linux_dsm_epyc7002/arch/arm64/include/asm/kvm_arm.h
Linus Torvalds 0d1e8b8d2b KVM updates for v4.20
ARM:
  - Improved guest IPA space support (32 to 52 bits)
 
  - RAS event delivery for 32bit
 
  - PMU fixes
 
  - Guest entry hardening
 
  - Various cleanups
 
  - Port of dirty_log_test selftest
 
 PPC:
  - Nested HV KVM support for radix guests on POWER9.  The performance is
    much better than with PR KVM.  Migration and arbitrary level of
    nesting is supported.
 
  - Disable nested HV-KVM on early POWER9 chips that need a particular hardware
    bug workaround
 
  - One VM per core mode to prevent potential data leaks
 
  - PCI pass-through optimization
 
  - merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base
 
 s390:
  - Initial version of AP crypto virtualization via vfio-mdev
 
  - Improvement for vfio-ap
 
  - Set the host program identifier
 
  - Optimize page table locking
 
 x86:
  - Enable nested virtualization by default
 
  - Implement Hyper-V IPI hypercalls
 
  - Improve #PF and #DB handling
 
  - Allow guests to use Enlightened VMCS
 
  - Add migration selftests for VMCS and Enlightened VMCS
 
  - Allow coalesced PIO accesses
 
  - Add an option to perform nested VMCS host state consistency check
    through hardware
 
  - Automatic tuning of lapic_timer_advance_ns
 
  - Many fixes, minor improvements, and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQEcBAABCAAGBQJb0FINAAoJEED/6hsPKofoI60IAJRS3vOAQ9Fav8cJsO1oBHcX
 3+NexfnBke1bzrjIR3SUcHKGZbdnVPNZc+Q4JjIbPpPmmOMU5jc9BC1dmd5f4Vzh
 BMnQ0yCvgFv3A3fy/Icx1Z8NJppxosdmqdQLrQrNo8aD3cjnqY2yQixdXrAfzLzw
 XEgKdIFCCz8oVN/C9TT4wwJn6l9OE7BM5bMKGFy5VNXzMu7t64UDOLbbjZxNgi1g
 teYvfVGdt5mH0N7b2GPPWRbJmgnz5ygVVpVNQUEFrdKZoCm6r5u9d19N+RRXAwan
 ZYFj10W2T8pJOUf3tryev4V33X7MRQitfJBo4tP5hZfi9uRX89np5zP1CFE7AtY=
 =yEPW
 -----END PGP SIGNATURE-----

Merge tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Radim Krčmář:
 "ARM:
   - Improved guest IPA space support (32 to 52 bits)

   - RAS event delivery for 32bit

   - PMU fixes

   - Guest entry hardening

   - Various cleanups

   - Port of dirty_log_test selftest

  PPC:
   - Nested HV KVM support for radix guests on POWER9. The performance
     is much better than with PR KVM. Migration and arbitrary level of
     nesting is supported.

   - Disable nested HV-KVM on early POWER9 chips that need a particular
     hardware bug workaround

   - One VM per core mode to prevent potential data leaks

   - PCI pass-through optimization

   - merge ppc-kvm topic branch and kvm-ppc-fixes to get a better base

  s390:
   - Initial version of AP crypto virtualization via vfio-mdev

   - Improvement for vfio-ap

   - Set the host program identifier

   - Optimize page table locking

  x86:
   - Enable nested virtualization by default

   - Implement Hyper-V IPI hypercalls

   - Improve #PF and #DB handling

   - Allow guests to use Enlightened VMCS

   - Add migration selftests for VMCS and Enlightened VMCS

   - Allow coalesced PIO accesses

   - Add an option to perform nested VMCS host state consistency check
     through hardware

   - Automatic tuning of lapic_timer_advance_ns

   - Many fixes, minor improvements, and cleanups"

* tag 'kvm-4.20-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
  KVM/nVMX: Do not validate that posted_intr_desc_addr is page aligned
  Revert "kvm: x86: optimize dr6 restore"
  KVM: PPC: Optimize clearing TCEs for sparse tables
  x86/kvm/nVMX: tweak shadow fields
  selftests/kvm: add missing executables to .gitignore
  KVM: arm64: Safety check PSTATE when entering guest and handle IL
  KVM: PPC: Book3S HV: Don't use streamlined entry path on early POWER9 chips
  arm/arm64: KVM: Enable 32 bits kvm vcpu events support
  arm/arm64: KVM: Rename function kvm_arch_dev_ioctl_check_extension()
  KVM: arm64: Fix caching of host MDCR_EL2 value
  KVM: VMX: enable nested virtualization by default
  KVM/x86: Use 32bit xor to clear registers in svm.c
  kvm: x86: Introduce KVM_CAP_EXCEPTION_PAYLOAD
  kvm: vmx: Defer setting of DR6 until #DB delivery
  kvm: x86: Defer setting of CR2 until #PF delivery
  kvm: x86: Add payload operands to kvm_multiple_exception
  kvm: x86: Add exception payload fields to kvm_vcpu_events
  kvm: x86: Add has_payload and payload to kvm_queued_exception
  KVM: Documentation: Fix omission in struct kvm_vcpu_events
  KVM: selftests: add Enlightened VMCS test
  ...
2018-10-25 17:57:35 -07:00

344 lines
12 KiB
C

/*
* Copyright (C) 2012,2013 - ARM Ltd
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __ARM64_KVM_ARM_H__
#define __ARM64_KVM_ARM_H__
#include <asm/esr.h>
#include <asm/memory.h>
#include <asm/types.h>
/* Hyp Configuration Register (HCR) bits */
#define HCR_FWB (UL(1) << 46)
#define HCR_TEA (UL(1) << 37)
#define HCR_TERR (UL(1) << 36)
#define HCR_TLOR (UL(1) << 35)
#define HCR_E2H (UL(1) << 34)
#define HCR_ID (UL(1) << 33)
#define HCR_CD (UL(1) << 32)
#define HCR_RW_SHIFT 31
#define HCR_RW (UL(1) << HCR_RW_SHIFT)
#define HCR_TRVM (UL(1) << 30)
#define HCR_HCD (UL(1) << 29)
#define HCR_TDZ (UL(1) << 28)
#define HCR_TGE (UL(1) << 27)
#define HCR_TVM (UL(1) << 26)
#define HCR_TTLB (UL(1) << 25)
#define HCR_TPU (UL(1) << 24)
#define HCR_TPC (UL(1) << 23)
#define HCR_TSW (UL(1) << 22)
#define HCR_TAC (UL(1) << 21)
#define HCR_TIDCP (UL(1) << 20)
#define HCR_TSC (UL(1) << 19)
#define HCR_TID3 (UL(1) << 18)
#define HCR_TID2 (UL(1) << 17)
#define HCR_TID1 (UL(1) << 16)
#define HCR_TID0 (UL(1) << 15)
#define HCR_TWE (UL(1) << 14)
#define HCR_TWI (UL(1) << 13)
#define HCR_DC (UL(1) << 12)
#define HCR_BSU (3 << 10)
#define HCR_BSU_IS (UL(1) << 10)
#define HCR_FB (UL(1) << 9)
#define HCR_VSE (UL(1) << 8)
#define HCR_VI (UL(1) << 7)
#define HCR_VF (UL(1) << 6)
#define HCR_AMO (UL(1) << 5)
#define HCR_IMO (UL(1) << 4)
#define HCR_FMO (UL(1) << 3)
#define HCR_PTW (UL(1) << 2)
#define HCR_SWIO (UL(1) << 1)
#define HCR_VM (UL(1) << 0)
/*
* The bits we set in HCR:
* TLOR: Trap LORegion register accesses
* RW: 64bit by default, can be overridden for 32bit VMs
* TAC: Trap ACTLR
* TSC: Trap SMC
* TVM: Trap VM ops (until M+C set in SCTLR_EL1)
* TSW: Trap cache operations by set/way
* TWE: Trap WFE
* TWI: Trap WFI
* TIDCP: Trap L2CTLR/L2ECTLR
* BSU_IS: Upgrade barriers to the inner shareable domain
* FB: Force broadcast of all maintainance operations
* AMO: Override CPSR.A and enable signaling with VA
* IMO: Override CPSR.I and enable signaling with VI
* FMO: Override CPSR.F and enable signaling with VF
* SWIO: Turn set/way invalidates into set/way clean+invalidate
*/
#define HCR_GUEST_FLAGS (HCR_TSC | HCR_TSW | HCR_TWE | HCR_TWI | HCR_VM | \
HCR_TVM | HCR_BSU_IS | HCR_FB | HCR_TAC | \
HCR_AMO | HCR_SWIO | HCR_TIDCP | HCR_RW | HCR_TLOR | \
HCR_FMO | HCR_IMO)
#define HCR_VIRT_EXCP_MASK (HCR_VSE | HCR_VI | HCR_VF)
#define HCR_HOST_VHE_FLAGS (HCR_RW | HCR_TGE | HCR_E2H)
/* TCR_EL2 Registers bits */
#define TCR_EL2_RES1 ((1 << 31) | (1 << 23))
#define TCR_EL2_TBI (1 << 20)
#define TCR_EL2_PS_SHIFT 16
#define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT)
#define TCR_EL2_PS_40B (2 << TCR_EL2_PS_SHIFT)
#define TCR_EL2_TG0_MASK TCR_TG0_MASK
#define TCR_EL2_SH0_MASK TCR_SH0_MASK
#define TCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
#define TCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
#define TCR_EL2_T0SZ_MASK 0x3f
#define TCR_EL2_MASK (TCR_EL2_TG0_MASK | TCR_EL2_SH0_MASK | \
TCR_EL2_ORGN0_MASK | TCR_EL2_IRGN0_MASK | TCR_EL2_T0SZ_MASK)
/* VTCR_EL2 Registers bits */
#define VTCR_EL2_RES1 (1 << 31)
#define VTCR_EL2_HD (1 << 22)
#define VTCR_EL2_HA (1 << 21)
#define VTCR_EL2_PS_SHIFT TCR_EL2_PS_SHIFT
#define VTCR_EL2_PS_MASK TCR_EL2_PS_MASK
#define VTCR_EL2_TG0_MASK TCR_TG0_MASK
#define VTCR_EL2_TG0_4K TCR_TG0_4K
#define VTCR_EL2_TG0_16K TCR_TG0_16K
#define VTCR_EL2_TG0_64K TCR_TG0_64K
#define VTCR_EL2_SH0_MASK TCR_SH0_MASK
#define VTCR_EL2_SH0_INNER TCR_SH0_INNER
#define VTCR_EL2_ORGN0_MASK TCR_ORGN0_MASK
#define VTCR_EL2_ORGN0_WBWA TCR_ORGN0_WBWA
#define VTCR_EL2_IRGN0_MASK TCR_IRGN0_MASK
#define VTCR_EL2_IRGN0_WBWA TCR_IRGN0_WBWA
#define VTCR_EL2_SL0_SHIFT 6
#define VTCR_EL2_SL0_MASK (3 << VTCR_EL2_SL0_SHIFT)
#define VTCR_EL2_T0SZ_MASK 0x3f
#define VTCR_EL2_VS_SHIFT 19
#define VTCR_EL2_VS_8BIT (0 << VTCR_EL2_VS_SHIFT)
#define VTCR_EL2_VS_16BIT (1 << VTCR_EL2_VS_SHIFT)
#define VTCR_EL2_T0SZ(x) TCR_T0SZ(x)
/*
* We configure the Stage-2 page tables to always restrict the IPA space to be
* 40 bits wide (T0SZ = 24). Systems with a PARange smaller than 40 bits are
* not known to exist and will break with this configuration.
*
* The VTCR_EL2 is configured per VM and is initialised in kvm_arm_setup_stage2().
*
* Note that when using 4K pages, we concatenate two first level page tables
* together. With 16K pages, we concatenate 16 first level page tables.
*
*/
#define VTCR_EL2_COMMON_BITS (VTCR_EL2_SH0_INNER | VTCR_EL2_ORGN0_WBWA | \
VTCR_EL2_IRGN0_WBWA | VTCR_EL2_RES1)
/*
* VTCR_EL2:SL0 indicates the entry level for Stage2 translation.
* Interestingly, it depends on the page size.
* See D.10.2.121, VTCR_EL2, in ARM DDI 0487C.a
*
* -----------------------------------------
* | Entry level | 4K | 16K/64K |
* ------------------------------------------
* | Level: 0 | 2 | - |
* ------------------------------------------
* | Level: 1 | 1 | 2 |
* ------------------------------------------
* | Level: 2 | 0 | 1 |
* ------------------------------------------
* | Level: 3 | - | 0 |
* ------------------------------------------
*
* The table roughly translates to :
*
* SL0(PAGE_SIZE, Entry_level) = TGRAN_SL0_BASE - Entry_Level
*
* Where TGRAN_SL0_BASE is a magic number depending on the page size:
* TGRAN_SL0_BASE(4K) = 2
* TGRAN_SL0_BASE(16K) = 3
* TGRAN_SL0_BASE(64K) = 3
* provided we take care of ruling out the unsupported cases and
* Entry_Level = 4 - Number_of_levels.
*
*/
#ifdef CONFIG_ARM64_64K_PAGES
#define VTCR_EL2_TGRAN VTCR_EL2_TG0_64K
#define VTCR_EL2_TGRAN_SL0_BASE 3UL
#elif defined(CONFIG_ARM64_16K_PAGES)
#define VTCR_EL2_TGRAN VTCR_EL2_TG0_16K
#define VTCR_EL2_TGRAN_SL0_BASE 3UL
#else /* 4K */
#define VTCR_EL2_TGRAN VTCR_EL2_TG0_4K
#define VTCR_EL2_TGRAN_SL0_BASE 2UL
#endif
#define VTCR_EL2_LVLS_TO_SL0(levels) \
((VTCR_EL2_TGRAN_SL0_BASE - (4 - (levels))) << VTCR_EL2_SL0_SHIFT)
#define VTCR_EL2_SL0_TO_LVLS(sl0) \
((sl0) + 4 - VTCR_EL2_TGRAN_SL0_BASE)
#define VTCR_EL2_LVLS(vtcr) \
VTCR_EL2_SL0_TO_LVLS(((vtcr) & VTCR_EL2_SL0_MASK) >> VTCR_EL2_SL0_SHIFT)
#define VTCR_EL2_FLAGS (VTCR_EL2_COMMON_BITS | VTCR_EL2_TGRAN)
#define VTCR_EL2_IPA(vtcr) (64 - ((vtcr) & VTCR_EL2_T0SZ_MASK))
/*
* ARM VMSAv8-64 defines an algorithm for finding the translation table
* descriptors in section D4.2.8 in ARM DDI 0487C.a.
*
* The algorithm defines the expectations on the translation table
* addresses for each level, based on PAGE_SIZE, entry level
* and the translation table size (T0SZ). The variable "x" in the
* algorithm determines the alignment of a table base address at a given
* level and thus determines the alignment of VTTBR:BADDR for stage2
* page table entry level.
* Since the number of bits resolved at the entry level could vary
* depending on the T0SZ, the value of "x" is defined based on a
* Magic constant for a given PAGE_SIZE and Entry Level. The
* intermediate levels must be always aligned to the PAGE_SIZE (i.e,
* x = PAGE_SHIFT).
*
* The value of "x" for entry level is calculated as :
* x = Magic_N - T0SZ
*
* where Magic_N is an integer depending on the page size and the entry
* level of the page table as below:
*
* --------------------------------------------
* | Entry level | 4K 16K 64K |
* --------------------------------------------
* | Level: 0 (4 levels) | 28 | - | - |
* --------------------------------------------
* | Level: 1 (3 levels) | 37 | 31 | 25 |
* --------------------------------------------
* | Level: 2 (2 levels) | 46 | 42 | 38 |
* --------------------------------------------
* | Level: 3 (1 level) | - | 53 | 51 |
* --------------------------------------------
*
* We have a magic formula for the Magic_N below:
*
* Magic_N(PAGE_SIZE, Level) = 64 - ((PAGE_SHIFT - 3) * Number_of_levels)
*
* where Number_of_levels = (4 - Level). We are only interested in the
* value for Entry_Level for the stage2 page table.
*
* So, given that T0SZ = (64 - IPA_SHIFT), we can compute 'x' as follows:
*
* x = (64 - ((PAGE_SHIFT - 3) * Number_of_levels)) - (64 - IPA_SHIFT)
* = IPA_SHIFT - ((PAGE_SHIFT - 3) * Number of levels)
*
* Here is one way to explain the Magic Formula:
*
* x = log2(Size_of_Entry_Level_Table)
*
* Since, we can resolve (PAGE_SHIFT - 3) bits at each level, and another
* PAGE_SHIFT bits in the PTE, we have :
*
* Bits_Entry_level = IPA_SHIFT - ((PAGE_SHIFT - 3) * (n - 1) + PAGE_SHIFT)
* = IPA_SHIFT - (PAGE_SHIFT - 3) * n - 3
* where n = number of levels, and since each pointer is 8bytes, we have:
*
* x = Bits_Entry_Level + 3
* = IPA_SHIFT - (PAGE_SHIFT - 3) * n
*
* The only constraint here is that, we have to find the number of page table
* levels for a given IPA size (which we do, see stage2_pt_levels())
*/
#define ARM64_VTTBR_X(ipa, levels) ((ipa) - ((levels) * (PAGE_SHIFT - 3)))
#define VTTBR_CNP_BIT (UL(1))
#define VTTBR_VMID_SHIFT (UL(48))
#define VTTBR_VMID_MASK(size) (_AT(u64, (1 << size) - 1) << VTTBR_VMID_SHIFT)
/* Hyp System Trap Register */
#define HSTR_EL2_T(x) (1 << x)
/* Hyp Coprocessor Trap Register Shifts */
#define CPTR_EL2_TFP_SHIFT 10
/* Hyp Coprocessor Trap Register */
#define CPTR_EL2_TCPAC (1 << 31)
#define CPTR_EL2_TTA (1 << 20)
#define CPTR_EL2_TFP (1 << CPTR_EL2_TFP_SHIFT)
#define CPTR_EL2_TZ (1 << 8)
#define CPTR_EL2_RES1 0x000032ff /* known RES1 bits in CPTR_EL2 */
#define CPTR_EL2_DEFAULT CPTR_EL2_RES1
/* Hyp Debug Configuration Register bits */
#define MDCR_EL2_TPMS (1 << 14)
#define MDCR_EL2_E2PB_MASK (UL(0x3))
#define MDCR_EL2_E2PB_SHIFT (UL(12))
#define MDCR_EL2_TDRA (1 << 11)
#define MDCR_EL2_TDOSA (1 << 10)
#define MDCR_EL2_TDA (1 << 9)
#define MDCR_EL2_TDE (1 << 8)
#define MDCR_EL2_HPME (1 << 7)
#define MDCR_EL2_TPM (1 << 6)
#define MDCR_EL2_TPMCR (1 << 5)
#define MDCR_EL2_HPMN_MASK (0x1F)
/* For compatibility with fault code shared with 32-bit */
#define FSC_FAULT ESR_ELx_FSC_FAULT
#define FSC_ACCESS ESR_ELx_FSC_ACCESS
#define FSC_PERM ESR_ELx_FSC_PERM
#define FSC_SEA ESR_ELx_FSC_EXTABT
#define FSC_SEA_TTW0 (0x14)
#define FSC_SEA_TTW1 (0x15)
#define FSC_SEA_TTW2 (0x16)
#define FSC_SEA_TTW3 (0x17)
#define FSC_SECC (0x18)
#define FSC_SECC_TTW0 (0x1c)
#define FSC_SECC_TTW1 (0x1d)
#define FSC_SECC_TTW2 (0x1e)
#define FSC_SECC_TTW3 (0x1f)
/* Hyp Prefetch Fault Address Register (HPFAR/HDFAR) */
#define HPFAR_MASK (~UL(0xf))
/*
* We have
* PAR [PA_Shift - 1 : 12] = PA [PA_Shift - 1 : 12]
* HPFAR [PA_Shift - 9 : 4] = FIPA [PA_Shift - 1 : 12]
*/
#define PAR_TO_HPFAR(par) \
(((par) & GENMASK_ULL(PHYS_MASK_SHIFT - 1, 12)) >> 8)
#define kvm_arm_exception_type \
{0, "IRQ" }, \
{1, "TRAP" }
#define ECN(x) { ESR_ELx_EC_##x, #x }
#define kvm_arm_exception_class \
ECN(UNKNOWN), ECN(WFx), ECN(CP15_32), ECN(CP15_64), ECN(CP14_MR), \
ECN(CP14_LS), ECN(FP_ASIMD), ECN(CP10_ID), ECN(CP14_64), ECN(SVC64), \
ECN(HVC64), ECN(SMC64), ECN(SYS64), ECN(IMP_DEF), ECN(IABT_LOW), \
ECN(IABT_CUR), ECN(PC_ALIGN), ECN(DABT_LOW), ECN(DABT_CUR), \
ECN(SP_ALIGN), ECN(FP_EXC32), ECN(FP_EXC64), ECN(SERROR), \
ECN(BREAKPT_LOW), ECN(BREAKPT_CUR), ECN(SOFTSTP_LOW), \
ECN(SOFTSTP_CUR), ECN(WATCHPT_LOW), ECN(WATCHPT_CUR), \
ECN(BKPT32), ECN(VECTOR32), ECN(BRK64)
#define CPACR_EL1_FPEN (3 << 20)
#define CPACR_EL1_TTA (1 << 28)
#define CPACR_EL1_DEFAULT (CPACR_EL1_FPEN | CPACR_EL1_ZEN_EL1EN)
#endif /* __ARM64_KVM_ARM_H__ */