PCF2123_REG_ALRM_XX BITS */
#define ALRM_ENABLE BIT(7) /* MN, HR, DM, or DW alarm enable */
/* PCF2123_REG_TMR_CLKOUT BITS */
#define CD_TMR_4096KHZ (0) /* 4096 KHz countdown timer */
#define CD_TMR_64HZ (1) /* 64 Hz countdown timer */
#define CD_TMR_1HZ (2) /* 1 Hz countdown timer */
#define CD_TMR_60th_HZ (3) /* 60th Hz countdown timer */
#define CD_TMR_TE BIT(3) /* Countdown timer enable */
/* PCF2123_REG_OFFSET BITS */
#define OFFSET_SIGN_BIT 6 /* 2's complement sign bit */
#define OFFSET_COARSE BIT(7) /* Coarse mode offset */
#define OFFSET_STEP (2170) /* Offset step in parts per billion */
/* READ/WRITE ADDRESS BITS */
#define PCF2123_WRITE BIT(4)
#define PCF2123_READ (BIT(4) | BIT(7))
static struct spi_driver pcf2123_driver;
struct pcf2123_sysfs_reg {
struct device_attribute attr;
char name[2];
};
struct pcf2123_plat_data {
struct rtc_device *rtc;
struct pcf2123_sysfs_reg regs[16];
};
/*
* Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
* is released properly after an SPI write. This function should be
* called after EVERY read/write call over SPI.
*/
static inline void pcf2123_delay_trec(void)
{
ndelay(30);
}
static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
{
struct spi_device *spi = to_spi_device(dev);
int ret;
reg |= PCF2123_READ;
ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
pcf2123_delay_trec();
return ret;
}
static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
{
struct spi_device *spi = to_spi_device(dev);
int ret;
txbuf[0] |= PCF2123_WRITE;
ret = spi_write(spi, txbuf, size);
pcf2123_delay_trec();
return ret;
}
static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
{
u8 txbuf[2];
txbuf[0] = reg;
txbuf[1] = val;
return pcf2123_write(dev, txbuf, sizeof(txbuf));
}
static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
char *buffer)
{
struct pcf2123_sysfs_reg *r;
u8 rxbuf[1];
unsigned long reg;
int ret;
r = container_of(attr, struct pcf2123_sysfs_reg, attr);
ret = kstrtoul(r->name, 16, &reg);
if (ret)
return ret;
ret = pcf2123_read(dev, reg, rxbuf, 1);
if (ret < 0)
return -EIO;
return sprintf(buffer, "0x%x\n", rxbuf[0]);
}
static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
const char *buffer, size_t count)
{
struct pcf2123_sysfs_reg *r;
unsigned long reg;
unsigned long val;
int ret;
r = container_of(attr, struct pcf2123_sysfs_reg, attr);
ret = kstrtoul(r->name, 16, &reg);
if (ret)
return ret;
ret = kstrtoul(buffer, 10, &val);
if (ret)
return ret;
ret = pcf2123_write_reg(dev, reg, val);
if (ret < 0)
return -EIO;
return count;
}
static int pcf2123_read_offset(struct device *dev, long *offset)
{
int ret;
s8 reg;
ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
if (ret < 0)
return ret;
if (reg & OFFSET_COARSE)
reg <<= 1; /* multiply by 2 and sign extend */
else
reg = sign_extend32(reg, OFFSET_SIGN_BIT);
*offset = ((long)reg) * OFFSET_STEP;
return 0;
}
/*
* The offset register is a 7 bit signed value with a coarse bit in bit 7.
* The main difference between the two is normal offset adjusts the first
* second of n minutes every other hour, with 61, 62 and 63 being shoved
* into the 60th minute.
* The coarse adjustment does the same, but every hour.
* the two overlap, with every even normal offset value corresponding
* to a coarse offset. Based on this algorithm, it seems that despite the
* name, coarse offset is a better fit for overlapping values.
*/
static int pcf2123_set_offset(struct device *dev, long offset)
{
s8 reg;
if (offset > OFFSET_STEP * 127)
reg = 127;
else if (offset < OFFSET_STEP * -128)
reg = -128;
else
reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
/* choose fine offset only for odd values in the normal range */
if (reg & 1 && reg <= 63 && reg >= -64) {
/* Normal offset. Clear the coarse bit */
reg &= ~OFFSET_COARSE;
} else {
/* Coarse offset. Divide by 2 and set the coarse bit */
reg >>= 1;
reg |= OFFSET_COARSE;
}
return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
}
static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
u8 rxbuf[7];
int ret;
ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
if (ret < 0)
return ret;
if (rxbuf[0] & OSC_HAS_STOPPED) {
dev_info(dev, "clock was stopped. Time is not valid\n");
return -EINVAL;
}
tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
tm->tm_wday = rxbuf[4] & 0x07;
tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
tm->tm_year = bcd2bin(rxbuf[6]);
if (tm->tm_year < 70)
tm->tm_year += 100; /* assume we are in 1970...2069 */
dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
"mday=%d, mon=%d, year=%d, wday=%d\n",
__func__,
tm->tm_sec, tm->tm_min, tm->tm_hour,
tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
return rtc_valid_tm(tm);
}
static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
u8 txbuf[8];
int ret;
dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
"mday=%d, mon=%d, year=%d, wday=%d\n",
__func__,
tm->tm_sec, tm->tm_min, tm->tm_hour,
tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
/* Stop the counter first */
ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
if (ret < 0)
return ret;
/* Set the new time */
txbuf[0] = PCF2123_REG_SC;
txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
txbuf[5] = tm->tm_wday & 0x07;
txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
if (ret < 0)
return ret;
/* Start the counter */
ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
if (ret < 0)
return ret;
return 0;
}
static int pcf2123_reset(struct device *dev)
{
int ret;
u8 rxbuf[2];
ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
if (ret < 0)
return ret;
/* Stop the counter */
dev_dbg(dev, "stopping RTC\n");
ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
if (ret < 0)
return ret;
/* See if the counter was actually stopped */
dev_dbg(dev, "checking for presence of RTC\n");
ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
if (ret < 0)
return ret;
dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
rxbuf[0], rxbuf[1]);
if (!(rxbuf[0] & CTRL1_STOP))
return -ENODEV;
/* Start the counter */
ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
if (ret < 0)
return ret;
return 0;
}
static const struct rtc_class_ops pcf2123_rtc_ops = {
.read_time = pcf2123_rtc_read_time,
.set_time = pcf2123_rtc_set_time,
.read_offset = pcf2123_read_offset,
.set_offset = pcf2123_set_offset,
};
static int pcf2123_probe(struct spi_device *spi)
{
struct rtc_device *rtc;
struct rtc_time tm;
struct pcf2123_plat_data *pdata;
int ret, i;
pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
GFP_KERNEL);
if (!pdata)
return -ENOMEM;
spi->dev.platform_data = pdata;
ret = pcf2123_rtc_read_time(&spi->dev, &tm);
if (ret < 0) {
ret = pcf2123_reset(&spi->dev);
if (ret < 0) {
dev_err(&spi->dev, "chip not found\n");
goto kfree_exit;
}
}
dev_info(&spi->dev, "spiclk %u KHz.\n",
(spi->max_speed_hz + 500) / 1000);
/* Finalize the initialization */
rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
&pcf2123_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc)) {
dev_err(&spi->dev, "failed to register.\n");
ret = PTR_ERR(rtc);
goto kfree_exit;
}
pdata->rtc = rtc;
for (i = 0; i < 16; i++) {
sysfs_attr_init(&pdata->regs[i].attr.attr);
sprintf(pdata->regs[i].name, "%1x", i);
pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
pdata->regs[i].attr.attr.name = pdata->regs[i].name;
pdata->regs[i].attr.show = pcf2123_show;
pdata->regs[i].attr.store = pcf2123_store;
ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
if (ret) {
dev_err(&spi->dev, "Unable to create sysfs %s\n",
pdata->regs[i].name);
goto sysfs_exit;
}
}
return 0;
sysfs_exit:
for (i--; i >= 0; i--)
device_remove_file(&spi->dev, &pdata->regs[i].attr);
kfree_exit:
spi->dev.platform_data = NULL;
return ret;
}
static int pcf2123_remove(struct spi_device *spi)
{
struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
int i;
if (pdata) {
for (i = 0; i < 16; i++)
if (pdata->regs[i].name[0])
device_remove_file(&spi->dev,
&pdata->regs[i].attr);
}
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id pcf2123_dt_ids[] = {
{ .compatible = "nxp,rtc-pcf2123", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
#endif
static struct spi_driver pcf2123_driver = {
.driver = {
.name = "rtc-pcf2123",
.of_match_table = of_match_ptr(pcf2123_dt_ids),
},
.probe = pcf2123_probe,
.remove = pcf2123_remove,
};
module_spi_driver(pcf2123_driver);
MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
MODULE_LICENSE("GPL");