linux_dsm_epyc7002/drivers/misc/habanalabs/command_submission.c
Oded Gabbay 05c8a4fc44 habanalabs: correctly cast u64 to void*
Use the u64_to_user_ptr(x) kernel macro to correctly cast u64 to void*

Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: Omer Shpigelman <oshpigelman@habana.ai>
Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com>
Link: https://lore.kernel.org/r/20200601065648.8775-2-oded.gabbay@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-01 09:08:10 +02:00

1170 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"
#include <linux/uaccess.h>
#include <linux/slab.h>
#define HL_CS_FLAGS_SIG_WAIT (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT)
static void job_wq_completion(struct work_struct *work);
static long _hl_cs_wait_ioctl(struct hl_device *hdev,
struct hl_ctx *ctx, u64 timeout_us, u64 seq);
static void cs_do_release(struct kref *ref);
static void hl_sob_reset(struct kref *ref)
{
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
kref);
struct hl_device *hdev = hw_sob->hdev;
hdev->asic_funcs->reset_sob(hdev, hw_sob);
}
void hl_sob_reset_error(struct kref *ref)
{
struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
kref);
struct hl_device *hdev = hw_sob->hdev;
dev_crit(hdev->dev,
"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
hw_sob->q_idx, hw_sob->sob_id);
}
static const char *hl_fence_get_driver_name(struct dma_fence *fence)
{
return "HabanaLabs";
}
static const char *hl_fence_get_timeline_name(struct dma_fence *fence)
{
struct hl_cs_compl *hl_cs_compl =
container_of(fence, struct hl_cs_compl, base_fence);
return dev_name(hl_cs_compl->hdev->dev);
}
static bool hl_fence_enable_signaling(struct dma_fence *fence)
{
return true;
}
static void hl_fence_release(struct dma_fence *fence)
{
struct hl_cs_compl *hl_cs_cmpl =
container_of(fence, struct hl_cs_compl, base_fence);
struct hl_device *hdev = hl_cs_cmpl->hdev;
if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
(hl_cs_cmpl->type == CS_TYPE_WAIT)) {
dev_dbg(hdev->dev,
"CS 0x%llx type %d finished, sob_id: %d, sob_val: 0x%x\n",
hl_cs_cmpl->cs_seq,
hl_cs_cmpl->type,
hl_cs_cmpl->hw_sob->sob_id,
hl_cs_cmpl->sob_val);
/*
* A signal CS can get completion while the corresponding wait
* for signal CS is on its way to the PQ. The wait for signal CS
* will get stuck if the signal CS incremented the SOB to its
* max value and there are no pending (submitted) waits on this
* SOB.
* We do the following to void this situation:
* 1. The wait for signal CS must get a ref for the signal CS as
* soon as possible in cs_ioctl_signal_wait() and put it
* before being submitted to the PQ but after it incremented
* the SOB refcnt in init_signal_wait_cs().
* 2. Signal/Wait for signal CS will decrement the SOB refcnt
* here.
* These two measures guarantee that the wait for signal CS will
* reset the SOB upon completion rather than the signal CS and
* hence the above scenario is avoided.
*/
kref_put(&hl_cs_cmpl->hw_sob->kref, hl_sob_reset);
}
kfree_rcu(hl_cs_cmpl, base_fence.rcu);
}
static const struct dma_fence_ops hl_fence_ops = {
.get_driver_name = hl_fence_get_driver_name,
.get_timeline_name = hl_fence_get_timeline_name,
.enable_signaling = hl_fence_enable_signaling,
.release = hl_fence_release
};
static void cs_get(struct hl_cs *cs)
{
kref_get(&cs->refcount);
}
static int cs_get_unless_zero(struct hl_cs *cs)
{
return kref_get_unless_zero(&cs->refcount);
}
static void cs_put(struct hl_cs *cs)
{
kref_put(&cs->refcount, cs_do_release);
}
static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
{
/*
* Patched CB is created for external queues jobs, and for H/W queues
* jobs if the user CB was allocated by driver and MMU is disabled.
*/
return (job->queue_type == QUEUE_TYPE_EXT ||
(job->queue_type == QUEUE_TYPE_HW &&
job->is_kernel_allocated_cb &&
!hdev->mmu_enable));
}
/*
* cs_parser - parse the user command submission
*
* @hpriv : pointer to the private data of the fd
* @job : pointer to the job that holds the command submission info
*
* The function parses the command submission of the user. It calls the
* ASIC specific parser, which returns a list of memory blocks to send
* to the device as different command buffers
*
*/
static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_parser parser;
int rc;
parser.ctx_id = job->cs->ctx->asid;
parser.cs_sequence = job->cs->sequence;
parser.job_id = job->id;
parser.hw_queue_id = job->hw_queue_id;
parser.job_userptr_list = &job->userptr_list;
parser.patched_cb = NULL;
parser.user_cb = job->user_cb;
parser.user_cb_size = job->user_cb_size;
parser.queue_type = job->queue_type;
parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
job->patched_cb = NULL;
rc = hdev->asic_funcs->cs_parser(hdev, &parser);
if (is_cb_patched(hdev, job)) {
if (!rc) {
job->patched_cb = parser.patched_cb;
job->job_cb_size = parser.patched_cb_size;
job->contains_dma_pkt = parser.contains_dma_pkt;
spin_lock(&job->patched_cb->lock);
job->patched_cb->cs_cnt++;
spin_unlock(&job->patched_cb->lock);
}
/*
* Whether the parsing worked or not, we don't need the
* original CB anymore because it was already parsed and
* won't be accessed again for this CS
*/
spin_lock(&job->user_cb->lock);
job->user_cb->cs_cnt--;
spin_unlock(&job->user_cb->lock);
hl_cb_put(job->user_cb);
job->user_cb = NULL;
} else if (!rc) {
job->job_cb_size = job->user_cb_size;
}
return rc;
}
static void free_job(struct hl_device *hdev, struct hl_cs_job *job)
{
struct hl_cs *cs = job->cs;
if (is_cb_patched(hdev, job)) {
hl_userptr_delete_list(hdev, &job->userptr_list);
/*
* We might arrive here from rollback and patched CB wasn't
* created, so we need to check it's not NULL
*/
if (job->patched_cb) {
spin_lock(&job->patched_cb->lock);
job->patched_cb->cs_cnt--;
spin_unlock(&job->patched_cb->lock);
hl_cb_put(job->patched_cb);
}
}
/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
* enabled, the user CB isn't released in cs_parser() and thus should be
* released here.
*/
if (job->queue_type == QUEUE_TYPE_HW &&
job->is_kernel_allocated_cb && hdev->mmu_enable) {
spin_lock(&job->user_cb->lock);
job->user_cb->cs_cnt--;
spin_unlock(&job->user_cb->lock);
hl_cb_put(job->user_cb);
}
/*
* This is the only place where there can be multiple threads
* modifying the list at the same time
*/
spin_lock(&cs->job_lock);
list_del(&job->cs_node);
spin_unlock(&cs->job_lock);
hl_debugfs_remove_job(hdev, job);
if (job->queue_type == QUEUE_TYPE_EXT ||
job->queue_type == QUEUE_TYPE_HW)
cs_put(cs);
kfree(job);
}
static void cs_do_release(struct kref *ref)
{
struct hl_cs *cs = container_of(ref, struct hl_cs,
refcount);
struct hl_device *hdev = cs->ctx->hdev;
struct hl_cs_job *job, *tmp;
cs->completed = true;
/*
* Although if we reached here it means that all external jobs have
* finished, because each one of them took refcnt to CS, we still
* need to go over the internal jobs and free them. Otherwise, we
* will have leaked memory and what's worse, the CS object (and
* potentially the CTX object) could be released, while the JOB
* still holds a pointer to them (but no reference).
*/
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
free_job(hdev, job);
/* We also need to update CI for internal queues */
if (cs->submitted) {
hdev->asic_funcs->hw_queues_lock(hdev);
hdev->cs_active_cnt--;
if (!hdev->cs_active_cnt) {
struct hl_device_idle_busy_ts *ts;
ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx++];
ts->busy_to_idle_ts = ktime_get();
if (hdev->idle_busy_ts_idx == HL_IDLE_BUSY_TS_ARR_SIZE)
hdev->idle_busy_ts_idx = 0;
} else if (hdev->cs_active_cnt < 0) {
dev_crit(hdev->dev, "CS active cnt %d is negative\n",
hdev->cs_active_cnt);
}
hdev->asic_funcs->hw_queues_unlock(hdev);
hl_int_hw_queue_update_ci(cs);
spin_lock(&hdev->hw_queues_mirror_lock);
/* remove CS from hw_queues mirror list */
list_del_init(&cs->mirror_node);
spin_unlock(&hdev->hw_queues_mirror_lock);
/*
* Don't cancel TDR in case this CS was timedout because we
* might be running from the TDR context
*/
if ((!cs->timedout) &&
(hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT)) {
struct hl_cs *next;
if (cs->tdr_active)
cancel_delayed_work_sync(&cs->work_tdr);
spin_lock(&hdev->hw_queues_mirror_lock);
/* queue TDR for next CS */
next = list_first_entry_or_null(
&hdev->hw_queues_mirror_list,
struct hl_cs, mirror_node);
if ((next) && (!next->tdr_active)) {
next->tdr_active = true;
schedule_delayed_work(&next->work_tdr,
hdev->timeout_jiffies);
}
spin_unlock(&hdev->hw_queues_mirror_lock);
}
} else if (cs->type == CS_TYPE_WAIT) {
/*
* In case the wait for signal CS was submitted, the put occurs
* in init_signal_wait_cs() right before hanging on the PQ.
*/
dma_fence_put(cs->signal_fence);
}
/*
* Must be called before hl_ctx_put because inside we use ctx to get
* the device
*/
hl_debugfs_remove_cs(cs);
hl_ctx_put(cs->ctx);
if (cs->timedout)
dma_fence_set_error(cs->fence, -ETIMEDOUT);
else if (cs->aborted)
dma_fence_set_error(cs->fence, -EIO);
dma_fence_signal(cs->fence);
dma_fence_put(cs->fence);
kfree(cs);
}
static void cs_timedout(struct work_struct *work)
{
struct hl_device *hdev;
int ctx_asid, rc;
struct hl_cs *cs = container_of(work, struct hl_cs,
work_tdr.work);
rc = cs_get_unless_zero(cs);
if (!rc)
return;
if ((!cs->submitted) || (cs->completed)) {
cs_put(cs);
return;
}
/* Mark the CS is timed out so we won't try to cancel its TDR */
cs->timedout = true;
hdev = cs->ctx->hdev;
ctx_asid = cs->ctx->asid;
/* TODO: add information about last signaled seq and last emitted seq */
dev_err(hdev->dev, "User %d command submission %llu got stuck!\n",
ctx_asid, cs->sequence);
cs_put(cs);
if (hdev->reset_on_lockup)
hl_device_reset(hdev, false, false);
}
static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
enum hl_cs_type cs_type, struct hl_cs **cs_new)
{
struct hl_cs_compl *cs_cmpl;
struct dma_fence *other = NULL;
struct hl_cs *cs;
int rc;
cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
if (!cs)
return -ENOMEM;
cs->ctx = ctx;
cs->submitted = false;
cs->completed = false;
cs->type = cs_type;
INIT_LIST_HEAD(&cs->job_list);
INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
kref_init(&cs->refcount);
spin_lock_init(&cs->job_lock);
cs_cmpl = kmalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
if (!cs_cmpl) {
rc = -ENOMEM;
goto free_cs;
}
cs_cmpl->hdev = hdev;
cs_cmpl->type = cs->type;
spin_lock_init(&cs_cmpl->lock);
cs->fence = &cs_cmpl->base_fence;
spin_lock(&ctx->cs_lock);
cs_cmpl->cs_seq = ctx->cs_sequence;
other = ctx->cs_pending[cs_cmpl->cs_seq & (HL_MAX_PENDING_CS - 1)];
if ((other) && (!dma_fence_is_signaled(other))) {
spin_unlock(&ctx->cs_lock);
dev_dbg(hdev->dev,
"Rejecting CS because of too many in-flights CS\n");
rc = -EAGAIN;
goto free_fence;
}
dma_fence_init(&cs_cmpl->base_fence, &hl_fence_ops, &cs_cmpl->lock,
ctx->asid, ctx->cs_sequence);
cs->sequence = cs_cmpl->cs_seq;
ctx->cs_pending[cs_cmpl->cs_seq & (HL_MAX_PENDING_CS - 1)] =
&cs_cmpl->base_fence;
ctx->cs_sequence++;
dma_fence_get(&cs_cmpl->base_fence);
dma_fence_put(other);
spin_unlock(&ctx->cs_lock);
*cs_new = cs;
return 0;
free_fence:
kfree(cs_cmpl);
free_cs:
kfree(cs);
return rc;
}
static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
{
struct hl_cs_job *job, *tmp;
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
free_job(hdev, job);
}
void hl_cs_rollback_all(struct hl_device *hdev)
{
struct hl_cs *cs, *tmp;
/* flush all completions */
flush_workqueue(hdev->cq_wq);
/* Make sure we don't have leftovers in the H/W queues mirror list */
list_for_each_entry_safe(cs, tmp, &hdev->hw_queues_mirror_list,
mirror_node) {
cs_get(cs);
cs->aborted = true;
dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
cs->ctx->asid, cs->sequence);
cs_rollback(hdev, cs);
cs_put(cs);
}
}
static void job_wq_completion(struct work_struct *work)
{
struct hl_cs_job *job = container_of(work, struct hl_cs_job,
finish_work);
struct hl_cs *cs = job->cs;
struct hl_device *hdev = cs->ctx->hdev;
/* job is no longer needed */
free_job(hdev, job);
}
static int validate_queue_index(struct hl_device *hdev,
struct hl_cs_chunk *chunk,
enum hl_queue_type *queue_type,
bool *is_kernel_allocated_cb)
{
struct asic_fixed_properties *asic = &hdev->asic_prop;
struct hw_queue_properties *hw_queue_prop;
hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
if ((chunk->queue_index >= HL_MAX_QUEUES) ||
(hw_queue_prop->type == QUEUE_TYPE_NA)) {
dev_err(hdev->dev, "Queue index %d is invalid\n",
chunk->queue_index);
return -EINVAL;
}
if (hw_queue_prop->driver_only) {
dev_err(hdev->dev,
"Queue index %d is restricted for the kernel driver\n",
chunk->queue_index);
return -EINVAL;
}
*queue_type = hw_queue_prop->type;
*is_kernel_allocated_cb = !!hw_queue_prop->requires_kernel_cb;
return 0;
}
static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
struct hl_cb_mgr *cb_mgr,
struct hl_cs_chunk *chunk)
{
struct hl_cb *cb;
u32 cb_handle;
cb_handle = (u32) (chunk->cb_handle >> PAGE_SHIFT);
cb = hl_cb_get(hdev, cb_mgr, cb_handle);
if (!cb) {
dev_err(hdev->dev, "CB handle 0x%x invalid\n", cb_handle);
return NULL;
}
if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
goto release_cb;
}
spin_lock(&cb->lock);
cb->cs_cnt++;
spin_unlock(&cb->lock);
return cb;
release_cb:
hl_cb_put(cb);
return NULL;
}
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
{
struct hl_cs_job *job;
job = kzalloc(sizeof(*job), GFP_ATOMIC);
if (!job)
return NULL;
job->queue_type = queue_type;
job->is_kernel_allocated_cb = is_kernel_allocated_cb;
if (is_cb_patched(hdev, job))
INIT_LIST_HEAD(&job->userptr_list);
if (job->queue_type == QUEUE_TYPE_EXT)
INIT_WORK(&job->finish_work, job_wq_completion);
return job;
}
static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
u32 num_chunks, u64 *cs_seq)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_cs_chunk *cs_chunk_array;
struct hl_cs_job *job;
struct hl_cs *cs;
struct hl_cb *cb;
bool int_queues_only = true;
u32 size_to_copy;
int rc, i;
*cs_seq = ULLONG_MAX;
if (num_chunks > HL_MAX_JOBS_PER_CS) {
dev_err(hdev->dev,
"Number of chunks can NOT be larger than %d\n",
HL_MAX_JOBS_PER_CS);
rc = -EINVAL;
goto out;
}
cs_chunk_array = kmalloc_array(num_chunks, sizeof(*cs_chunk_array),
GFP_ATOMIC);
if (!cs_chunk_array) {
rc = -ENOMEM;
goto out;
}
size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
if (copy_from_user(cs_chunk_array, chunks, size_to_copy)) {
dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
rc = -EFAULT;
goto free_cs_chunk_array;
}
/* increment refcnt for context */
hl_ctx_get(hdev, hpriv->ctx);
rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT, &cs);
if (rc) {
hl_ctx_put(hpriv->ctx);
goto free_cs_chunk_array;
}
*cs_seq = cs->sequence;
hl_debugfs_add_cs(cs);
/* Validate ALL the CS chunks before submitting the CS */
for (i = 0 ; i < num_chunks ; i++) {
struct hl_cs_chunk *chunk = &cs_chunk_array[i];
enum hl_queue_type queue_type;
bool is_kernel_allocated_cb;
rc = validate_queue_index(hdev, chunk, &queue_type,
&is_kernel_allocated_cb);
if (rc)
goto free_cs_object;
if (is_kernel_allocated_cb) {
cb = get_cb_from_cs_chunk(hdev, &hpriv->cb_mgr, chunk);
if (!cb) {
rc = -EINVAL;
goto free_cs_object;
}
} else {
cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
}
if (queue_type == QUEUE_TYPE_EXT || queue_type == QUEUE_TYPE_HW)
int_queues_only = false;
job = hl_cs_allocate_job(hdev, queue_type,
is_kernel_allocated_cb);
if (!job) {
dev_err(hdev->dev, "Failed to allocate a new job\n");
rc = -ENOMEM;
if (is_kernel_allocated_cb)
goto release_cb;
else
goto free_cs_object;
}
job->id = i + 1;
job->cs = cs;
job->user_cb = cb;
job->user_cb_size = chunk->cb_size;
job->hw_queue_id = chunk->queue_index;
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
list_add_tail(&job->cs_node, &cs->job_list);
/*
* Increment CS reference. When CS reference is 0, CS is
* done and can be signaled to user and free all its resources
* Only increment for JOB on external or H/W queues, because
* only for those JOBs we get completion
*/
if (job->queue_type == QUEUE_TYPE_EXT ||
job->queue_type == QUEUE_TYPE_HW)
cs_get(cs);
hl_debugfs_add_job(hdev, job);
rc = cs_parser(hpriv, job);
if (rc) {
dev_err(hdev->dev,
"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
cs->ctx->asid, cs->sequence, job->id, rc);
goto free_cs_object;
}
}
if (int_queues_only) {
dev_err(hdev->dev,
"Reject CS %d.%llu because only internal queues jobs are present\n",
cs->ctx->asid, cs->sequence);
rc = -EINVAL;
goto free_cs_object;
}
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {
if (rc != -EAGAIN)
dev_err(hdev->dev,
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
cs->ctx->asid, cs->sequence, rc);
goto free_cs_object;
}
rc = HL_CS_STATUS_SUCCESS;
goto put_cs;
release_cb:
spin_lock(&cb->lock);
cb->cs_cnt--;
spin_unlock(&cb->lock);
hl_cb_put(cb);
free_cs_object:
cs_rollback(hdev, cs);
*cs_seq = ULLONG_MAX;
/* The path below is both for good and erroneous exits */
put_cs:
/* We finished with the CS in this function, so put the ref */
cs_put(cs);
free_cs_chunk_array:
kfree(cs_chunk_array);
out:
return rc;
}
static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
void __user *chunks, u32 num_chunks,
u64 *cs_seq)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_ctx *ctx = hpriv->ctx;
struct hl_cs_chunk *cs_chunk_array, *chunk;
struct hw_queue_properties *hw_queue_prop;
struct dma_fence *sig_fence = NULL;
struct hl_cs_job *job;
struct hl_cs *cs;
struct hl_cb *cb;
u64 *signal_seq_arr = NULL, signal_seq;
u32 size_to_copy, q_idx, signal_seq_arr_len, cb_size;
int rc;
*cs_seq = ULLONG_MAX;
if (num_chunks > HL_MAX_JOBS_PER_CS) {
dev_err(hdev->dev,
"Number of chunks can NOT be larger than %d\n",
HL_MAX_JOBS_PER_CS);
rc = -EINVAL;
goto out;
}
cs_chunk_array = kmalloc_array(num_chunks, sizeof(*cs_chunk_array),
GFP_ATOMIC);
if (!cs_chunk_array) {
rc = -ENOMEM;
goto out;
}
size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
if (copy_from_user(cs_chunk_array, chunks, size_to_copy)) {
dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
rc = -EFAULT;
goto free_cs_chunk_array;
}
/* currently it is guaranteed to have only one chunk */
chunk = &cs_chunk_array[0];
q_idx = chunk->queue_index;
hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
if ((q_idx >= HL_MAX_QUEUES) ||
(hw_queue_prop->type != QUEUE_TYPE_EXT)) {
dev_err(hdev->dev, "Queue index %d is invalid\n", q_idx);
rc = -EINVAL;
goto free_cs_chunk_array;
}
if (cs_type == CS_TYPE_WAIT) {
struct hl_cs_compl *sig_waitcs_cmpl;
signal_seq_arr_len = chunk->num_signal_seq_arr;
/* currently only one signal seq is supported */
if (signal_seq_arr_len != 1) {
dev_err(hdev->dev,
"Wait for signal CS supports only one signal CS seq\n");
rc = -EINVAL;
goto free_cs_chunk_array;
}
signal_seq_arr = kmalloc_array(signal_seq_arr_len,
sizeof(*signal_seq_arr),
GFP_ATOMIC);
if (!signal_seq_arr) {
rc = -ENOMEM;
goto free_cs_chunk_array;
}
size_to_copy = chunk->num_signal_seq_arr *
sizeof(*signal_seq_arr);
if (copy_from_user(signal_seq_arr,
u64_to_user_ptr(chunk->signal_seq_arr),
size_to_copy)) {
dev_err(hdev->dev,
"Failed to copy signal seq array from user\n");
rc = -EFAULT;
goto free_signal_seq_array;
}
/* currently it is guaranteed to have only one signal seq */
signal_seq = signal_seq_arr[0];
sig_fence = hl_ctx_get_fence(ctx, signal_seq);
if (IS_ERR(sig_fence)) {
dev_err(hdev->dev,
"Failed to get signal CS with seq 0x%llx\n",
signal_seq);
rc = PTR_ERR(sig_fence);
goto free_signal_seq_array;
}
if (!sig_fence) {
/* signal CS already finished */
rc = 0;
goto free_signal_seq_array;
}
sig_waitcs_cmpl =
container_of(sig_fence, struct hl_cs_compl, base_fence);
if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL) {
dev_err(hdev->dev,
"CS seq 0x%llx is not of a signal CS\n",
signal_seq);
dma_fence_put(sig_fence);
rc = -EINVAL;
goto free_signal_seq_array;
}
if (dma_fence_is_signaled(sig_fence)) {
/* signal CS already finished */
dma_fence_put(sig_fence);
rc = 0;
goto free_signal_seq_array;
}
}
/* increment refcnt for context */
hl_ctx_get(hdev, ctx);
rc = allocate_cs(hdev, ctx, cs_type, &cs);
if (rc) {
if (cs_type == CS_TYPE_WAIT)
dma_fence_put(sig_fence);
hl_ctx_put(ctx);
goto free_signal_seq_array;
}
/*
* Save the signal CS fence for later initialization right before
* hanging the wait CS on the queue.
*/
if (cs->type == CS_TYPE_WAIT)
cs->signal_fence = sig_fence;
hl_debugfs_add_cs(cs);
*cs_seq = cs->sequence;
job = hl_cs_allocate_job(hdev, QUEUE_TYPE_EXT, true);
if (!job) {
dev_err(hdev->dev, "Failed to allocate a new job\n");
rc = -ENOMEM;
goto put_cs;
}
cb = hl_cb_kernel_create(hdev, PAGE_SIZE);
if (!cb) {
kfree(job);
rc = -EFAULT;
goto put_cs;
}
if (cs->type == CS_TYPE_WAIT)
cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
else
cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
job->id = 0;
job->cs = cs;
job->user_cb = cb;
job->user_cb->cs_cnt++;
job->user_cb_size = cb_size;
job->hw_queue_id = q_idx;
/*
* No need in parsing, user CB is the patched CB.
* We call hl_cb_destroy() out of two reasons - we don't need the CB in
* the CB idr anymore and to decrement its refcount as it was
* incremented inside hl_cb_kernel_create().
*/
job->patched_cb = job->user_cb;
job->job_cb_size = job->user_cb_size;
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
cs->jobs_in_queue_cnt[job->hw_queue_id]++;
list_add_tail(&job->cs_node, &cs->job_list);
/* increment refcount as for external queues we get completion */
cs_get(cs);
hl_debugfs_add_job(hdev, job);
rc = hl_hw_queue_schedule_cs(cs);
if (rc) {
if (rc != -EAGAIN)
dev_err(hdev->dev,
"Failed to submit CS %d.%llu to H/W queues, error %d\n",
ctx->asid, cs->sequence, rc);
goto free_cs_object;
}
rc = HL_CS_STATUS_SUCCESS;
goto put_cs;
free_cs_object:
cs_rollback(hdev, cs);
*cs_seq = ULLONG_MAX;
/* The path below is both for good and erroneous exits */
put_cs:
/* We finished with the CS in this function, so put the ref */
cs_put(cs);
free_signal_seq_array:
if (cs_type == CS_TYPE_WAIT)
kfree(signal_seq_arr);
free_cs_chunk_array:
kfree(cs_chunk_array);
out:
return rc;
}
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct hl_device *hdev = hpriv->hdev;
union hl_cs_args *args = data;
struct hl_ctx *ctx = hpriv->ctx;
void __user *chunks_execute, *chunks_restore;
enum hl_cs_type cs_type;
u32 num_chunks_execute, num_chunks_restore, sig_wait_flags;
u64 cs_seq = ULONG_MAX;
int rc, do_ctx_switch;
bool need_soft_reset = false;
if (hl_device_disabled_or_in_reset(hdev)) {
dev_warn_ratelimited(hdev->dev,
"Device is %s. Can't submit new CS\n",
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
rc = -EBUSY;
goto out;
}
sig_wait_flags = args->in.cs_flags & HL_CS_FLAGS_SIG_WAIT;
if (unlikely(sig_wait_flags == HL_CS_FLAGS_SIG_WAIT)) {
dev_err(hdev->dev,
"Signal and wait CS flags are mutually exclusive, context %d\n",
ctx->asid);
rc = -EINVAL;
goto out;
}
if (unlikely((sig_wait_flags & HL_CS_FLAGS_SIG_WAIT) &&
(!hdev->supports_sync_stream))) {
dev_err(hdev->dev, "Sync stream CS is not supported\n");
rc = -EINVAL;
goto out;
}
if (args->in.cs_flags & HL_CS_FLAGS_SIGNAL)
cs_type = CS_TYPE_SIGNAL;
else if (args->in.cs_flags & HL_CS_FLAGS_WAIT)
cs_type = CS_TYPE_WAIT;
else
cs_type = CS_TYPE_DEFAULT;
chunks_execute = (void __user *) (uintptr_t) args->in.chunks_execute;
num_chunks_execute = args->in.num_chunks_execute;
if (cs_type == CS_TYPE_DEFAULT) {
if (!num_chunks_execute) {
dev_err(hdev->dev,
"Got execute CS with 0 chunks, context %d\n",
ctx->asid);
rc = -EINVAL;
goto out;
}
} else if (num_chunks_execute != 1) {
dev_err(hdev->dev,
"Sync stream CS mandates one chunk only, context %d\n",
ctx->asid);
rc = -EINVAL;
goto out;
}
do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
long ret;
chunks_restore =
(void __user *) (uintptr_t) args->in.chunks_restore;
num_chunks_restore = args->in.num_chunks_restore;
mutex_lock(&hpriv->restore_phase_mutex);
if (do_ctx_switch) {
rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
if (rc) {
dev_err_ratelimited(hdev->dev,
"Failed to switch to context %d, rejecting CS! %d\n",
ctx->asid, rc);
/*
* If we timedout, or if the device is not IDLE
* while we want to do context-switch (-EBUSY),
* we need to soft-reset because QMAN is
* probably stuck. However, we can't call to
* reset here directly because of deadlock, so
* need to do it at the very end of this
* function
*/
if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
need_soft_reset = true;
mutex_unlock(&hpriv->restore_phase_mutex);
goto out;
}
}
hdev->asic_funcs->restore_phase_topology(hdev);
if (!num_chunks_restore) {
dev_dbg(hdev->dev,
"Need to run restore phase but restore CS is empty\n");
rc = 0;
} else {
rc = cs_ioctl_default(hpriv, chunks_restore,
num_chunks_restore, &cs_seq);
}
mutex_unlock(&hpriv->restore_phase_mutex);
if (rc) {
dev_err(hdev->dev,
"Failed to submit restore CS for context %d (%d)\n",
ctx->asid, rc);
goto out;
}
/* Need to wait for restore completion before execution phase */
if (num_chunks_restore) {
ret = _hl_cs_wait_ioctl(hdev, ctx,
jiffies_to_usecs(hdev->timeout_jiffies),
cs_seq);
if (ret <= 0) {
dev_err(hdev->dev,
"Restore CS for context %d failed to complete %ld\n",
ctx->asid, ret);
rc = -ENOEXEC;
goto out;
}
}
ctx->thread_ctx_switch_wait_token = 1;
} else if (!ctx->thread_ctx_switch_wait_token) {
u32 tmp;
rc = hl_poll_timeout_memory(hdev,
&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
100, jiffies_to_usecs(hdev->timeout_jiffies), false);
if (rc == -ETIMEDOUT) {
dev_err(hdev->dev,
"context switch phase timeout (%d)\n", tmp);
goto out;
}
}
if (cs_type == CS_TYPE_DEFAULT)
rc = cs_ioctl_default(hpriv, chunks_execute, num_chunks_execute,
&cs_seq);
else
rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks_execute,
num_chunks_execute, &cs_seq);
out:
if (rc != -EAGAIN) {
memset(args, 0, sizeof(*args));
args->out.status = rc;
args->out.seq = cs_seq;
}
if (((rc == -ETIMEDOUT) || (rc == -EBUSY)) && (need_soft_reset))
hl_device_reset(hdev, false, false);
return rc;
}
static long _hl_cs_wait_ioctl(struct hl_device *hdev,
struct hl_ctx *ctx, u64 timeout_us, u64 seq)
{
struct dma_fence *fence;
unsigned long timeout;
long rc;
if (timeout_us == MAX_SCHEDULE_TIMEOUT)
timeout = timeout_us;
else
timeout = usecs_to_jiffies(timeout_us);
hl_ctx_get(hdev, ctx);
fence = hl_ctx_get_fence(ctx, seq);
if (IS_ERR(fence)) {
rc = PTR_ERR(fence);
if (rc == -EINVAL)
dev_notice_ratelimited(hdev->dev,
"Can't wait on seq %llu because current CS is at seq %llu\n",
seq, ctx->cs_sequence);
} else if (fence) {
rc = dma_fence_wait_timeout(fence, true, timeout);
if (fence->error == -ETIMEDOUT)
rc = -ETIMEDOUT;
else if (fence->error == -EIO)
rc = -EIO;
dma_fence_put(fence);
} else {
dev_dbg(hdev->dev,
"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
seq, ctx->cs_sequence);
rc = 1;
}
hl_ctx_put(ctx);
return rc;
}
int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
{
struct hl_device *hdev = hpriv->hdev;
union hl_wait_cs_args *args = data;
u64 seq = args->in.seq;
long rc;
rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq);
memset(args, 0, sizeof(*args));
if (rc < 0) {
dev_err_ratelimited(hdev->dev,
"Error %ld on waiting for CS handle %llu\n",
rc, seq);
if (rc == -ERESTARTSYS) {
args->out.status = HL_WAIT_CS_STATUS_INTERRUPTED;
rc = -EINTR;
} else if (rc == -ETIMEDOUT) {
args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
} else if (rc == -EIO) {
args->out.status = HL_WAIT_CS_STATUS_ABORTED;
}
return rc;
}
if (rc == 0)
args->out.status = HL_WAIT_CS_STATUS_BUSY;
else
args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
return 0;
}