mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-26 06:29:18 +07:00
3f2dc2798b
Merge active entropy generation updates. This is admittedly partly "for discussion". We need to have a way forward for the boot time deadlocks where user space ends up waiting for more entropy, but no entropy is forthcoming because the system is entirely idle just waiting for something to happen. While this was triggered by what is arguably a user space bug with GDM/gnome-session asking for secure randomness during early boot, when they didn't even need any such truly secure thing, the issue ends up being that our "getrandom()" interface is prone to that kind of confusion, because people don't think very hard about whether they want to block for sufficient amounts of entropy. The approach here-in is to decide to not just passively wait for entropy to happen, but to start actively collecting it if it is missing. This is not necessarily always possible, but if the architecture has a CPU cycle counter, there is a fair amount of noise in the exact timings of reasonably complex loads. We may end up tweaking the load and the entropy estimates, but this should be at least a reasonable starting point. As part of this, we also revert the revert of the ext4 IO pattern improvement that ended up triggering the reported lack of external entropy. * getrandom() active entropy waiting: Revert "Revert "ext4: make __ext4_get_inode_loc plug"" random: try to actively add entropy rather than passively wait for it
6297 lines
180 KiB
C
6297 lines
180 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/ext4/inode.c
|
|
*
|
|
* Copyright (C) 1992, 1993, 1994, 1995
|
|
* Remy Card (card@masi.ibp.fr)
|
|
* Laboratoire MASI - Institut Blaise Pascal
|
|
* Universite Pierre et Marie Curie (Paris VI)
|
|
*
|
|
* from
|
|
*
|
|
* linux/fs/minix/inode.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* 64-bit file support on 64-bit platforms by Jakub Jelinek
|
|
* (jj@sunsite.ms.mff.cuni.cz)
|
|
*
|
|
* Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/time.h>
|
|
#include <linux/highuid.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/string.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/printk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/iomap.h>
|
|
#include <linux/iversion.h>
|
|
|
|
#include "ext4_jbd2.h"
|
|
#include "xattr.h"
|
|
#include "acl.h"
|
|
#include "truncate.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
#define MPAGE_DA_EXTENT_TAIL 0x01
|
|
|
|
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
|
|
struct ext4_inode_info *ei)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
__u32 csum;
|
|
__u16 dummy_csum = 0;
|
|
int offset = offsetof(struct ext4_inode, i_checksum_lo);
|
|
unsigned int csum_size = sizeof(dummy_csum);
|
|
|
|
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
|
|
csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
|
|
offset += csum_size;
|
|
csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
|
|
EXT4_GOOD_OLD_INODE_SIZE - offset);
|
|
|
|
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
|
|
offset = offsetof(struct ext4_inode, i_checksum_hi);
|
|
csum = ext4_chksum(sbi, csum, (__u8 *)raw +
|
|
EXT4_GOOD_OLD_INODE_SIZE,
|
|
offset - EXT4_GOOD_OLD_INODE_SIZE);
|
|
if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
|
|
csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
|
|
csum_size);
|
|
offset += csum_size;
|
|
}
|
|
csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
|
|
EXT4_INODE_SIZE(inode->i_sb) - offset);
|
|
}
|
|
|
|
return csum;
|
|
}
|
|
|
|
static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
|
|
struct ext4_inode_info *ei)
|
|
{
|
|
__u32 provided, calculated;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
|
|
cpu_to_le32(EXT4_OS_LINUX) ||
|
|
!ext4_has_metadata_csum(inode->i_sb))
|
|
return 1;
|
|
|
|
provided = le16_to_cpu(raw->i_checksum_lo);
|
|
calculated = ext4_inode_csum(inode, raw, ei);
|
|
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
|
|
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
|
|
provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
|
|
else
|
|
calculated &= 0xFFFF;
|
|
|
|
return provided == calculated;
|
|
}
|
|
|
|
static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
|
|
struct ext4_inode_info *ei)
|
|
{
|
|
__u32 csum;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
|
|
cpu_to_le32(EXT4_OS_LINUX) ||
|
|
!ext4_has_metadata_csum(inode->i_sb))
|
|
return;
|
|
|
|
csum = ext4_inode_csum(inode, raw, ei);
|
|
raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
|
|
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
|
|
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
|
|
raw->i_checksum_hi = cpu_to_le16(csum >> 16);
|
|
}
|
|
|
|
static inline int ext4_begin_ordered_truncate(struct inode *inode,
|
|
loff_t new_size)
|
|
{
|
|
trace_ext4_begin_ordered_truncate(inode, new_size);
|
|
/*
|
|
* If jinode is zero, then we never opened the file for
|
|
* writing, so there's no need to call
|
|
* jbd2_journal_begin_ordered_truncate() since there's no
|
|
* outstanding writes we need to flush.
|
|
*/
|
|
if (!EXT4_I(inode)->jinode)
|
|
return 0;
|
|
return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
|
|
EXT4_I(inode)->jinode,
|
|
new_size);
|
|
}
|
|
|
|
static void ext4_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length);
|
|
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
|
|
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
|
|
static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
|
|
int pextents);
|
|
|
|
/*
|
|
* Test whether an inode is a fast symlink.
|
|
* A fast symlink has its symlink data stored in ext4_inode_info->i_data.
|
|
*/
|
|
int ext4_inode_is_fast_symlink(struct inode *inode)
|
|
{
|
|
if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
|
|
int ea_blocks = EXT4_I(inode)->i_file_acl ?
|
|
EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
|
|
|
|
if (ext4_has_inline_data(inode))
|
|
return 0;
|
|
|
|
return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
|
|
}
|
|
return S_ISLNK(inode->i_mode) && inode->i_size &&
|
|
(inode->i_size < EXT4_N_BLOCKS * 4);
|
|
}
|
|
|
|
/*
|
|
* Restart the transaction associated with *handle. This does a commit,
|
|
* so before we call here everything must be consistently dirtied against
|
|
* this transaction.
|
|
*/
|
|
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
|
|
int nblocks)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
|
|
* moment, get_block can be called only for blocks inside i_size since
|
|
* page cache has been already dropped and writes are blocked by
|
|
* i_mutex. So we can safely drop the i_data_sem here.
|
|
*/
|
|
BUG_ON(EXT4_JOURNAL(inode) == NULL);
|
|
jbd_debug(2, "restarting handle %p\n", handle);
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
ret = ext4_journal_restart(handle, nblocks);
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_discard_preallocations(inode);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called at the last iput() if i_nlink is zero.
|
|
*/
|
|
void ext4_evict_inode(struct inode *inode)
|
|
{
|
|
handle_t *handle;
|
|
int err;
|
|
int extra_credits = 3;
|
|
struct ext4_xattr_inode_array *ea_inode_array = NULL;
|
|
|
|
trace_ext4_evict_inode(inode);
|
|
|
|
if (inode->i_nlink) {
|
|
/*
|
|
* When journalling data dirty buffers are tracked only in the
|
|
* journal. So although mm thinks everything is clean and
|
|
* ready for reaping the inode might still have some pages to
|
|
* write in the running transaction or waiting to be
|
|
* checkpointed. Thus calling jbd2_journal_invalidatepage()
|
|
* (via truncate_inode_pages()) to discard these buffers can
|
|
* cause data loss. Also even if we did not discard these
|
|
* buffers, we would have no way to find them after the inode
|
|
* is reaped and thus user could see stale data if he tries to
|
|
* read them before the transaction is checkpointed. So be
|
|
* careful and force everything to disk here... We use
|
|
* ei->i_datasync_tid to store the newest transaction
|
|
* containing inode's data.
|
|
*
|
|
* Note that directories do not have this problem because they
|
|
* don't use page cache.
|
|
*/
|
|
if (inode->i_ino != EXT4_JOURNAL_INO &&
|
|
ext4_should_journal_data(inode) &&
|
|
(S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
|
|
inode->i_data.nrpages) {
|
|
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
|
|
tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
|
|
|
|
jbd2_complete_transaction(journal, commit_tid);
|
|
filemap_write_and_wait(&inode->i_data);
|
|
}
|
|
truncate_inode_pages_final(&inode->i_data);
|
|
|
|
goto no_delete;
|
|
}
|
|
|
|
if (is_bad_inode(inode))
|
|
goto no_delete;
|
|
dquot_initialize(inode);
|
|
|
|
if (ext4_should_order_data(inode))
|
|
ext4_begin_ordered_truncate(inode, 0);
|
|
truncate_inode_pages_final(&inode->i_data);
|
|
|
|
/*
|
|
* Protect us against freezing - iput() caller didn't have to have any
|
|
* protection against it
|
|
*/
|
|
sb_start_intwrite(inode->i_sb);
|
|
|
|
if (!IS_NOQUOTA(inode))
|
|
extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
|
|
ext4_blocks_for_truncate(inode)+extra_credits);
|
|
if (IS_ERR(handle)) {
|
|
ext4_std_error(inode->i_sb, PTR_ERR(handle));
|
|
/*
|
|
* If we're going to skip the normal cleanup, we still need to
|
|
* make sure that the in-core orphan linked list is properly
|
|
* cleaned up.
|
|
*/
|
|
ext4_orphan_del(NULL, inode);
|
|
sb_end_intwrite(inode->i_sb);
|
|
goto no_delete;
|
|
}
|
|
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
|
|
/*
|
|
* Set inode->i_size to 0 before calling ext4_truncate(). We need
|
|
* special handling of symlinks here because i_size is used to
|
|
* determine whether ext4_inode_info->i_data contains symlink data or
|
|
* block mappings. Setting i_size to 0 will remove its fast symlink
|
|
* status. Erase i_data so that it becomes a valid empty block map.
|
|
*/
|
|
if (ext4_inode_is_fast_symlink(inode))
|
|
memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
|
|
inode->i_size = 0;
|
|
err = ext4_mark_inode_dirty(handle, inode);
|
|
if (err) {
|
|
ext4_warning(inode->i_sb,
|
|
"couldn't mark inode dirty (err %d)", err);
|
|
goto stop_handle;
|
|
}
|
|
if (inode->i_blocks) {
|
|
err = ext4_truncate(inode);
|
|
if (err) {
|
|
ext4_error(inode->i_sb,
|
|
"couldn't truncate inode %lu (err %d)",
|
|
inode->i_ino, err);
|
|
goto stop_handle;
|
|
}
|
|
}
|
|
|
|
/* Remove xattr references. */
|
|
err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
|
|
extra_credits);
|
|
if (err) {
|
|
ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
|
|
stop_handle:
|
|
ext4_journal_stop(handle);
|
|
ext4_orphan_del(NULL, inode);
|
|
sb_end_intwrite(inode->i_sb);
|
|
ext4_xattr_inode_array_free(ea_inode_array);
|
|
goto no_delete;
|
|
}
|
|
|
|
/*
|
|
* Kill off the orphan record which ext4_truncate created.
|
|
* AKPM: I think this can be inside the above `if'.
|
|
* Note that ext4_orphan_del() has to be able to cope with the
|
|
* deletion of a non-existent orphan - this is because we don't
|
|
* know if ext4_truncate() actually created an orphan record.
|
|
* (Well, we could do this if we need to, but heck - it works)
|
|
*/
|
|
ext4_orphan_del(handle, inode);
|
|
EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
|
|
|
|
/*
|
|
* One subtle ordering requirement: if anything has gone wrong
|
|
* (transaction abort, IO errors, whatever), then we can still
|
|
* do these next steps (the fs will already have been marked as
|
|
* having errors), but we can't free the inode if the mark_dirty
|
|
* fails.
|
|
*/
|
|
if (ext4_mark_inode_dirty(handle, inode))
|
|
/* If that failed, just do the required in-core inode clear. */
|
|
ext4_clear_inode(inode);
|
|
else
|
|
ext4_free_inode(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
sb_end_intwrite(inode->i_sb);
|
|
ext4_xattr_inode_array_free(ea_inode_array);
|
|
return;
|
|
no_delete:
|
|
ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
|
|
}
|
|
|
|
#ifdef CONFIG_QUOTA
|
|
qsize_t *ext4_get_reserved_space(struct inode *inode)
|
|
{
|
|
return &EXT4_I(inode)->i_reserved_quota;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called with i_data_sem down, which is important since we can call
|
|
* ext4_discard_preallocations() from here.
|
|
*/
|
|
void ext4_da_update_reserve_space(struct inode *inode,
|
|
int used, int quota_claim)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
spin_lock(&ei->i_block_reservation_lock);
|
|
trace_ext4_da_update_reserve_space(inode, used, quota_claim);
|
|
if (unlikely(used > ei->i_reserved_data_blocks)) {
|
|
ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
|
|
"with only %d reserved data blocks",
|
|
__func__, inode->i_ino, used,
|
|
ei->i_reserved_data_blocks);
|
|
WARN_ON(1);
|
|
used = ei->i_reserved_data_blocks;
|
|
}
|
|
|
|
/* Update per-inode reservations */
|
|
ei->i_reserved_data_blocks -= used;
|
|
percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
|
|
|
|
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
|
|
/* Update quota subsystem for data blocks */
|
|
if (quota_claim)
|
|
dquot_claim_block(inode, EXT4_C2B(sbi, used));
|
|
else {
|
|
/*
|
|
* We did fallocate with an offset that is already delayed
|
|
* allocated. So on delayed allocated writeback we should
|
|
* not re-claim the quota for fallocated blocks.
|
|
*/
|
|
dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
|
|
}
|
|
|
|
/*
|
|
* If we have done all the pending block allocations and if
|
|
* there aren't any writers on the inode, we can discard the
|
|
* inode's preallocations.
|
|
*/
|
|
if ((ei->i_reserved_data_blocks == 0) &&
|
|
!inode_is_open_for_write(inode))
|
|
ext4_discard_preallocations(inode);
|
|
}
|
|
|
|
static int __check_block_validity(struct inode *inode, const char *func,
|
|
unsigned int line,
|
|
struct ext4_map_blocks *map)
|
|
{
|
|
if (ext4_has_feature_journal(inode->i_sb) &&
|
|
(inode->i_ino ==
|
|
le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
|
|
return 0;
|
|
if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
|
|
map->m_len)) {
|
|
ext4_error_inode(inode, func, line, map->m_pblk,
|
|
"lblock %lu mapped to illegal pblock %llu "
|
|
"(length %d)", (unsigned long) map->m_lblk,
|
|
map->m_pblk, map->m_len);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
|
|
ext4_lblk_t len)
|
|
{
|
|
int ret;
|
|
|
|
if (IS_ENCRYPTED(inode))
|
|
return fscrypt_zeroout_range(inode, lblk, pblk, len);
|
|
|
|
ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define check_block_validity(inode, map) \
|
|
__check_block_validity((inode), __func__, __LINE__, (map))
|
|
|
|
#ifdef ES_AGGRESSIVE_TEST
|
|
static void ext4_map_blocks_es_recheck(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_map_blocks *es_map,
|
|
struct ext4_map_blocks *map,
|
|
int flags)
|
|
{
|
|
int retval;
|
|
|
|
map->m_flags = 0;
|
|
/*
|
|
* There is a race window that the result is not the same.
|
|
* e.g. xfstests #223 when dioread_nolock enables. The reason
|
|
* is that we lookup a block mapping in extent status tree with
|
|
* out taking i_data_sem. So at the time the unwritten extent
|
|
* could be converted.
|
|
*/
|
|
down_read(&EXT4_I(inode)->i_data_sem);
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
|
|
retval = ext4_ext_map_blocks(handle, inode, map, flags &
|
|
EXT4_GET_BLOCKS_KEEP_SIZE);
|
|
} else {
|
|
retval = ext4_ind_map_blocks(handle, inode, map, flags &
|
|
EXT4_GET_BLOCKS_KEEP_SIZE);
|
|
}
|
|
up_read((&EXT4_I(inode)->i_data_sem));
|
|
|
|
/*
|
|
* We don't check m_len because extent will be collpased in status
|
|
* tree. So the m_len might not equal.
|
|
*/
|
|
if (es_map->m_lblk != map->m_lblk ||
|
|
es_map->m_flags != map->m_flags ||
|
|
es_map->m_pblk != map->m_pblk) {
|
|
printk("ES cache assertion failed for inode: %lu "
|
|
"es_cached ex [%d/%d/%llu/%x] != "
|
|
"found ex [%d/%d/%llu/%x] retval %d flags %x\n",
|
|
inode->i_ino, es_map->m_lblk, es_map->m_len,
|
|
es_map->m_pblk, es_map->m_flags, map->m_lblk,
|
|
map->m_len, map->m_pblk, map->m_flags,
|
|
retval, flags);
|
|
}
|
|
}
|
|
#endif /* ES_AGGRESSIVE_TEST */
|
|
|
|
/*
|
|
* The ext4_map_blocks() function tries to look up the requested blocks,
|
|
* and returns if the blocks are already mapped.
|
|
*
|
|
* Otherwise it takes the write lock of the i_data_sem and allocate blocks
|
|
* and store the allocated blocks in the result buffer head and mark it
|
|
* mapped.
|
|
*
|
|
* If file type is extents based, it will call ext4_ext_map_blocks(),
|
|
* Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
|
|
* based files
|
|
*
|
|
* On success, it returns the number of blocks being mapped or allocated. if
|
|
* create==0 and the blocks are pre-allocated and unwritten, the resulting @map
|
|
* is marked as unwritten. If the create == 1, it will mark @map as mapped.
|
|
*
|
|
* It returns 0 if plain look up failed (blocks have not been allocated), in
|
|
* that case, @map is returned as unmapped but we still do fill map->m_len to
|
|
* indicate the length of a hole starting at map->m_lblk.
|
|
*
|
|
* It returns the error in case of allocation failure.
|
|
*/
|
|
int ext4_map_blocks(handle_t *handle, struct inode *inode,
|
|
struct ext4_map_blocks *map, int flags)
|
|
{
|
|
struct extent_status es;
|
|
int retval;
|
|
int ret = 0;
|
|
#ifdef ES_AGGRESSIVE_TEST
|
|
struct ext4_map_blocks orig_map;
|
|
|
|
memcpy(&orig_map, map, sizeof(*map));
|
|
#endif
|
|
|
|
map->m_flags = 0;
|
|
ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
|
|
"logical block %lu\n", inode->i_ino, flags, map->m_len,
|
|
(unsigned long) map->m_lblk);
|
|
|
|
/*
|
|
* ext4_map_blocks returns an int, and m_len is an unsigned int
|
|
*/
|
|
if (unlikely(map->m_len > INT_MAX))
|
|
map->m_len = INT_MAX;
|
|
|
|
/* We can handle the block number less than EXT_MAX_BLOCKS */
|
|
if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
|
|
return -EFSCORRUPTED;
|
|
|
|
/* Lookup extent status tree firstly */
|
|
if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
|
|
if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
|
|
map->m_pblk = ext4_es_pblock(&es) +
|
|
map->m_lblk - es.es_lblk;
|
|
map->m_flags |= ext4_es_is_written(&es) ?
|
|
EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
|
|
retval = es.es_len - (map->m_lblk - es.es_lblk);
|
|
if (retval > map->m_len)
|
|
retval = map->m_len;
|
|
map->m_len = retval;
|
|
} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
|
|
map->m_pblk = 0;
|
|
retval = es.es_len - (map->m_lblk - es.es_lblk);
|
|
if (retval > map->m_len)
|
|
retval = map->m_len;
|
|
map->m_len = retval;
|
|
retval = 0;
|
|
} else {
|
|
BUG();
|
|
}
|
|
#ifdef ES_AGGRESSIVE_TEST
|
|
ext4_map_blocks_es_recheck(handle, inode, map,
|
|
&orig_map, flags);
|
|
#endif
|
|
goto found;
|
|
}
|
|
|
|
/*
|
|
* Try to see if we can get the block without requesting a new
|
|
* file system block.
|
|
*/
|
|
down_read(&EXT4_I(inode)->i_data_sem);
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
|
|
retval = ext4_ext_map_blocks(handle, inode, map, flags &
|
|
EXT4_GET_BLOCKS_KEEP_SIZE);
|
|
} else {
|
|
retval = ext4_ind_map_blocks(handle, inode, map, flags &
|
|
EXT4_GET_BLOCKS_KEEP_SIZE);
|
|
}
|
|
if (retval > 0) {
|
|
unsigned int status;
|
|
|
|
if (unlikely(retval != map->m_len)) {
|
|
ext4_warning(inode->i_sb,
|
|
"ES len assertion failed for inode "
|
|
"%lu: retval %d != map->m_len %d",
|
|
inode->i_ino, retval, map->m_len);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
|
|
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
|
|
if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
|
|
!(status & EXTENT_STATUS_WRITTEN) &&
|
|
ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
|
|
map->m_lblk + map->m_len - 1))
|
|
status |= EXTENT_STATUS_DELAYED;
|
|
ret = ext4_es_insert_extent(inode, map->m_lblk,
|
|
map->m_len, map->m_pblk, status);
|
|
if (ret < 0)
|
|
retval = ret;
|
|
}
|
|
up_read((&EXT4_I(inode)->i_data_sem));
|
|
|
|
found:
|
|
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
|
|
ret = check_block_validity(inode, map);
|
|
if (ret != 0)
|
|
return ret;
|
|
}
|
|
|
|
/* If it is only a block(s) look up */
|
|
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
|
|
return retval;
|
|
|
|
/*
|
|
* Returns if the blocks have already allocated
|
|
*
|
|
* Note that if blocks have been preallocated
|
|
* ext4_ext_get_block() returns the create = 0
|
|
* with buffer head unmapped.
|
|
*/
|
|
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
|
|
/*
|
|
* If we need to convert extent to unwritten
|
|
* we continue and do the actual work in
|
|
* ext4_ext_map_blocks()
|
|
*/
|
|
if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
|
|
return retval;
|
|
|
|
/*
|
|
* Here we clear m_flags because after allocating an new extent,
|
|
* it will be set again.
|
|
*/
|
|
map->m_flags &= ~EXT4_MAP_FLAGS;
|
|
|
|
/*
|
|
* New blocks allocate and/or writing to unwritten extent
|
|
* will possibly result in updating i_data, so we take
|
|
* the write lock of i_data_sem, and call get_block()
|
|
* with create == 1 flag.
|
|
*/
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
|
|
/*
|
|
* We need to check for EXT4 here because migrate
|
|
* could have changed the inode type in between
|
|
*/
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
|
|
retval = ext4_ext_map_blocks(handle, inode, map, flags);
|
|
} else {
|
|
retval = ext4_ind_map_blocks(handle, inode, map, flags);
|
|
|
|
if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
|
|
/*
|
|
* We allocated new blocks which will result in
|
|
* i_data's format changing. Force the migrate
|
|
* to fail by clearing migrate flags
|
|
*/
|
|
ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
|
|
}
|
|
|
|
/*
|
|
* Update reserved blocks/metadata blocks after successful
|
|
* block allocation which had been deferred till now. We don't
|
|
* support fallocate for non extent files. So we can update
|
|
* reserve space here.
|
|
*/
|
|
if ((retval > 0) &&
|
|
(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
|
|
ext4_da_update_reserve_space(inode, retval, 1);
|
|
}
|
|
|
|
if (retval > 0) {
|
|
unsigned int status;
|
|
|
|
if (unlikely(retval != map->m_len)) {
|
|
ext4_warning(inode->i_sb,
|
|
"ES len assertion failed for inode "
|
|
"%lu: retval %d != map->m_len %d",
|
|
inode->i_ino, retval, map->m_len);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
/*
|
|
* We have to zeroout blocks before inserting them into extent
|
|
* status tree. Otherwise someone could look them up there and
|
|
* use them before they are really zeroed. We also have to
|
|
* unmap metadata before zeroing as otherwise writeback can
|
|
* overwrite zeros with stale data from block device.
|
|
*/
|
|
if (flags & EXT4_GET_BLOCKS_ZERO &&
|
|
map->m_flags & EXT4_MAP_MAPPED &&
|
|
map->m_flags & EXT4_MAP_NEW) {
|
|
ret = ext4_issue_zeroout(inode, map->m_lblk,
|
|
map->m_pblk, map->m_len);
|
|
if (ret) {
|
|
retval = ret;
|
|
goto out_sem;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the extent has been zeroed out, we don't need to update
|
|
* extent status tree.
|
|
*/
|
|
if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
|
|
ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
|
|
if (ext4_es_is_written(&es))
|
|
goto out_sem;
|
|
}
|
|
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
|
|
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
|
|
if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
|
|
!(status & EXTENT_STATUS_WRITTEN) &&
|
|
ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
|
|
map->m_lblk + map->m_len - 1))
|
|
status |= EXTENT_STATUS_DELAYED;
|
|
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
|
|
map->m_pblk, status);
|
|
if (ret < 0) {
|
|
retval = ret;
|
|
goto out_sem;
|
|
}
|
|
}
|
|
|
|
out_sem:
|
|
up_write((&EXT4_I(inode)->i_data_sem));
|
|
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
|
|
ret = check_block_validity(inode, map);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
/*
|
|
* Inodes with freshly allocated blocks where contents will be
|
|
* visible after transaction commit must be on transaction's
|
|
* ordered data list.
|
|
*/
|
|
if (map->m_flags & EXT4_MAP_NEW &&
|
|
!(map->m_flags & EXT4_MAP_UNWRITTEN) &&
|
|
!(flags & EXT4_GET_BLOCKS_ZERO) &&
|
|
!ext4_is_quota_file(inode) &&
|
|
ext4_should_order_data(inode)) {
|
|
loff_t start_byte =
|
|
(loff_t)map->m_lblk << inode->i_blkbits;
|
|
loff_t length = (loff_t)map->m_len << inode->i_blkbits;
|
|
|
|
if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
|
|
ret = ext4_jbd2_inode_add_wait(handle, inode,
|
|
start_byte, length);
|
|
else
|
|
ret = ext4_jbd2_inode_add_write(handle, inode,
|
|
start_byte, length);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
|
|
* we have to be careful as someone else may be manipulating b_state as well.
|
|
*/
|
|
static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
|
|
{
|
|
unsigned long old_state;
|
|
unsigned long new_state;
|
|
|
|
flags &= EXT4_MAP_FLAGS;
|
|
|
|
/* Dummy buffer_head? Set non-atomically. */
|
|
if (!bh->b_page) {
|
|
bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
|
|
return;
|
|
}
|
|
/*
|
|
* Someone else may be modifying b_state. Be careful! This is ugly but
|
|
* once we get rid of using bh as a container for mapping information
|
|
* to pass to / from get_block functions, this can go away.
|
|
*/
|
|
do {
|
|
old_state = READ_ONCE(bh->b_state);
|
|
new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
|
|
} while (unlikely(
|
|
cmpxchg(&bh->b_state, old_state, new_state) != old_state));
|
|
}
|
|
|
|
static int _ext4_get_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int flags)
|
|
{
|
|
struct ext4_map_blocks map;
|
|
int ret = 0;
|
|
|
|
if (ext4_has_inline_data(inode))
|
|
return -ERANGE;
|
|
|
|
map.m_lblk = iblock;
|
|
map.m_len = bh->b_size >> inode->i_blkbits;
|
|
|
|
ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
|
|
flags);
|
|
if (ret > 0) {
|
|
map_bh(bh, inode->i_sb, map.m_pblk);
|
|
ext4_update_bh_state(bh, map.m_flags);
|
|
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
|
|
ret = 0;
|
|
} else if (ret == 0) {
|
|
/* hole case, need to fill in bh->b_size */
|
|
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int ext4_get_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int create)
|
|
{
|
|
return _ext4_get_block(inode, iblock, bh,
|
|
create ? EXT4_GET_BLOCKS_CREATE : 0);
|
|
}
|
|
|
|
/*
|
|
* Get block function used when preparing for buffered write if we require
|
|
* creating an unwritten extent if blocks haven't been allocated. The extent
|
|
* will be converted to written after the IO is complete.
|
|
*/
|
|
int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
|
|
inode->i_ino, create);
|
|
return _ext4_get_block(inode, iblock, bh_result,
|
|
EXT4_GET_BLOCKS_IO_CREATE_EXT);
|
|
}
|
|
|
|
/* Maximum number of blocks we map for direct IO at once. */
|
|
#define DIO_MAX_BLOCKS 4096
|
|
|
|
/*
|
|
* Get blocks function for the cases that need to start a transaction -
|
|
* generally difference cases of direct IO and DAX IO. It also handles retries
|
|
* in case of ENOSPC.
|
|
*/
|
|
static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int flags)
|
|
{
|
|
int dio_credits;
|
|
handle_t *handle;
|
|
int retries = 0;
|
|
int ret;
|
|
|
|
/* Trim mapping request to maximum we can map at once for DIO */
|
|
if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
|
|
bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
|
|
dio_credits = ext4_chunk_trans_blocks(inode,
|
|
bh_result->b_size >> inode->i_blkbits);
|
|
retry:
|
|
handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
ret = _ext4_get_block(inode, iblock, bh_result, flags);
|
|
ext4_journal_stop(handle);
|
|
|
|
if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
|
|
goto retry;
|
|
return ret;
|
|
}
|
|
|
|
/* Get block function for DIO reads and writes to inodes without extents */
|
|
int ext4_dio_get_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int create)
|
|
{
|
|
/* We don't expect handle for direct IO */
|
|
WARN_ON_ONCE(ext4_journal_current_handle());
|
|
|
|
if (!create)
|
|
return _ext4_get_block(inode, iblock, bh, 0);
|
|
return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
|
|
}
|
|
|
|
/*
|
|
* Get block function for AIO DIO writes when we create unwritten extent if
|
|
* blocks are not allocated yet. The extent will be converted to written
|
|
* after IO is complete.
|
|
*/
|
|
static int ext4_dio_get_block_unwritten_async(struct inode *inode,
|
|
sector_t iblock, struct buffer_head *bh_result, int create)
|
|
{
|
|
int ret;
|
|
|
|
/* We don't expect handle for direct IO */
|
|
WARN_ON_ONCE(ext4_journal_current_handle());
|
|
|
|
ret = ext4_get_block_trans(inode, iblock, bh_result,
|
|
EXT4_GET_BLOCKS_IO_CREATE_EXT);
|
|
|
|
/*
|
|
* When doing DIO using unwritten extents, we need io_end to convert
|
|
* unwritten extents to written on IO completion. We allocate io_end
|
|
* once we spot unwritten extent and store it in b_private. Generic
|
|
* DIO code keeps b_private set and furthermore passes the value to
|
|
* our completion callback in 'private' argument.
|
|
*/
|
|
if (!ret && buffer_unwritten(bh_result)) {
|
|
if (!bh_result->b_private) {
|
|
ext4_io_end_t *io_end;
|
|
|
|
io_end = ext4_init_io_end(inode, GFP_KERNEL);
|
|
if (!io_end)
|
|
return -ENOMEM;
|
|
bh_result->b_private = io_end;
|
|
ext4_set_io_unwritten_flag(inode, io_end);
|
|
}
|
|
set_buffer_defer_completion(bh_result);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Get block function for non-AIO DIO writes when we create unwritten extent if
|
|
* blocks are not allocated yet. The extent will be converted to written
|
|
* after IO is complete by ext4_direct_IO_write().
|
|
*/
|
|
static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
|
|
sector_t iblock, struct buffer_head *bh_result, int create)
|
|
{
|
|
int ret;
|
|
|
|
/* We don't expect handle for direct IO */
|
|
WARN_ON_ONCE(ext4_journal_current_handle());
|
|
|
|
ret = ext4_get_block_trans(inode, iblock, bh_result,
|
|
EXT4_GET_BLOCKS_IO_CREATE_EXT);
|
|
|
|
/*
|
|
* Mark inode as having pending DIO writes to unwritten extents.
|
|
* ext4_direct_IO_write() checks this flag and converts extents to
|
|
* written.
|
|
*/
|
|
if (!ret && buffer_unwritten(bh_result))
|
|
ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
int ret;
|
|
|
|
ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
|
|
inode->i_ino, create);
|
|
/* We don't expect handle for direct IO */
|
|
WARN_ON_ONCE(ext4_journal_current_handle());
|
|
|
|
ret = _ext4_get_block(inode, iblock, bh_result, 0);
|
|
/*
|
|
* Blocks should have been preallocated! ext4_file_write_iter() checks
|
|
* that.
|
|
*/
|
|
WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* `handle' can be NULL if create is zero
|
|
*/
|
|
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
|
|
ext4_lblk_t block, int map_flags)
|
|
{
|
|
struct ext4_map_blocks map;
|
|
struct buffer_head *bh;
|
|
int create = map_flags & EXT4_GET_BLOCKS_CREATE;
|
|
int err;
|
|
|
|
J_ASSERT(handle != NULL || create == 0);
|
|
|
|
map.m_lblk = block;
|
|
map.m_len = 1;
|
|
err = ext4_map_blocks(handle, inode, &map, map_flags);
|
|
|
|
if (err == 0)
|
|
return create ? ERR_PTR(-ENOSPC) : NULL;
|
|
if (err < 0)
|
|
return ERR_PTR(err);
|
|
|
|
bh = sb_getblk(inode->i_sb, map.m_pblk);
|
|
if (unlikely(!bh))
|
|
return ERR_PTR(-ENOMEM);
|
|
if (map.m_flags & EXT4_MAP_NEW) {
|
|
J_ASSERT(create != 0);
|
|
J_ASSERT(handle != NULL);
|
|
|
|
/*
|
|
* Now that we do not always journal data, we should
|
|
* keep in mind whether this should always journal the
|
|
* new buffer as metadata. For now, regular file
|
|
* writes use ext4_get_block instead, so it's not a
|
|
* problem.
|
|
*/
|
|
lock_buffer(bh);
|
|
BUFFER_TRACE(bh, "call get_create_access");
|
|
err = ext4_journal_get_create_access(handle, bh);
|
|
if (unlikely(err)) {
|
|
unlock_buffer(bh);
|
|
goto errout;
|
|
}
|
|
if (!buffer_uptodate(bh)) {
|
|
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
|
|
set_buffer_uptodate(bh);
|
|
}
|
|
unlock_buffer(bh);
|
|
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
if (unlikely(err))
|
|
goto errout;
|
|
} else
|
|
BUFFER_TRACE(bh, "not a new buffer");
|
|
return bh;
|
|
errout:
|
|
brelse(bh);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
|
|
ext4_lblk_t block, int map_flags)
|
|
{
|
|
struct buffer_head *bh;
|
|
|
|
bh = ext4_getblk(handle, inode, block, map_flags);
|
|
if (IS_ERR(bh))
|
|
return bh;
|
|
if (!bh || ext4_buffer_uptodate(bh))
|
|
return bh;
|
|
ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
|
|
wait_on_buffer(bh);
|
|
if (buffer_uptodate(bh))
|
|
return bh;
|
|
put_bh(bh);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
|
|
/* Read a contiguous batch of blocks. */
|
|
int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
|
|
bool wait, struct buffer_head **bhs)
|
|
{
|
|
int i, err;
|
|
|
|
for (i = 0; i < bh_count; i++) {
|
|
bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
|
|
if (IS_ERR(bhs[i])) {
|
|
err = PTR_ERR(bhs[i]);
|
|
bh_count = i;
|
|
goto out_brelse;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < bh_count; i++)
|
|
/* Note that NULL bhs[i] is valid because of holes. */
|
|
if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
|
|
ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
|
|
&bhs[i]);
|
|
|
|
if (!wait)
|
|
return 0;
|
|
|
|
for (i = 0; i < bh_count; i++)
|
|
if (bhs[i])
|
|
wait_on_buffer(bhs[i]);
|
|
|
|
for (i = 0; i < bh_count; i++) {
|
|
if (bhs[i] && !buffer_uptodate(bhs[i])) {
|
|
err = -EIO;
|
|
goto out_brelse;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
out_brelse:
|
|
for (i = 0; i < bh_count; i++) {
|
|
brelse(bhs[i]);
|
|
bhs[i] = NULL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int ext4_walk_page_buffers(handle_t *handle,
|
|
struct buffer_head *head,
|
|
unsigned from,
|
|
unsigned to,
|
|
int *partial,
|
|
int (*fn)(handle_t *handle,
|
|
struct buffer_head *bh))
|
|
{
|
|
struct buffer_head *bh;
|
|
unsigned block_start, block_end;
|
|
unsigned blocksize = head->b_size;
|
|
int err, ret = 0;
|
|
struct buffer_head *next;
|
|
|
|
for (bh = head, block_start = 0;
|
|
ret == 0 && (bh != head || !block_start);
|
|
block_start = block_end, bh = next) {
|
|
next = bh->b_this_page;
|
|
block_end = block_start + blocksize;
|
|
if (block_end <= from || block_start >= to) {
|
|
if (partial && !buffer_uptodate(bh))
|
|
*partial = 1;
|
|
continue;
|
|
}
|
|
err = (*fn)(handle, bh);
|
|
if (!ret)
|
|
ret = err;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* To preserve ordering, it is essential that the hole instantiation and
|
|
* the data write be encapsulated in a single transaction. We cannot
|
|
* close off a transaction and start a new one between the ext4_get_block()
|
|
* and the commit_write(). So doing the jbd2_journal_start at the start of
|
|
* prepare_write() is the right place.
|
|
*
|
|
* Also, this function can nest inside ext4_writepage(). In that case, we
|
|
* *know* that ext4_writepage() has generated enough buffer credits to do the
|
|
* whole page. So we won't block on the journal in that case, which is good,
|
|
* because the caller may be PF_MEMALLOC.
|
|
*
|
|
* By accident, ext4 can be reentered when a transaction is open via
|
|
* quota file writes. If we were to commit the transaction while thus
|
|
* reentered, there can be a deadlock - we would be holding a quota
|
|
* lock, and the commit would never complete if another thread had a
|
|
* transaction open and was blocking on the quota lock - a ranking
|
|
* violation.
|
|
*
|
|
* So what we do is to rely on the fact that jbd2_journal_stop/journal_start
|
|
* will _not_ run commit under these circumstances because handle->h_ref
|
|
* is elevated. We'll still have enough credits for the tiny quotafile
|
|
* write.
|
|
*/
|
|
int do_journal_get_write_access(handle_t *handle,
|
|
struct buffer_head *bh)
|
|
{
|
|
int dirty = buffer_dirty(bh);
|
|
int ret;
|
|
|
|
if (!buffer_mapped(bh) || buffer_freed(bh))
|
|
return 0;
|
|
/*
|
|
* __block_write_begin() could have dirtied some buffers. Clean
|
|
* the dirty bit as jbd2_journal_get_write_access() could complain
|
|
* otherwise about fs integrity issues. Setting of the dirty bit
|
|
* by __block_write_begin() isn't a real problem here as we clear
|
|
* the bit before releasing a page lock and thus writeback cannot
|
|
* ever write the buffer.
|
|
*/
|
|
if (dirty)
|
|
clear_buffer_dirty(bh);
|
|
BUFFER_TRACE(bh, "get write access");
|
|
ret = ext4_journal_get_write_access(handle, bh);
|
|
if (!ret && dirty)
|
|
ret = ext4_handle_dirty_metadata(handle, NULL, bh);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_FS_ENCRYPTION
|
|
static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
|
|
get_block_t *get_block)
|
|
{
|
|
unsigned from = pos & (PAGE_SIZE - 1);
|
|
unsigned to = from + len;
|
|
struct inode *inode = page->mapping->host;
|
|
unsigned block_start, block_end;
|
|
sector_t block;
|
|
int err = 0;
|
|
unsigned blocksize = inode->i_sb->s_blocksize;
|
|
unsigned bbits;
|
|
struct buffer_head *bh, *head, *wait[2];
|
|
int nr_wait = 0;
|
|
int i;
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
BUG_ON(from > PAGE_SIZE);
|
|
BUG_ON(to > PAGE_SIZE);
|
|
BUG_ON(from > to);
|
|
|
|
if (!page_has_buffers(page))
|
|
create_empty_buffers(page, blocksize, 0);
|
|
head = page_buffers(page);
|
|
bbits = ilog2(blocksize);
|
|
block = (sector_t)page->index << (PAGE_SHIFT - bbits);
|
|
|
|
for (bh = head, block_start = 0; bh != head || !block_start;
|
|
block++, block_start = block_end, bh = bh->b_this_page) {
|
|
block_end = block_start + blocksize;
|
|
if (block_end <= from || block_start >= to) {
|
|
if (PageUptodate(page)) {
|
|
if (!buffer_uptodate(bh))
|
|
set_buffer_uptodate(bh);
|
|
}
|
|
continue;
|
|
}
|
|
if (buffer_new(bh))
|
|
clear_buffer_new(bh);
|
|
if (!buffer_mapped(bh)) {
|
|
WARN_ON(bh->b_size != blocksize);
|
|
err = get_block(inode, block, bh, 1);
|
|
if (err)
|
|
break;
|
|
if (buffer_new(bh)) {
|
|
if (PageUptodate(page)) {
|
|
clear_buffer_new(bh);
|
|
set_buffer_uptodate(bh);
|
|
mark_buffer_dirty(bh);
|
|
continue;
|
|
}
|
|
if (block_end > to || block_start < from)
|
|
zero_user_segments(page, to, block_end,
|
|
block_start, from);
|
|
continue;
|
|
}
|
|
}
|
|
if (PageUptodate(page)) {
|
|
if (!buffer_uptodate(bh))
|
|
set_buffer_uptodate(bh);
|
|
continue;
|
|
}
|
|
if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
|
|
!buffer_unwritten(bh) &&
|
|
(block_start < from || block_end > to)) {
|
|
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
|
|
wait[nr_wait++] = bh;
|
|
}
|
|
}
|
|
/*
|
|
* If we issued read requests, let them complete.
|
|
*/
|
|
for (i = 0; i < nr_wait; i++) {
|
|
wait_on_buffer(wait[i]);
|
|
if (!buffer_uptodate(wait[i]))
|
|
err = -EIO;
|
|
}
|
|
if (unlikely(err)) {
|
|
page_zero_new_buffers(page, from, to);
|
|
} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
|
|
for (i = 0; i < nr_wait; i++) {
|
|
int err2;
|
|
|
|
err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
|
|
bh_offset(wait[i]));
|
|
if (err2) {
|
|
clear_buffer_uptodate(wait[i]);
|
|
err = err2;
|
|
}
|
|
}
|
|
}
|
|
|
|
return err;
|
|
}
|
|
#endif
|
|
|
|
static int ext4_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
int ret, needed_blocks;
|
|
handle_t *handle;
|
|
int retries = 0;
|
|
struct page *page;
|
|
pgoff_t index;
|
|
unsigned from, to;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
trace_ext4_write_begin(inode, pos, len, flags);
|
|
/*
|
|
* Reserve one block more for addition to orphan list in case
|
|
* we allocate blocks but write fails for some reason
|
|
*/
|
|
needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
|
|
index = pos >> PAGE_SHIFT;
|
|
from = pos & (PAGE_SIZE - 1);
|
|
to = from + len;
|
|
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
|
|
ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
|
|
flags, pagep);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 1)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* grab_cache_page_write_begin() can take a long time if the
|
|
* system is thrashing due to memory pressure, or if the page
|
|
* is being written back. So grab it first before we start
|
|
* the transaction handle. This also allows us to allocate
|
|
* the page (if needed) without using GFP_NOFS.
|
|
*/
|
|
retry_grab:
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
unlock_page(page);
|
|
|
|
retry_journal:
|
|
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
|
|
if (IS_ERR(handle)) {
|
|
put_page(page);
|
|
return PTR_ERR(handle);
|
|
}
|
|
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
/* The page got truncated from under us */
|
|
unlock_page(page);
|
|
put_page(page);
|
|
ext4_journal_stop(handle);
|
|
goto retry_grab;
|
|
}
|
|
/* In case writeback began while the page was unlocked */
|
|
wait_for_stable_page(page);
|
|
|
|
#ifdef CONFIG_FS_ENCRYPTION
|
|
if (ext4_should_dioread_nolock(inode))
|
|
ret = ext4_block_write_begin(page, pos, len,
|
|
ext4_get_block_unwritten);
|
|
else
|
|
ret = ext4_block_write_begin(page, pos, len,
|
|
ext4_get_block);
|
|
#else
|
|
if (ext4_should_dioread_nolock(inode))
|
|
ret = __block_write_begin(page, pos, len,
|
|
ext4_get_block_unwritten);
|
|
else
|
|
ret = __block_write_begin(page, pos, len, ext4_get_block);
|
|
#endif
|
|
if (!ret && ext4_should_journal_data(inode)) {
|
|
ret = ext4_walk_page_buffers(handle, page_buffers(page),
|
|
from, to, NULL,
|
|
do_journal_get_write_access);
|
|
}
|
|
|
|
if (ret) {
|
|
bool extended = (pos + len > inode->i_size) &&
|
|
!ext4_verity_in_progress(inode);
|
|
|
|
unlock_page(page);
|
|
/*
|
|
* __block_write_begin may have instantiated a few blocks
|
|
* outside i_size. Trim these off again. Don't need
|
|
* i_size_read because we hold i_mutex.
|
|
*
|
|
* Add inode to orphan list in case we crash before
|
|
* truncate finishes
|
|
*/
|
|
if (extended && ext4_can_truncate(inode))
|
|
ext4_orphan_add(handle, inode);
|
|
|
|
ext4_journal_stop(handle);
|
|
if (extended) {
|
|
ext4_truncate_failed_write(inode);
|
|
/*
|
|
* If truncate failed early the inode might
|
|
* still be on the orphan list; we need to
|
|
* make sure the inode is removed from the
|
|
* orphan list in that case.
|
|
*/
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(NULL, inode);
|
|
}
|
|
|
|
if (ret == -ENOSPC &&
|
|
ext4_should_retry_alloc(inode->i_sb, &retries))
|
|
goto retry_journal;
|
|
put_page(page);
|
|
return ret;
|
|
}
|
|
*pagep = page;
|
|
return ret;
|
|
}
|
|
|
|
/* For write_end() in data=journal mode */
|
|
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
|
|
{
|
|
int ret;
|
|
if (!buffer_mapped(bh) || buffer_freed(bh))
|
|
return 0;
|
|
set_buffer_uptodate(bh);
|
|
ret = ext4_handle_dirty_metadata(handle, NULL, bh);
|
|
clear_buffer_meta(bh);
|
|
clear_buffer_prio(bh);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We need to pick up the new inode size which generic_commit_write gave us
|
|
* `file' can be NULL - eg, when called from page_symlink().
|
|
*
|
|
* ext4 never places buffers on inode->i_mapping->private_list. metadata
|
|
* buffers are managed internally.
|
|
*/
|
|
static int ext4_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
handle_t *handle = ext4_journal_current_handle();
|
|
struct inode *inode = mapping->host;
|
|
loff_t old_size = inode->i_size;
|
|
int ret = 0, ret2;
|
|
int i_size_changed = 0;
|
|
int inline_data = ext4_has_inline_data(inode);
|
|
bool verity = ext4_verity_in_progress(inode);
|
|
|
|
trace_ext4_write_end(inode, pos, len, copied);
|
|
if (inline_data) {
|
|
ret = ext4_write_inline_data_end(inode, pos, len,
|
|
copied, page);
|
|
if (ret < 0) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto errout;
|
|
}
|
|
copied = ret;
|
|
} else
|
|
copied = block_write_end(file, mapping, pos,
|
|
len, copied, page, fsdata);
|
|
/*
|
|
* it's important to update i_size while still holding page lock:
|
|
* page writeout could otherwise come in and zero beyond i_size.
|
|
*
|
|
* If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
|
|
* blocks are being written past EOF, so skip the i_size update.
|
|
*/
|
|
if (!verity)
|
|
i_size_changed = ext4_update_inode_size(inode, pos + copied);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
|
|
if (old_size < pos && !verity)
|
|
pagecache_isize_extended(inode, old_size, pos);
|
|
/*
|
|
* Don't mark the inode dirty under page lock. First, it unnecessarily
|
|
* makes the holding time of page lock longer. Second, it forces lock
|
|
* ordering of page lock and transaction start for journaling
|
|
* filesystems.
|
|
*/
|
|
if (i_size_changed || inline_data)
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
|
|
if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
|
|
/* if we have allocated more blocks and copied
|
|
* less. We will have blocks allocated outside
|
|
* inode->i_size. So truncate them
|
|
*/
|
|
ext4_orphan_add(handle, inode);
|
|
errout:
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (!ret)
|
|
ret = ret2;
|
|
|
|
if (pos + len > inode->i_size && !verity) {
|
|
ext4_truncate_failed_write(inode);
|
|
/*
|
|
* If truncate failed early the inode might still be
|
|
* on the orphan list; we need to make sure the inode
|
|
* is removed from the orphan list in that case.
|
|
*/
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(NULL, inode);
|
|
}
|
|
|
|
return ret ? ret : copied;
|
|
}
|
|
|
|
/*
|
|
* This is a private version of page_zero_new_buffers() which doesn't
|
|
* set the buffer to be dirty, since in data=journalled mode we need
|
|
* to call ext4_handle_dirty_metadata() instead.
|
|
*/
|
|
static void ext4_journalled_zero_new_buffers(handle_t *handle,
|
|
struct page *page,
|
|
unsigned from, unsigned to)
|
|
{
|
|
unsigned int block_start = 0, block_end;
|
|
struct buffer_head *head, *bh;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
block_end = block_start + bh->b_size;
|
|
if (buffer_new(bh)) {
|
|
if (block_end > from && block_start < to) {
|
|
if (!PageUptodate(page)) {
|
|
unsigned start, size;
|
|
|
|
start = max(from, block_start);
|
|
size = min(to, block_end) - start;
|
|
|
|
zero_user(page, start, size);
|
|
write_end_fn(handle, bh);
|
|
}
|
|
clear_buffer_new(bh);
|
|
}
|
|
}
|
|
block_start = block_end;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
|
|
static int ext4_journalled_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
handle_t *handle = ext4_journal_current_handle();
|
|
struct inode *inode = mapping->host;
|
|
loff_t old_size = inode->i_size;
|
|
int ret = 0, ret2;
|
|
int partial = 0;
|
|
unsigned from, to;
|
|
int size_changed = 0;
|
|
int inline_data = ext4_has_inline_data(inode);
|
|
bool verity = ext4_verity_in_progress(inode);
|
|
|
|
trace_ext4_journalled_write_end(inode, pos, len, copied);
|
|
from = pos & (PAGE_SIZE - 1);
|
|
to = from + len;
|
|
|
|
BUG_ON(!ext4_handle_valid(handle));
|
|
|
|
if (inline_data) {
|
|
ret = ext4_write_inline_data_end(inode, pos, len,
|
|
copied, page);
|
|
if (ret < 0) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto errout;
|
|
}
|
|
copied = ret;
|
|
} else if (unlikely(copied < len) && !PageUptodate(page)) {
|
|
copied = 0;
|
|
ext4_journalled_zero_new_buffers(handle, page, from, to);
|
|
} else {
|
|
if (unlikely(copied < len))
|
|
ext4_journalled_zero_new_buffers(handle, page,
|
|
from + copied, to);
|
|
ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
|
|
from + copied, &partial,
|
|
write_end_fn);
|
|
if (!partial)
|
|
SetPageUptodate(page);
|
|
}
|
|
if (!verity)
|
|
size_changed = ext4_update_inode_size(inode, pos + copied);
|
|
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
|
|
EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
|
|
unlock_page(page);
|
|
put_page(page);
|
|
|
|
if (old_size < pos && !verity)
|
|
pagecache_isize_extended(inode, old_size, pos);
|
|
|
|
if (size_changed || inline_data) {
|
|
ret2 = ext4_mark_inode_dirty(handle, inode);
|
|
if (!ret)
|
|
ret = ret2;
|
|
}
|
|
|
|
if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
|
|
/* if we have allocated more blocks and copied
|
|
* less. We will have blocks allocated outside
|
|
* inode->i_size. So truncate them
|
|
*/
|
|
ext4_orphan_add(handle, inode);
|
|
|
|
errout:
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (!ret)
|
|
ret = ret2;
|
|
if (pos + len > inode->i_size && !verity) {
|
|
ext4_truncate_failed_write(inode);
|
|
/*
|
|
* If truncate failed early the inode might still be
|
|
* on the orphan list; we need to make sure the inode
|
|
* is removed from the orphan list in that case.
|
|
*/
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(NULL, inode);
|
|
}
|
|
|
|
return ret ? ret : copied;
|
|
}
|
|
|
|
/*
|
|
* Reserve space for a single cluster
|
|
*/
|
|
static int ext4_da_reserve_space(struct inode *inode)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
int ret;
|
|
|
|
/*
|
|
* We will charge metadata quota at writeout time; this saves
|
|
* us from metadata over-estimation, though we may go over by
|
|
* a small amount in the end. Here we just reserve for data.
|
|
*/
|
|
ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
|
|
if (ret)
|
|
return ret;
|
|
|
|
spin_lock(&ei->i_block_reservation_lock);
|
|
if (ext4_claim_free_clusters(sbi, 1, 0)) {
|
|
spin_unlock(&ei->i_block_reservation_lock);
|
|
dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
|
|
return -ENOSPC;
|
|
}
|
|
ei->i_reserved_data_blocks++;
|
|
trace_ext4_da_reserve_space(inode);
|
|
spin_unlock(&ei->i_block_reservation_lock);
|
|
|
|
return 0; /* success */
|
|
}
|
|
|
|
void ext4_da_release_space(struct inode *inode, int to_free)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
if (!to_free)
|
|
return; /* Nothing to release, exit */
|
|
|
|
spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
|
|
trace_ext4_da_release_space(inode, to_free);
|
|
if (unlikely(to_free > ei->i_reserved_data_blocks)) {
|
|
/*
|
|
* if there aren't enough reserved blocks, then the
|
|
* counter is messed up somewhere. Since this
|
|
* function is called from invalidate page, it's
|
|
* harmless to return without any action.
|
|
*/
|
|
ext4_warning(inode->i_sb, "ext4_da_release_space: "
|
|
"ino %lu, to_free %d with only %d reserved "
|
|
"data blocks", inode->i_ino, to_free,
|
|
ei->i_reserved_data_blocks);
|
|
WARN_ON(1);
|
|
to_free = ei->i_reserved_data_blocks;
|
|
}
|
|
ei->i_reserved_data_blocks -= to_free;
|
|
|
|
/* update fs dirty data blocks counter */
|
|
percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
|
|
|
|
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
|
|
|
|
dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
|
|
}
|
|
|
|
/*
|
|
* Delayed allocation stuff
|
|
*/
|
|
|
|
struct mpage_da_data {
|
|
struct inode *inode;
|
|
struct writeback_control *wbc;
|
|
|
|
pgoff_t first_page; /* The first page to write */
|
|
pgoff_t next_page; /* Current page to examine */
|
|
pgoff_t last_page; /* Last page to examine */
|
|
/*
|
|
* Extent to map - this can be after first_page because that can be
|
|
* fully mapped. We somewhat abuse m_flags to store whether the extent
|
|
* is delalloc or unwritten.
|
|
*/
|
|
struct ext4_map_blocks map;
|
|
struct ext4_io_submit io_submit; /* IO submission data */
|
|
unsigned int do_map:1;
|
|
};
|
|
|
|
static void mpage_release_unused_pages(struct mpage_da_data *mpd,
|
|
bool invalidate)
|
|
{
|
|
int nr_pages, i;
|
|
pgoff_t index, end;
|
|
struct pagevec pvec;
|
|
struct inode *inode = mpd->inode;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
|
|
/* This is necessary when next_page == 0. */
|
|
if (mpd->first_page >= mpd->next_page)
|
|
return;
|
|
|
|
index = mpd->first_page;
|
|
end = mpd->next_page - 1;
|
|
if (invalidate) {
|
|
ext4_lblk_t start, last;
|
|
start = index << (PAGE_SHIFT - inode->i_blkbits);
|
|
last = end << (PAGE_SHIFT - inode->i_blkbits);
|
|
ext4_es_remove_extent(inode, start, last - start + 1);
|
|
}
|
|
|
|
pagevec_init(&pvec);
|
|
while (index <= end) {
|
|
nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
|
|
if (nr_pages == 0)
|
|
break;
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
BUG_ON(PageWriteback(page));
|
|
if (invalidate) {
|
|
if (page_mapped(page))
|
|
clear_page_dirty_for_io(page);
|
|
block_invalidatepage(page, 0, PAGE_SIZE);
|
|
ClearPageUptodate(page);
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
pagevec_release(&pvec);
|
|
}
|
|
}
|
|
|
|
static void ext4_print_free_blocks(struct inode *inode)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct super_block *sb = inode->i_sb;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
|
|
EXT4_C2B(EXT4_SB(inode->i_sb),
|
|
ext4_count_free_clusters(sb)));
|
|
ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
|
|
ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
|
|
(long long) EXT4_C2B(EXT4_SB(sb),
|
|
percpu_counter_sum(&sbi->s_freeclusters_counter)));
|
|
ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
|
|
(long long) EXT4_C2B(EXT4_SB(sb),
|
|
percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
|
|
ext4_msg(sb, KERN_CRIT, "Block reservation details");
|
|
ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
|
|
ei->i_reserved_data_blocks);
|
|
return;
|
|
}
|
|
|
|
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
|
|
{
|
|
return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
|
|
}
|
|
|
|
/*
|
|
* ext4_insert_delayed_block - adds a delayed block to the extents status
|
|
* tree, incrementing the reserved cluster/block
|
|
* count or making a pending reservation
|
|
* where needed
|
|
*
|
|
* @inode - file containing the newly added block
|
|
* @lblk - logical block to be added
|
|
*
|
|
* Returns 0 on success, negative error code on failure.
|
|
*/
|
|
static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
int ret;
|
|
bool allocated = false;
|
|
|
|
/*
|
|
* If the cluster containing lblk is shared with a delayed,
|
|
* written, or unwritten extent in a bigalloc file system, it's
|
|
* already been accounted for and does not need to be reserved.
|
|
* A pending reservation must be made for the cluster if it's
|
|
* shared with a written or unwritten extent and doesn't already
|
|
* have one. Written and unwritten extents can be purged from the
|
|
* extents status tree if the system is under memory pressure, so
|
|
* it's necessary to examine the extent tree if a search of the
|
|
* extents status tree doesn't get a match.
|
|
*/
|
|
if (sbi->s_cluster_ratio == 1) {
|
|
ret = ext4_da_reserve_space(inode);
|
|
if (ret != 0) /* ENOSPC */
|
|
goto errout;
|
|
} else { /* bigalloc */
|
|
if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
|
|
if (!ext4_es_scan_clu(inode,
|
|
&ext4_es_is_mapped, lblk)) {
|
|
ret = ext4_clu_mapped(inode,
|
|
EXT4_B2C(sbi, lblk));
|
|
if (ret < 0)
|
|
goto errout;
|
|
if (ret == 0) {
|
|
ret = ext4_da_reserve_space(inode);
|
|
if (ret != 0) /* ENOSPC */
|
|
goto errout;
|
|
} else {
|
|
allocated = true;
|
|
}
|
|
} else {
|
|
allocated = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
|
|
|
|
errout:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function is grabs code from the very beginning of
|
|
* ext4_map_blocks, but assumes that the caller is from delayed write
|
|
* time. This function looks up the requested blocks and sets the
|
|
* buffer delay bit under the protection of i_data_sem.
|
|
*/
|
|
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
|
|
struct ext4_map_blocks *map,
|
|
struct buffer_head *bh)
|
|
{
|
|
struct extent_status es;
|
|
int retval;
|
|
sector_t invalid_block = ~((sector_t) 0xffff);
|
|
#ifdef ES_AGGRESSIVE_TEST
|
|
struct ext4_map_blocks orig_map;
|
|
|
|
memcpy(&orig_map, map, sizeof(*map));
|
|
#endif
|
|
|
|
if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
|
|
invalid_block = ~0;
|
|
|
|
map->m_flags = 0;
|
|
ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
|
|
"logical block %lu\n", inode->i_ino, map->m_len,
|
|
(unsigned long) map->m_lblk);
|
|
|
|
/* Lookup extent status tree firstly */
|
|
if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
|
|
if (ext4_es_is_hole(&es)) {
|
|
retval = 0;
|
|
down_read(&EXT4_I(inode)->i_data_sem);
|
|
goto add_delayed;
|
|
}
|
|
|
|
/*
|
|
* Delayed extent could be allocated by fallocate.
|
|
* So we need to check it.
|
|
*/
|
|
if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
|
|
map_bh(bh, inode->i_sb, invalid_block);
|
|
set_buffer_new(bh);
|
|
set_buffer_delay(bh);
|
|
return 0;
|
|
}
|
|
|
|
map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
|
|
retval = es.es_len - (iblock - es.es_lblk);
|
|
if (retval > map->m_len)
|
|
retval = map->m_len;
|
|
map->m_len = retval;
|
|
if (ext4_es_is_written(&es))
|
|
map->m_flags |= EXT4_MAP_MAPPED;
|
|
else if (ext4_es_is_unwritten(&es))
|
|
map->m_flags |= EXT4_MAP_UNWRITTEN;
|
|
else
|
|
BUG();
|
|
|
|
#ifdef ES_AGGRESSIVE_TEST
|
|
ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
|
|
#endif
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Try to see if we can get the block without requesting a new
|
|
* file system block.
|
|
*/
|
|
down_read(&EXT4_I(inode)->i_data_sem);
|
|
if (ext4_has_inline_data(inode))
|
|
retval = 0;
|
|
else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
retval = ext4_ext_map_blocks(NULL, inode, map, 0);
|
|
else
|
|
retval = ext4_ind_map_blocks(NULL, inode, map, 0);
|
|
|
|
add_delayed:
|
|
if (retval == 0) {
|
|
int ret;
|
|
|
|
/*
|
|
* XXX: __block_prepare_write() unmaps passed block,
|
|
* is it OK?
|
|
*/
|
|
|
|
ret = ext4_insert_delayed_block(inode, map->m_lblk);
|
|
if (ret != 0) {
|
|
retval = ret;
|
|
goto out_unlock;
|
|
}
|
|
|
|
map_bh(bh, inode->i_sb, invalid_block);
|
|
set_buffer_new(bh);
|
|
set_buffer_delay(bh);
|
|
} else if (retval > 0) {
|
|
int ret;
|
|
unsigned int status;
|
|
|
|
if (unlikely(retval != map->m_len)) {
|
|
ext4_warning(inode->i_sb,
|
|
"ES len assertion failed for inode "
|
|
"%lu: retval %d != map->m_len %d",
|
|
inode->i_ino, retval, map->m_len);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
|
|
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
|
|
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
|
|
map->m_pblk, status);
|
|
if (ret != 0)
|
|
retval = ret;
|
|
}
|
|
|
|
out_unlock:
|
|
up_read((&EXT4_I(inode)->i_data_sem));
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* This is a special get_block_t callback which is used by
|
|
* ext4_da_write_begin(). It will either return mapped block or
|
|
* reserve space for a single block.
|
|
*
|
|
* For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
|
|
* We also have b_blocknr = -1 and b_bdev initialized properly
|
|
*
|
|
* For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
|
|
* We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
|
|
* initialized properly.
|
|
*/
|
|
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int create)
|
|
{
|
|
struct ext4_map_blocks map;
|
|
int ret = 0;
|
|
|
|
BUG_ON(create == 0);
|
|
BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
|
|
|
|
map.m_lblk = iblock;
|
|
map.m_len = 1;
|
|
|
|
/*
|
|
* first, we need to know whether the block is allocated already
|
|
* preallocated blocks are unmapped but should treated
|
|
* the same as allocated blocks.
|
|
*/
|
|
ret = ext4_da_map_blocks(inode, iblock, &map, bh);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
map_bh(bh, inode->i_sb, map.m_pblk);
|
|
ext4_update_bh_state(bh, map.m_flags);
|
|
|
|
if (buffer_unwritten(bh)) {
|
|
/* A delayed write to unwritten bh should be marked
|
|
* new and mapped. Mapped ensures that we don't do
|
|
* get_block multiple times when we write to the same
|
|
* offset and new ensures that we do proper zero out
|
|
* for partial write.
|
|
*/
|
|
set_buffer_new(bh);
|
|
set_buffer_mapped(bh);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int bget_one(handle_t *handle, struct buffer_head *bh)
|
|
{
|
|
get_bh(bh);
|
|
return 0;
|
|
}
|
|
|
|
static int bput_one(handle_t *handle, struct buffer_head *bh)
|
|
{
|
|
put_bh(bh);
|
|
return 0;
|
|
}
|
|
|
|
static int __ext4_journalled_writepage(struct page *page,
|
|
unsigned int len)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode = mapping->host;
|
|
struct buffer_head *page_bufs = NULL;
|
|
handle_t *handle = NULL;
|
|
int ret = 0, err = 0;
|
|
int inline_data = ext4_has_inline_data(inode);
|
|
struct buffer_head *inode_bh = NULL;
|
|
|
|
ClearPageChecked(page);
|
|
|
|
if (inline_data) {
|
|
BUG_ON(page->index != 0);
|
|
BUG_ON(len > ext4_get_max_inline_size(inode));
|
|
inode_bh = ext4_journalled_write_inline_data(inode, len, page);
|
|
if (inode_bh == NULL)
|
|
goto out;
|
|
} else {
|
|
page_bufs = page_buffers(page);
|
|
if (!page_bufs) {
|
|
BUG();
|
|
goto out;
|
|
}
|
|
ext4_walk_page_buffers(handle, page_bufs, 0, len,
|
|
NULL, bget_one);
|
|
}
|
|
/*
|
|
* We need to release the page lock before we start the
|
|
* journal, so grab a reference so the page won't disappear
|
|
* out from under us.
|
|
*/
|
|
get_page(page);
|
|
unlock_page(page);
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
|
|
ext4_writepage_trans_blocks(inode));
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
put_page(page);
|
|
goto out_no_pagelock;
|
|
}
|
|
BUG_ON(!ext4_handle_valid(handle));
|
|
|
|
lock_page(page);
|
|
put_page(page);
|
|
if (page->mapping != mapping) {
|
|
/* The page got truncated from under us */
|
|
ext4_journal_stop(handle);
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (inline_data) {
|
|
ret = ext4_mark_inode_dirty(handle, inode);
|
|
} else {
|
|
ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
|
|
do_journal_get_write_access);
|
|
|
|
err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
|
|
write_end_fn);
|
|
}
|
|
if (ret == 0)
|
|
ret = err;
|
|
EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
|
|
err = ext4_journal_stop(handle);
|
|
if (!ret)
|
|
ret = err;
|
|
|
|
if (!ext4_has_inline_data(inode))
|
|
ext4_walk_page_buffers(NULL, page_bufs, 0, len,
|
|
NULL, bput_one);
|
|
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
|
|
out:
|
|
unlock_page(page);
|
|
out_no_pagelock:
|
|
brelse(inode_bh);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Note that we don't need to start a transaction unless we're journaling data
|
|
* because we should have holes filled from ext4_page_mkwrite(). We even don't
|
|
* need to file the inode to the transaction's list in ordered mode because if
|
|
* we are writing back data added by write(), the inode is already there and if
|
|
* we are writing back data modified via mmap(), no one guarantees in which
|
|
* transaction the data will hit the disk. In case we are journaling data, we
|
|
* cannot start transaction directly because transaction start ranks above page
|
|
* lock so we have to do some magic.
|
|
*
|
|
* This function can get called via...
|
|
* - ext4_writepages after taking page lock (have journal handle)
|
|
* - journal_submit_inode_data_buffers (no journal handle)
|
|
* - shrink_page_list via the kswapd/direct reclaim (no journal handle)
|
|
* - grab_page_cache when doing write_begin (have journal handle)
|
|
*
|
|
* We don't do any block allocation in this function. If we have page with
|
|
* multiple blocks we need to write those buffer_heads that are mapped. This
|
|
* is important for mmaped based write. So if we do with blocksize 1K
|
|
* truncate(f, 1024);
|
|
* a = mmap(f, 0, 4096);
|
|
* a[0] = 'a';
|
|
* truncate(f, 4096);
|
|
* we have in the page first buffer_head mapped via page_mkwrite call back
|
|
* but other buffer_heads would be unmapped but dirty (dirty done via the
|
|
* do_wp_page). So writepage should write the first block. If we modify
|
|
* the mmap area beyond 1024 we will again get a page_fault and the
|
|
* page_mkwrite callback will do the block allocation and mark the
|
|
* buffer_heads mapped.
|
|
*
|
|
* We redirty the page if we have any buffer_heads that is either delay or
|
|
* unwritten in the page.
|
|
*
|
|
* We can get recursively called as show below.
|
|
*
|
|
* ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
|
|
* ext4_writepage()
|
|
*
|
|
* But since we don't do any block allocation we should not deadlock.
|
|
* Page also have the dirty flag cleared so we don't get recurive page_lock.
|
|
*/
|
|
static int ext4_writepage(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
int ret = 0;
|
|
loff_t size;
|
|
unsigned int len;
|
|
struct buffer_head *page_bufs = NULL;
|
|
struct inode *inode = page->mapping->host;
|
|
struct ext4_io_submit io_submit;
|
|
bool keep_towrite = false;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
|
|
ext4_invalidatepage(page, 0, PAGE_SIZE);
|
|
unlock_page(page);
|
|
return -EIO;
|
|
}
|
|
|
|
trace_ext4_writepage(page);
|
|
size = i_size_read(inode);
|
|
if (page->index == size >> PAGE_SHIFT &&
|
|
!ext4_verity_in_progress(inode))
|
|
len = size & ~PAGE_MASK;
|
|
else
|
|
len = PAGE_SIZE;
|
|
|
|
page_bufs = page_buffers(page);
|
|
/*
|
|
* We cannot do block allocation or other extent handling in this
|
|
* function. If there are buffers needing that, we have to redirty
|
|
* the page. But we may reach here when we do a journal commit via
|
|
* journal_submit_inode_data_buffers() and in that case we must write
|
|
* allocated buffers to achieve data=ordered mode guarantees.
|
|
*
|
|
* Also, if there is only one buffer per page (the fs block
|
|
* size == the page size), if one buffer needs block
|
|
* allocation or needs to modify the extent tree to clear the
|
|
* unwritten flag, we know that the page can't be written at
|
|
* all, so we might as well refuse the write immediately.
|
|
* Unfortunately if the block size != page size, we can't as
|
|
* easily detect this case using ext4_walk_page_buffers(), but
|
|
* for the extremely common case, this is an optimization that
|
|
* skips a useless round trip through ext4_bio_write_page().
|
|
*/
|
|
if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
|
|
ext4_bh_delay_or_unwritten)) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
if ((current->flags & PF_MEMALLOC) ||
|
|
(inode->i_sb->s_blocksize == PAGE_SIZE)) {
|
|
/*
|
|
* For memory cleaning there's no point in writing only
|
|
* some buffers. So just bail out. Warn if we came here
|
|
* from direct reclaim.
|
|
*/
|
|
WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
|
|
== PF_MEMALLOC);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
keep_towrite = true;
|
|
}
|
|
|
|
if (PageChecked(page) && ext4_should_journal_data(inode))
|
|
/*
|
|
* It's mmapped pagecache. Add buffers and journal it. There
|
|
* doesn't seem much point in redirtying the page here.
|
|
*/
|
|
return __ext4_journalled_writepage(page, len);
|
|
|
|
ext4_io_submit_init(&io_submit, wbc);
|
|
io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
|
|
if (!io_submit.io_end) {
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return -ENOMEM;
|
|
}
|
|
ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
|
|
ext4_io_submit(&io_submit);
|
|
/* Drop io_end reference we got from init */
|
|
ext4_put_io_end_defer(io_submit.io_end);
|
|
return ret;
|
|
}
|
|
|
|
static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
|
|
{
|
|
int len;
|
|
loff_t size;
|
|
int err;
|
|
|
|
BUG_ON(page->index != mpd->first_page);
|
|
clear_page_dirty_for_io(page);
|
|
/*
|
|
* We have to be very careful here! Nothing protects writeback path
|
|
* against i_size changes and the page can be writeably mapped into
|
|
* page tables. So an application can be growing i_size and writing
|
|
* data through mmap while writeback runs. clear_page_dirty_for_io()
|
|
* write-protects our page in page tables and the page cannot get
|
|
* written to again until we release page lock. So only after
|
|
* clear_page_dirty_for_io() we are safe to sample i_size for
|
|
* ext4_bio_write_page() to zero-out tail of the written page. We rely
|
|
* on the barrier provided by TestClearPageDirty in
|
|
* clear_page_dirty_for_io() to make sure i_size is really sampled only
|
|
* after page tables are updated.
|
|
*/
|
|
size = i_size_read(mpd->inode);
|
|
if (page->index == size >> PAGE_SHIFT &&
|
|
!ext4_verity_in_progress(mpd->inode))
|
|
len = size & ~PAGE_MASK;
|
|
else
|
|
len = PAGE_SIZE;
|
|
err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
|
|
if (!err)
|
|
mpd->wbc->nr_to_write--;
|
|
mpd->first_page++;
|
|
|
|
return err;
|
|
}
|
|
|
|
#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
|
|
|
|
/*
|
|
* mballoc gives us at most this number of blocks...
|
|
* XXX: That seems to be only a limitation of ext4_mb_normalize_request().
|
|
* The rest of mballoc seems to handle chunks up to full group size.
|
|
*/
|
|
#define MAX_WRITEPAGES_EXTENT_LEN 2048
|
|
|
|
/*
|
|
* mpage_add_bh_to_extent - try to add bh to extent of blocks to map
|
|
*
|
|
* @mpd - extent of blocks
|
|
* @lblk - logical number of the block in the file
|
|
* @bh - buffer head we want to add to the extent
|
|
*
|
|
* The function is used to collect contig. blocks in the same state. If the
|
|
* buffer doesn't require mapping for writeback and we haven't started the
|
|
* extent of buffers to map yet, the function returns 'true' immediately - the
|
|
* caller can write the buffer right away. Otherwise the function returns true
|
|
* if the block has been added to the extent, false if the block couldn't be
|
|
* added.
|
|
*/
|
|
static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
|
|
struct buffer_head *bh)
|
|
{
|
|
struct ext4_map_blocks *map = &mpd->map;
|
|
|
|
/* Buffer that doesn't need mapping for writeback? */
|
|
if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
|
|
(!buffer_delay(bh) && !buffer_unwritten(bh))) {
|
|
/* So far no extent to map => we write the buffer right away */
|
|
if (map->m_len == 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* First block in the extent? */
|
|
if (map->m_len == 0) {
|
|
/* We cannot map unless handle is started... */
|
|
if (!mpd->do_map)
|
|
return false;
|
|
map->m_lblk = lblk;
|
|
map->m_len = 1;
|
|
map->m_flags = bh->b_state & BH_FLAGS;
|
|
return true;
|
|
}
|
|
|
|
/* Don't go larger than mballoc is willing to allocate */
|
|
if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
|
|
return false;
|
|
|
|
/* Can we merge the block to our big extent? */
|
|
if (lblk == map->m_lblk + map->m_len &&
|
|
(bh->b_state & BH_FLAGS) == map->m_flags) {
|
|
map->m_len++;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* mpage_process_page_bufs - submit page buffers for IO or add them to extent
|
|
*
|
|
* @mpd - extent of blocks for mapping
|
|
* @head - the first buffer in the page
|
|
* @bh - buffer we should start processing from
|
|
* @lblk - logical number of the block in the file corresponding to @bh
|
|
*
|
|
* Walk through page buffers from @bh upto @head (exclusive) and either submit
|
|
* the page for IO if all buffers in this page were mapped and there's no
|
|
* accumulated extent of buffers to map or add buffers in the page to the
|
|
* extent of buffers to map. The function returns 1 if the caller can continue
|
|
* by processing the next page, 0 if it should stop adding buffers to the
|
|
* extent to map because we cannot extend it anymore. It can also return value
|
|
* < 0 in case of error during IO submission.
|
|
*/
|
|
static int mpage_process_page_bufs(struct mpage_da_data *mpd,
|
|
struct buffer_head *head,
|
|
struct buffer_head *bh,
|
|
ext4_lblk_t lblk)
|
|
{
|
|
struct inode *inode = mpd->inode;
|
|
int err;
|
|
ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
|
|
>> inode->i_blkbits;
|
|
|
|
if (ext4_verity_in_progress(inode))
|
|
blocks = EXT_MAX_BLOCKS;
|
|
|
|
do {
|
|
BUG_ON(buffer_locked(bh));
|
|
|
|
if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
|
|
/* Found extent to map? */
|
|
if (mpd->map.m_len)
|
|
return 0;
|
|
/* Buffer needs mapping and handle is not started? */
|
|
if (!mpd->do_map)
|
|
return 0;
|
|
/* Everything mapped so far and we hit EOF */
|
|
break;
|
|
}
|
|
} while (lblk++, (bh = bh->b_this_page) != head);
|
|
/* So far everything mapped? Submit the page for IO. */
|
|
if (mpd->map.m_len == 0) {
|
|
err = mpage_submit_page(mpd, head->b_page);
|
|
if (err < 0)
|
|
return err;
|
|
}
|
|
return lblk < blocks;
|
|
}
|
|
|
|
/*
|
|
* mpage_map_buffers - update buffers corresponding to changed extent and
|
|
* submit fully mapped pages for IO
|
|
*
|
|
* @mpd - description of extent to map, on return next extent to map
|
|
*
|
|
* Scan buffers corresponding to changed extent (we expect corresponding pages
|
|
* to be already locked) and update buffer state according to new extent state.
|
|
* We map delalloc buffers to their physical location, clear unwritten bits,
|
|
* and mark buffers as uninit when we perform writes to unwritten extents
|
|
* and do extent conversion after IO is finished. If the last page is not fully
|
|
* mapped, we update @map to the next extent in the last page that needs
|
|
* mapping. Otherwise we submit the page for IO.
|
|
*/
|
|
static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
|
|
{
|
|
struct pagevec pvec;
|
|
int nr_pages, i;
|
|
struct inode *inode = mpd->inode;
|
|
struct buffer_head *head, *bh;
|
|
int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
|
|
pgoff_t start, end;
|
|
ext4_lblk_t lblk;
|
|
sector_t pblock;
|
|
int err;
|
|
|
|
start = mpd->map.m_lblk >> bpp_bits;
|
|
end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
|
|
lblk = start << bpp_bits;
|
|
pblock = mpd->map.m_pblk;
|
|
|
|
pagevec_init(&pvec);
|
|
while (start <= end) {
|
|
nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
|
|
&start, end);
|
|
if (nr_pages == 0)
|
|
break;
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (lblk < mpd->map.m_lblk)
|
|
continue;
|
|
if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
|
|
/*
|
|
* Buffer after end of mapped extent.
|
|
* Find next buffer in the page to map.
|
|
*/
|
|
mpd->map.m_len = 0;
|
|
mpd->map.m_flags = 0;
|
|
/*
|
|
* FIXME: If dioread_nolock supports
|
|
* blocksize < pagesize, we need to make
|
|
* sure we add size mapped so far to
|
|
* io_end->size as the following call
|
|
* can submit the page for IO.
|
|
*/
|
|
err = mpage_process_page_bufs(mpd, head,
|
|
bh, lblk);
|
|
pagevec_release(&pvec);
|
|
if (err > 0)
|
|
err = 0;
|
|
return err;
|
|
}
|
|
if (buffer_delay(bh)) {
|
|
clear_buffer_delay(bh);
|
|
bh->b_blocknr = pblock++;
|
|
}
|
|
clear_buffer_unwritten(bh);
|
|
} while (lblk++, (bh = bh->b_this_page) != head);
|
|
|
|
/*
|
|
* FIXME: This is going to break if dioread_nolock
|
|
* supports blocksize < pagesize as we will try to
|
|
* convert potentially unmapped parts of inode.
|
|
*/
|
|
mpd->io_submit.io_end->size += PAGE_SIZE;
|
|
/* Page fully mapped - let IO run! */
|
|
err = mpage_submit_page(mpd, page);
|
|
if (err < 0) {
|
|
pagevec_release(&pvec);
|
|
return err;
|
|
}
|
|
}
|
|
pagevec_release(&pvec);
|
|
}
|
|
/* Extent fully mapped and matches with page boundary. We are done. */
|
|
mpd->map.m_len = 0;
|
|
mpd->map.m_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
|
|
{
|
|
struct inode *inode = mpd->inode;
|
|
struct ext4_map_blocks *map = &mpd->map;
|
|
int get_blocks_flags;
|
|
int err, dioread_nolock;
|
|
|
|
trace_ext4_da_write_pages_extent(inode, map);
|
|
/*
|
|
* Call ext4_map_blocks() to allocate any delayed allocation blocks, or
|
|
* to convert an unwritten extent to be initialized (in the case
|
|
* where we have written into one or more preallocated blocks). It is
|
|
* possible that we're going to need more metadata blocks than
|
|
* previously reserved. However we must not fail because we're in
|
|
* writeback and there is nothing we can do about it so it might result
|
|
* in data loss. So use reserved blocks to allocate metadata if
|
|
* possible.
|
|
*
|
|
* We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
|
|
* the blocks in question are delalloc blocks. This indicates
|
|
* that the blocks and quotas has already been checked when
|
|
* the data was copied into the page cache.
|
|
*/
|
|
get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
|
|
EXT4_GET_BLOCKS_METADATA_NOFAIL |
|
|
EXT4_GET_BLOCKS_IO_SUBMIT;
|
|
dioread_nolock = ext4_should_dioread_nolock(inode);
|
|
if (dioread_nolock)
|
|
get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
|
|
if (map->m_flags & (1 << BH_Delay))
|
|
get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
|
|
|
|
err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
|
|
if (err < 0)
|
|
return err;
|
|
if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
|
|
if (!mpd->io_submit.io_end->handle &&
|
|
ext4_handle_valid(handle)) {
|
|
mpd->io_submit.io_end->handle = handle->h_rsv_handle;
|
|
handle->h_rsv_handle = NULL;
|
|
}
|
|
ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
|
|
}
|
|
|
|
BUG_ON(map->m_len == 0);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
|
|
* mpd->len and submit pages underlying it for IO
|
|
*
|
|
* @handle - handle for journal operations
|
|
* @mpd - extent to map
|
|
* @give_up_on_write - we set this to true iff there is a fatal error and there
|
|
* is no hope of writing the data. The caller should discard
|
|
* dirty pages to avoid infinite loops.
|
|
*
|
|
* The function maps extent starting at mpd->lblk of length mpd->len. If it is
|
|
* delayed, blocks are allocated, if it is unwritten, we may need to convert
|
|
* them to initialized or split the described range from larger unwritten
|
|
* extent. Note that we need not map all the described range since allocation
|
|
* can return less blocks or the range is covered by more unwritten extents. We
|
|
* cannot map more because we are limited by reserved transaction credits. On
|
|
* the other hand we always make sure that the last touched page is fully
|
|
* mapped so that it can be written out (and thus forward progress is
|
|
* guaranteed). After mapping we submit all mapped pages for IO.
|
|
*/
|
|
static int mpage_map_and_submit_extent(handle_t *handle,
|
|
struct mpage_da_data *mpd,
|
|
bool *give_up_on_write)
|
|
{
|
|
struct inode *inode = mpd->inode;
|
|
struct ext4_map_blocks *map = &mpd->map;
|
|
int err;
|
|
loff_t disksize;
|
|
int progress = 0;
|
|
|
|
mpd->io_submit.io_end->offset =
|
|
((loff_t)map->m_lblk) << inode->i_blkbits;
|
|
do {
|
|
err = mpage_map_one_extent(handle, mpd);
|
|
if (err < 0) {
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
if (ext4_forced_shutdown(EXT4_SB(sb)) ||
|
|
EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
|
|
goto invalidate_dirty_pages;
|
|
/*
|
|
* Let the uper layers retry transient errors.
|
|
* In the case of ENOSPC, if ext4_count_free_blocks()
|
|
* is non-zero, a commit should free up blocks.
|
|
*/
|
|
if ((err == -ENOMEM) ||
|
|
(err == -ENOSPC && ext4_count_free_clusters(sb))) {
|
|
if (progress)
|
|
goto update_disksize;
|
|
return err;
|
|
}
|
|
ext4_msg(sb, KERN_CRIT,
|
|
"Delayed block allocation failed for "
|
|
"inode %lu at logical offset %llu with"
|
|
" max blocks %u with error %d",
|
|
inode->i_ino,
|
|
(unsigned long long)map->m_lblk,
|
|
(unsigned)map->m_len, -err);
|
|
ext4_msg(sb, KERN_CRIT,
|
|
"This should not happen!! Data will "
|
|
"be lost\n");
|
|
if (err == -ENOSPC)
|
|
ext4_print_free_blocks(inode);
|
|
invalidate_dirty_pages:
|
|
*give_up_on_write = true;
|
|
return err;
|
|
}
|
|
progress = 1;
|
|
/*
|
|
* Update buffer state, submit mapped pages, and get us new
|
|
* extent to map
|
|
*/
|
|
err = mpage_map_and_submit_buffers(mpd);
|
|
if (err < 0)
|
|
goto update_disksize;
|
|
} while (map->m_len);
|
|
|
|
update_disksize:
|
|
/*
|
|
* Update on-disk size after IO is submitted. Races with
|
|
* truncate are avoided by checking i_size under i_data_sem.
|
|
*/
|
|
disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
|
|
if (disksize > EXT4_I(inode)->i_disksize) {
|
|
int err2;
|
|
loff_t i_size;
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
i_size = i_size_read(inode);
|
|
if (disksize > i_size)
|
|
disksize = i_size;
|
|
if (disksize > EXT4_I(inode)->i_disksize)
|
|
EXT4_I(inode)->i_disksize = disksize;
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
err2 = ext4_mark_inode_dirty(handle, inode);
|
|
if (err2)
|
|
ext4_error(inode->i_sb,
|
|
"Failed to mark inode %lu dirty",
|
|
inode->i_ino);
|
|
if (!err)
|
|
err = err2;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Calculate the total number of credits to reserve for one writepages
|
|
* iteration. This is called from ext4_writepages(). We map an extent of
|
|
* up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
|
|
* the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
|
|
* bpp - 1 blocks in bpp different extents.
|
|
*/
|
|
static int ext4_da_writepages_trans_blocks(struct inode *inode)
|
|
{
|
|
int bpp = ext4_journal_blocks_per_page(inode);
|
|
|
|
return ext4_meta_trans_blocks(inode,
|
|
MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
|
|
}
|
|
|
|
/*
|
|
* mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
|
|
* and underlying extent to map
|
|
*
|
|
* @mpd - where to look for pages
|
|
*
|
|
* Walk dirty pages in the mapping. If they are fully mapped, submit them for
|
|
* IO immediately. When we find a page which isn't mapped we start accumulating
|
|
* extent of buffers underlying these pages that needs mapping (formed by
|
|
* either delayed or unwritten buffers). We also lock the pages containing
|
|
* these buffers. The extent found is returned in @mpd structure (starting at
|
|
* mpd->lblk with length mpd->len blocks).
|
|
*
|
|
* Note that this function can attach bios to one io_end structure which are
|
|
* neither logically nor physically contiguous. Although it may seem as an
|
|
* unnecessary complication, it is actually inevitable in blocksize < pagesize
|
|
* case as we need to track IO to all buffers underlying a page in one io_end.
|
|
*/
|
|
static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
|
|
{
|
|
struct address_space *mapping = mpd->inode->i_mapping;
|
|
struct pagevec pvec;
|
|
unsigned int nr_pages;
|
|
long left = mpd->wbc->nr_to_write;
|
|
pgoff_t index = mpd->first_page;
|
|
pgoff_t end = mpd->last_page;
|
|
xa_mark_t tag;
|
|
int i, err = 0;
|
|
int blkbits = mpd->inode->i_blkbits;
|
|
ext4_lblk_t lblk;
|
|
struct buffer_head *head;
|
|
|
|
if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
|
|
tag = PAGECACHE_TAG_TOWRITE;
|
|
else
|
|
tag = PAGECACHE_TAG_DIRTY;
|
|
|
|
pagevec_init(&pvec);
|
|
mpd->map.m_len = 0;
|
|
mpd->next_page = index;
|
|
while (index <= end) {
|
|
nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
|
|
tag);
|
|
if (nr_pages == 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
/*
|
|
* Accumulated enough dirty pages? This doesn't apply
|
|
* to WB_SYNC_ALL mode. For integrity sync we have to
|
|
* keep going because someone may be concurrently
|
|
* dirtying pages, and we might have synced a lot of
|
|
* newly appeared dirty pages, but have not synced all
|
|
* of the old dirty pages.
|
|
*/
|
|
if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
|
|
goto out;
|
|
|
|
/* If we can't merge this page, we are done. */
|
|
if (mpd->map.m_len > 0 && mpd->next_page != page->index)
|
|
goto out;
|
|
|
|
lock_page(page);
|
|
/*
|
|
* If the page is no longer dirty, or its mapping no
|
|
* longer corresponds to inode we are writing (which
|
|
* means it has been truncated or invalidated), or the
|
|
* page is already under writeback and we are not doing
|
|
* a data integrity writeback, skip the page
|
|
*/
|
|
if (!PageDirty(page) ||
|
|
(PageWriteback(page) &&
|
|
(mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
|
|
unlikely(page->mapping != mapping)) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
wait_on_page_writeback(page);
|
|
BUG_ON(PageWriteback(page));
|
|
|
|
if (mpd->map.m_len == 0)
|
|
mpd->first_page = page->index;
|
|
mpd->next_page = page->index + 1;
|
|
/* Add all dirty buffers to mpd */
|
|
lblk = ((ext4_lblk_t)page->index) <<
|
|
(PAGE_SHIFT - blkbits);
|
|
head = page_buffers(page);
|
|
err = mpage_process_page_bufs(mpd, head, head, lblk);
|
|
if (err <= 0)
|
|
goto out;
|
|
err = 0;
|
|
left--;
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
return 0;
|
|
out:
|
|
pagevec_release(&pvec);
|
|
return err;
|
|
}
|
|
|
|
static int ext4_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
pgoff_t writeback_index = 0;
|
|
long nr_to_write = wbc->nr_to_write;
|
|
int range_whole = 0;
|
|
int cycled = 1;
|
|
handle_t *handle = NULL;
|
|
struct mpage_da_data mpd;
|
|
struct inode *inode = mapping->host;
|
|
int needed_blocks, rsv_blocks = 0, ret = 0;
|
|
struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
|
|
bool done;
|
|
struct blk_plug plug;
|
|
bool give_up_on_write = false;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
percpu_down_read(&sbi->s_journal_flag_rwsem);
|
|
trace_ext4_writepages(inode, wbc);
|
|
|
|
/*
|
|
* No pages to write? This is mainly a kludge to avoid starting
|
|
* a transaction for special inodes like journal inode on last iput()
|
|
* because that could violate lock ordering on umount
|
|
*/
|
|
if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
|
|
goto out_writepages;
|
|
|
|
if (ext4_should_journal_data(inode)) {
|
|
ret = generic_writepages(mapping, wbc);
|
|
goto out_writepages;
|
|
}
|
|
|
|
/*
|
|
* If the filesystem has aborted, it is read-only, so return
|
|
* right away instead of dumping stack traces later on that
|
|
* will obscure the real source of the problem. We test
|
|
* EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
|
|
* the latter could be true if the filesystem is mounted
|
|
* read-only, and in that case, ext4_writepages should
|
|
* *never* be called, so if that ever happens, we would want
|
|
* the stack trace.
|
|
*/
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
|
|
sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
|
|
ret = -EROFS;
|
|
goto out_writepages;
|
|
}
|
|
|
|
/*
|
|
* If we have inline data and arrive here, it means that
|
|
* we will soon create the block for the 1st page, so
|
|
* we'd better clear the inline data here.
|
|
*/
|
|
if (ext4_has_inline_data(inode)) {
|
|
/* Just inode will be modified... */
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
goto out_writepages;
|
|
}
|
|
BUG_ON(ext4_test_inode_state(inode,
|
|
EXT4_STATE_MAY_INLINE_DATA));
|
|
ext4_destroy_inline_data(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
}
|
|
|
|
if (ext4_should_dioread_nolock(inode)) {
|
|
/*
|
|
* We may need to convert up to one extent per block in
|
|
* the page and we may dirty the inode.
|
|
*/
|
|
rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
|
|
PAGE_SIZE >> inode->i_blkbits);
|
|
}
|
|
|
|
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
|
|
range_whole = 1;
|
|
|
|
if (wbc->range_cyclic) {
|
|
writeback_index = mapping->writeback_index;
|
|
if (writeback_index)
|
|
cycled = 0;
|
|
mpd.first_page = writeback_index;
|
|
mpd.last_page = -1;
|
|
} else {
|
|
mpd.first_page = wbc->range_start >> PAGE_SHIFT;
|
|
mpd.last_page = wbc->range_end >> PAGE_SHIFT;
|
|
}
|
|
|
|
mpd.inode = inode;
|
|
mpd.wbc = wbc;
|
|
ext4_io_submit_init(&mpd.io_submit, wbc);
|
|
retry:
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
|
|
done = false;
|
|
blk_start_plug(&plug);
|
|
|
|
/*
|
|
* First writeback pages that don't need mapping - we can avoid
|
|
* starting a transaction unnecessarily and also avoid being blocked
|
|
* in the block layer on device congestion while having transaction
|
|
* started.
|
|
*/
|
|
mpd.do_map = 0;
|
|
mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
|
|
if (!mpd.io_submit.io_end) {
|
|
ret = -ENOMEM;
|
|
goto unplug;
|
|
}
|
|
ret = mpage_prepare_extent_to_map(&mpd);
|
|
/* Unlock pages we didn't use */
|
|
mpage_release_unused_pages(&mpd, false);
|
|
/* Submit prepared bio */
|
|
ext4_io_submit(&mpd.io_submit);
|
|
ext4_put_io_end_defer(mpd.io_submit.io_end);
|
|
mpd.io_submit.io_end = NULL;
|
|
if (ret < 0)
|
|
goto unplug;
|
|
|
|
while (!done && mpd.first_page <= mpd.last_page) {
|
|
/* For each extent of pages we use new io_end */
|
|
mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
|
|
if (!mpd.io_submit.io_end) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have two constraints: We find one extent to map and we
|
|
* must always write out whole page (makes a difference when
|
|
* blocksize < pagesize) so that we don't block on IO when we
|
|
* try to write out the rest of the page. Journalled mode is
|
|
* not supported by delalloc.
|
|
*/
|
|
BUG_ON(ext4_should_journal_data(inode));
|
|
needed_blocks = ext4_da_writepages_trans_blocks(inode);
|
|
|
|
/* start a new transaction */
|
|
handle = ext4_journal_start_with_reserve(inode,
|
|
EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
|
|
"%ld pages, ino %lu; err %d", __func__,
|
|
wbc->nr_to_write, inode->i_ino, ret);
|
|
/* Release allocated io_end */
|
|
ext4_put_io_end(mpd.io_submit.io_end);
|
|
mpd.io_submit.io_end = NULL;
|
|
break;
|
|
}
|
|
mpd.do_map = 1;
|
|
|
|
trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
|
|
ret = mpage_prepare_extent_to_map(&mpd);
|
|
if (!ret) {
|
|
if (mpd.map.m_len)
|
|
ret = mpage_map_and_submit_extent(handle, &mpd,
|
|
&give_up_on_write);
|
|
else {
|
|
/*
|
|
* We scanned the whole range (or exhausted
|
|
* nr_to_write), submitted what was mapped and
|
|
* didn't find anything needing mapping. We are
|
|
* done.
|
|
*/
|
|
done = true;
|
|
}
|
|
}
|
|
/*
|
|
* Caution: If the handle is synchronous,
|
|
* ext4_journal_stop() can wait for transaction commit
|
|
* to finish which may depend on writeback of pages to
|
|
* complete or on page lock to be released. In that
|
|
* case, we have to wait until after after we have
|
|
* submitted all the IO, released page locks we hold,
|
|
* and dropped io_end reference (for extent conversion
|
|
* to be able to complete) before stopping the handle.
|
|
*/
|
|
if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
|
|
ext4_journal_stop(handle);
|
|
handle = NULL;
|
|
mpd.do_map = 0;
|
|
}
|
|
/* Unlock pages we didn't use */
|
|
mpage_release_unused_pages(&mpd, give_up_on_write);
|
|
/* Submit prepared bio */
|
|
ext4_io_submit(&mpd.io_submit);
|
|
|
|
/*
|
|
* Drop our io_end reference we got from init. We have
|
|
* to be careful and use deferred io_end finishing if
|
|
* we are still holding the transaction as we can
|
|
* release the last reference to io_end which may end
|
|
* up doing unwritten extent conversion.
|
|
*/
|
|
if (handle) {
|
|
ext4_put_io_end_defer(mpd.io_submit.io_end);
|
|
ext4_journal_stop(handle);
|
|
} else
|
|
ext4_put_io_end(mpd.io_submit.io_end);
|
|
mpd.io_submit.io_end = NULL;
|
|
|
|
if (ret == -ENOSPC && sbi->s_journal) {
|
|
/*
|
|
* Commit the transaction which would
|
|
* free blocks released in the transaction
|
|
* and try again
|
|
*/
|
|
jbd2_journal_force_commit_nested(sbi->s_journal);
|
|
ret = 0;
|
|
continue;
|
|
}
|
|
/* Fatal error - ENOMEM, EIO... */
|
|
if (ret)
|
|
break;
|
|
}
|
|
unplug:
|
|
blk_finish_plug(&plug);
|
|
if (!ret && !cycled && wbc->nr_to_write > 0) {
|
|
cycled = 1;
|
|
mpd.last_page = writeback_index - 1;
|
|
mpd.first_page = 0;
|
|
goto retry;
|
|
}
|
|
|
|
/* Update index */
|
|
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
|
|
/*
|
|
* Set the writeback_index so that range_cyclic
|
|
* mode will write it back later
|
|
*/
|
|
mapping->writeback_index = mpd.first_page;
|
|
|
|
out_writepages:
|
|
trace_ext4_writepages_result(inode, wbc, ret,
|
|
nr_to_write - wbc->nr_to_write);
|
|
percpu_up_read(&sbi->s_journal_flag_rwsem);
|
|
return ret;
|
|
}
|
|
|
|
static int ext4_dax_writepages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
int ret;
|
|
long nr_to_write = wbc->nr_to_write;
|
|
struct inode *inode = mapping->host;
|
|
struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
percpu_down_read(&sbi->s_journal_flag_rwsem);
|
|
trace_ext4_writepages(inode, wbc);
|
|
|
|
ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
|
|
trace_ext4_writepages_result(inode, wbc, ret,
|
|
nr_to_write - wbc->nr_to_write);
|
|
percpu_up_read(&sbi->s_journal_flag_rwsem);
|
|
return ret;
|
|
}
|
|
|
|
static int ext4_nonda_switch(struct super_block *sb)
|
|
{
|
|
s64 free_clusters, dirty_clusters;
|
|
struct ext4_sb_info *sbi = EXT4_SB(sb);
|
|
|
|
/*
|
|
* switch to non delalloc mode if we are running low
|
|
* on free block. The free block accounting via percpu
|
|
* counters can get slightly wrong with percpu_counter_batch getting
|
|
* accumulated on each CPU without updating global counters
|
|
* Delalloc need an accurate free block accounting. So switch
|
|
* to non delalloc when we are near to error range.
|
|
*/
|
|
free_clusters =
|
|
percpu_counter_read_positive(&sbi->s_freeclusters_counter);
|
|
dirty_clusters =
|
|
percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
|
|
/*
|
|
* Start pushing delalloc when 1/2 of free blocks are dirty.
|
|
*/
|
|
if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
|
|
try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
|
|
|
|
if (2 * free_clusters < 3 * dirty_clusters ||
|
|
free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
|
|
/*
|
|
* free block count is less than 150% of dirty blocks
|
|
* or free blocks is less than watermark
|
|
*/
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* We always reserve for an inode update; the superblock could be there too */
|
|
static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
|
|
{
|
|
if (likely(ext4_has_feature_large_file(inode->i_sb)))
|
|
return 1;
|
|
|
|
if (pos + len <= 0x7fffffffULL)
|
|
return 1;
|
|
|
|
/* We might need to update the superblock to set LARGE_FILE */
|
|
return 2;
|
|
}
|
|
|
|
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
int ret, retries = 0;
|
|
struct page *page;
|
|
pgoff_t index;
|
|
struct inode *inode = mapping->host;
|
|
handle_t *handle;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
index = pos >> PAGE_SHIFT;
|
|
|
|
if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
|
|
ext4_verity_in_progress(inode)) {
|
|
*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
|
|
return ext4_write_begin(file, mapping, pos,
|
|
len, flags, pagep, fsdata);
|
|
}
|
|
*fsdata = (void *)0;
|
|
trace_ext4_da_write_begin(inode, pos, len, flags);
|
|
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
|
|
ret = ext4_da_write_inline_data_begin(mapping, inode,
|
|
pos, len, flags,
|
|
pagep, fsdata);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 1)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* grab_cache_page_write_begin() can take a long time if the
|
|
* system is thrashing due to memory pressure, or if the page
|
|
* is being written back. So grab it first before we start
|
|
* the transaction handle. This also allows us to allocate
|
|
* the page (if needed) without using GFP_NOFS.
|
|
*/
|
|
retry_grab:
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
unlock_page(page);
|
|
|
|
/*
|
|
* With delayed allocation, we don't log the i_disksize update
|
|
* if there is delayed block allocation. But we still need
|
|
* to journalling the i_disksize update if writes to the end
|
|
* of file which has an already mapped buffer.
|
|
*/
|
|
retry_journal:
|
|
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
|
|
ext4_da_write_credits(inode, pos, len));
|
|
if (IS_ERR(handle)) {
|
|
put_page(page);
|
|
return PTR_ERR(handle);
|
|
}
|
|
|
|
lock_page(page);
|
|
if (page->mapping != mapping) {
|
|
/* The page got truncated from under us */
|
|
unlock_page(page);
|
|
put_page(page);
|
|
ext4_journal_stop(handle);
|
|
goto retry_grab;
|
|
}
|
|
/* In case writeback began while the page was unlocked */
|
|
wait_for_stable_page(page);
|
|
|
|
#ifdef CONFIG_FS_ENCRYPTION
|
|
ret = ext4_block_write_begin(page, pos, len,
|
|
ext4_da_get_block_prep);
|
|
#else
|
|
ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
|
|
#endif
|
|
if (ret < 0) {
|
|
unlock_page(page);
|
|
ext4_journal_stop(handle);
|
|
/*
|
|
* block_write_begin may have instantiated a few blocks
|
|
* outside i_size. Trim these off again. Don't need
|
|
* i_size_read because we hold i_mutex.
|
|
*/
|
|
if (pos + len > inode->i_size)
|
|
ext4_truncate_failed_write(inode);
|
|
|
|
if (ret == -ENOSPC &&
|
|
ext4_should_retry_alloc(inode->i_sb, &retries))
|
|
goto retry_journal;
|
|
|
|
put_page(page);
|
|
return ret;
|
|
}
|
|
|
|
*pagep = page;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check if we should update i_disksize
|
|
* when write to the end of file but not require block allocation
|
|
*/
|
|
static int ext4_da_should_update_i_disksize(struct page *page,
|
|
unsigned long offset)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct inode *inode = page->mapping->host;
|
|
unsigned int idx;
|
|
int i;
|
|
|
|
bh = page_buffers(page);
|
|
idx = offset >> inode->i_blkbits;
|
|
|
|
for (i = 0; i < idx; i++)
|
|
bh = bh->b_this_page;
|
|
|
|
if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int ext4_da_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
int ret = 0, ret2;
|
|
handle_t *handle = ext4_journal_current_handle();
|
|
loff_t new_i_size;
|
|
unsigned long start, end;
|
|
int write_mode = (int)(unsigned long)fsdata;
|
|
|
|
if (write_mode == FALL_BACK_TO_NONDELALLOC)
|
|
return ext4_write_end(file, mapping, pos,
|
|
len, copied, page, fsdata);
|
|
|
|
trace_ext4_da_write_end(inode, pos, len, copied);
|
|
start = pos & (PAGE_SIZE - 1);
|
|
end = start + copied - 1;
|
|
|
|
/*
|
|
* generic_write_end() will run mark_inode_dirty() if i_size
|
|
* changes. So let's piggyback the i_disksize mark_inode_dirty
|
|
* into that.
|
|
*/
|
|
new_i_size = pos + copied;
|
|
if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
|
|
if (ext4_has_inline_data(inode) ||
|
|
ext4_da_should_update_i_disksize(page, end)) {
|
|
ext4_update_i_disksize(inode, new_i_size);
|
|
/* We need to mark inode dirty even if
|
|
* new_i_size is less that inode->i_size
|
|
* bu greater than i_disksize.(hint delalloc)
|
|
*/
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
}
|
|
}
|
|
|
|
if (write_mode != CONVERT_INLINE_DATA &&
|
|
ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
|
|
ext4_has_inline_data(inode))
|
|
ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
|
|
page);
|
|
else
|
|
ret2 = generic_write_end(file, mapping, pos, len, copied,
|
|
page, fsdata);
|
|
|
|
copied = ret2;
|
|
if (ret2 < 0)
|
|
ret = ret2;
|
|
ret2 = ext4_journal_stop(handle);
|
|
if (!ret)
|
|
ret = ret2;
|
|
|
|
return ret ? ret : copied;
|
|
}
|
|
|
|
/*
|
|
* Force all delayed allocation blocks to be allocated for a given inode.
|
|
*/
|
|
int ext4_alloc_da_blocks(struct inode *inode)
|
|
{
|
|
trace_ext4_alloc_da_blocks(inode);
|
|
|
|
if (!EXT4_I(inode)->i_reserved_data_blocks)
|
|
return 0;
|
|
|
|
/*
|
|
* We do something simple for now. The filemap_flush() will
|
|
* also start triggering a write of the data blocks, which is
|
|
* not strictly speaking necessary (and for users of
|
|
* laptop_mode, not even desirable). However, to do otherwise
|
|
* would require replicating code paths in:
|
|
*
|
|
* ext4_writepages() ->
|
|
* write_cache_pages() ---> (via passed in callback function)
|
|
* __mpage_da_writepage() -->
|
|
* mpage_add_bh_to_extent()
|
|
* mpage_da_map_blocks()
|
|
*
|
|
* The problem is that write_cache_pages(), located in
|
|
* mm/page-writeback.c, marks pages clean in preparation for
|
|
* doing I/O, which is not desirable if we're not planning on
|
|
* doing I/O at all.
|
|
*
|
|
* We could call write_cache_pages(), and then redirty all of
|
|
* the pages by calling redirty_page_for_writepage() but that
|
|
* would be ugly in the extreme. So instead we would need to
|
|
* replicate parts of the code in the above functions,
|
|
* simplifying them because we wouldn't actually intend to
|
|
* write out the pages, but rather only collect contiguous
|
|
* logical block extents, call the multi-block allocator, and
|
|
* then update the buffer heads with the block allocations.
|
|
*
|
|
* For now, though, we'll cheat by calling filemap_flush(),
|
|
* which will map the blocks, and start the I/O, but not
|
|
* actually wait for the I/O to complete.
|
|
*/
|
|
return filemap_flush(inode->i_mapping);
|
|
}
|
|
|
|
/*
|
|
* bmap() is special. It gets used by applications such as lilo and by
|
|
* the swapper to find the on-disk block of a specific piece of data.
|
|
*
|
|
* Naturally, this is dangerous if the block concerned is still in the
|
|
* journal. If somebody makes a swapfile on an ext4 data-journaling
|
|
* filesystem and enables swap, then they may get a nasty shock when the
|
|
* data getting swapped to that swapfile suddenly gets overwritten by
|
|
* the original zero's written out previously to the journal and
|
|
* awaiting writeback in the kernel's buffer cache.
|
|
*
|
|
* So, if we see any bmap calls here on a modified, data-journaled file,
|
|
* take extra steps to flush any blocks which might be in the cache.
|
|
*/
|
|
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
journal_t *journal;
|
|
int err;
|
|
|
|
/*
|
|
* We can get here for an inline file via the FIBMAP ioctl
|
|
*/
|
|
if (ext4_has_inline_data(inode))
|
|
return 0;
|
|
|
|
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
|
|
test_opt(inode->i_sb, DELALLOC)) {
|
|
/*
|
|
* With delalloc we want to sync the file
|
|
* so that we can make sure we allocate
|
|
* blocks for file
|
|
*/
|
|
filemap_write_and_wait(mapping);
|
|
}
|
|
|
|
if (EXT4_JOURNAL(inode) &&
|
|
ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
|
|
/*
|
|
* This is a REALLY heavyweight approach, but the use of
|
|
* bmap on dirty files is expected to be extremely rare:
|
|
* only if we run lilo or swapon on a freshly made file
|
|
* do we expect this to happen.
|
|
*
|
|
* (bmap requires CAP_SYS_RAWIO so this does not
|
|
* represent an unprivileged user DOS attack --- we'd be
|
|
* in trouble if mortal users could trigger this path at
|
|
* will.)
|
|
*
|
|
* NB. EXT4_STATE_JDATA is not set on files other than
|
|
* regular files. If somebody wants to bmap a directory
|
|
* or symlink and gets confused because the buffer
|
|
* hasn't yet been flushed to disk, they deserve
|
|
* everything they get.
|
|
*/
|
|
|
|
ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
|
|
journal = EXT4_JOURNAL(inode);
|
|
jbd2_journal_lock_updates(journal);
|
|
err = jbd2_journal_flush(journal);
|
|
jbd2_journal_unlock_updates(journal);
|
|
|
|
if (err)
|
|
return 0;
|
|
}
|
|
|
|
return generic_block_bmap(mapping, block, ext4_get_block);
|
|
}
|
|
|
|
static int ext4_readpage(struct file *file, struct page *page)
|
|
{
|
|
int ret = -EAGAIN;
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
trace_ext4_readpage(page);
|
|
|
|
if (ext4_has_inline_data(inode))
|
|
ret = ext4_readpage_inline(inode, page);
|
|
|
|
if (ret == -EAGAIN)
|
|
return ext4_mpage_readpages(page->mapping, NULL, page, 1,
|
|
false);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
ext4_readpages(struct file *file, struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
/* If the file has inline data, no need to do readpages. */
|
|
if (ext4_has_inline_data(inode))
|
|
return 0;
|
|
|
|
return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
|
|
}
|
|
|
|
static void ext4_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
trace_ext4_invalidatepage(page, offset, length);
|
|
|
|
/* No journalling happens on data buffers when this function is used */
|
|
WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
|
|
|
|
block_invalidatepage(page, offset, length);
|
|
}
|
|
|
|
static int __ext4_journalled_invalidatepage(struct page *page,
|
|
unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
journal_t *journal = EXT4_JOURNAL(page->mapping->host);
|
|
|
|
trace_ext4_journalled_invalidatepage(page, offset, length);
|
|
|
|
/*
|
|
* If it's a full truncate we just forget about the pending dirtying
|
|
*/
|
|
if (offset == 0 && length == PAGE_SIZE)
|
|
ClearPageChecked(page);
|
|
|
|
return jbd2_journal_invalidatepage(journal, page, offset, length);
|
|
}
|
|
|
|
/* Wrapper for aops... */
|
|
static void ext4_journalled_invalidatepage(struct page *page,
|
|
unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
|
|
}
|
|
|
|
static int ext4_releasepage(struct page *page, gfp_t wait)
|
|
{
|
|
journal_t *journal = EXT4_JOURNAL(page->mapping->host);
|
|
|
|
trace_ext4_releasepage(page);
|
|
|
|
/* Page has dirty journalled data -> cannot release */
|
|
if (PageChecked(page))
|
|
return 0;
|
|
if (journal)
|
|
return jbd2_journal_try_to_free_buffers(journal, page, wait);
|
|
else
|
|
return try_to_free_buffers(page);
|
|
}
|
|
|
|
static bool ext4_inode_datasync_dirty(struct inode *inode)
|
|
{
|
|
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
|
|
|
|
if (journal)
|
|
return !jbd2_transaction_committed(journal,
|
|
EXT4_I(inode)->i_datasync_tid);
|
|
/* Any metadata buffers to write? */
|
|
if (!list_empty(&inode->i_mapping->private_list))
|
|
return true;
|
|
return inode->i_state & I_DIRTY_DATASYNC;
|
|
}
|
|
|
|
static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
|
|
unsigned flags, struct iomap *iomap)
|
|
{
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
unsigned int blkbits = inode->i_blkbits;
|
|
unsigned long first_block, last_block;
|
|
struct ext4_map_blocks map;
|
|
bool delalloc = false;
|
|
int ret;
|
|
|
|
if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
|
|
return -EINVAL;
|
|
first_block = offset >> blkbits;
|
|
last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
|
|
EXT4_MAX_LOGICAL_BLOCK);
|
|
|
|
if (flags & IOMAP_REPORT) {
|
|
if (ext4_has_inline_data(inode)) {
|
|
ret = ext4_inline_data_iomap(inode, iomap);
|
|
if (ret != -EAGAIN) {
|
|
if (ret == 0 && offset >= iomap->length)
|
|
ret = -ENOENT;
|
|
return ret;
|
|
}
|
|
}
|
|
} else {
|
|
if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
|
|
return -ERANGE;
|
|
}
|
|
|
|
map.m_lblk = first_block;
|
|
map.m_len = last_block - first_block + 1;
|
|
|
|
if (flags & IOMAP_REPORT) {
|
|
ret = ext4_map_blocks(NULL, inode, &map, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret == 0) {
|
|
ext4_lblk_t end = map.m_lblk + map.m_len - 1;
|
|
struct extent_status es;
|
|
|
|
ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
|
|
map.m_lblk, end, &es);
|
|
|
|
if (!es.es_len || es.es_lblk > end) {
|
|
/* entire range is a hole */
|
|
} else if (es.es_lblk > map.m_lblk) {
|
|
/* range starts with a hole */
|
|
map.m_len = es.es_lblk - map.m_lblk;
|
|
} else {
|
|
ext4_lblk_t offs = 0;
|
|
|
|
if (es.es_lblk < map.m_lblk)
|
|
offs = map.m_lblk - es.es_lblk;
|
|
map.m_lblk = es.es_lblk + offs;
|
|
map.m_len = es.es_len - offs;
|
|
delalloc = true;
|
|
}
|
|
}
|
|
} else if (flags & IOMAP_WRITE) {
|
|
int dio_credits;
|
|
handle_t *handle;
|
|
int retries = 0;
|
|
|
|
/* Trim mapping request to maximum we can map at once for DIO */
|
|
if (map.m_len > DIO_MAX_BLOCKS)
|
|
map.m_len = DIO_MAX_BLOCKS;
|
|
dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
|
|
retry:
|
|
/*
|
|
* Either we allocate blocks and then we don't get unwritten
|
|
* extent so we have reserved enough credits, or the blocks
|
|
* are already allocated and unwritten and in that case
|
|
* extent conversion fits in the credits as well.
|
|
*/
|
|
handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
|
|
dio_credits);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
ret = ext4_map_blocks(handle, inode, &map,
|
|
EXT4_GET_BLOCKS_CREATE_ZERO);
|
|
if (ret < 0) {
|
|
ext4_journal_stop(handle);
|
|
if (ret == -ENOSPC &&
|
|
ext4_should_retry_alloc(inode->i_sb, &retries))
|
|
goto retry;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If we added blocks beyond i_size, we need to make sure they
|
|
* will get truncated if we crash before updating i_size in
|
|
* ext4_iomap_end(). For faults we don't need to do that (and
|
|
* even cannot because for orphan list operations inode_lock is
|
|
* required) - if we happen to instantiate block beyond i_size,
|
|
* it is because we race with truncate which has already added
|
|
* the inode to the orphan list.
|
|
*/
|
|
if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
|
|
(i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
|
|
int err;
|
|
|
|
err = ext4_orphan_add(handle, inode);
|
|
if (err < 0) {
|
|
ext4_journal_stop(handle);
|
|
return err;
|
|
}
|
|
}
|
|
ext4_journal_stop(handle);
|
|
} else {
|
|
ret = ext4_map_blocks(NULL, inode, &map, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
iomap->flags = 0;
|
|
if (ext4_inode_datasync_dirty(inode))
|
|
iomap->flags |= IOMAP_F_DIRTY;
|
|
iomap->bdev = inode->i_sb->s_bdev;
|
|
iomap->dax_dev = sbi->s_daxdev;
|
|
iomap->offset = (u64)first_block << blkbits;
|
|
iomap->length = (u64)map.m_len << blkbits;
|
|
|
|
if (ret == 0) {
|
|
iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
|
|
iomap->addr = IOMAP_NULL_ADDR;
|
|
} else {
|
|
if (map.m_flags & EXT4_MAP_MAPPED) {
|
|
iomap->type = IOMAP_MAPPED;
|
|
} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
|
|
iomap->type = IOMAP_UNWRITTEN;
|
|
} else {
|
|
WARN_ON_ONCE(1);
|
|
return -EIO;
|
|
}
|
|
iomap->addr = (u64)map.m_pblk << blkbits;
|
|
}
|
|
|
|
if (map.m_flags & EXT4_MAP_NEW)
|
|
iomap->flags |= IOMAP_F_NEW;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
|
|
ssize_t written, unsigned flags, struct iomap *iomap)
|
|
{
|
|
int ret = 0;
|
|
handle_t *handle;
|
|
int blkbits = inode->i_blkbits;
|
|
bool truncate = false;
|
|
|
|
if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
|
|
return 0;
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
goto orphan_del;
|
|
}
|
|
if (ext4_update_inode_size(inode, offset + written))
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
/*
|
|
* We may need to truncate allocated but not written blocks beyond EOF.
|
|
*/
|
|
if (iomap->offset + iomap->length >
|
|
ALIGN(inode->i_size, 1 << blkbits)) {
|
|
ext4_lblk_t written_blk, end_blk;
|
|
|
|
written_blk = (offset + written) >> blkbits;
|
|
end_blk = (offset + length) >> blkbits;
|
|
if (written_blk < end_blk && ext4_can_truncate(inode))
|
|
truncate = true;
|
|
}
|
|
/*
|
|
* Remove inode from orphan list if we were extending a inode and
|
|
* everything went fine.
|
|
*/
|
|
if (!truncate && inode->i_nlink &&
|
|
!list_empty(&EXT4_I(inode)->i_orphan))
|
|
ext4_orphan_del(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
if (truncate) {
|
|
ext4_truncate_failed_write(inode);
|
|
orphan_del:
|
|
/*
|
|
* If truncate failed early the inode might still be on the
|
|
* orphan list; we need to make sure the inode is removed from
|
|
* the orphan list in that case.
|
|
*/
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(NULL, inode);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
const struct iomap_ops ext4_iomap_ops = {
|
|
.iomap_begin = ext4_iomap_begin,
|
|
.iomap_end = ext4_iomap_end,
|
|
};
|
|
|
|
static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
|
|
ssize_t size, void *private)
|
|
{
|
|
ext4_io_end_t *io_end = private;
|
|
|
|
/* if not async direct IO just return */
|
|
if (!io_end)
|
|
return 0;
|
|
|
|
ext_debug("ext4_end_io_dio(): io_end 0x%p "
|
|
"for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
|
|
io_end, io_end->inode->i_ino, iocb, offset, size);
|
|
|
|
/*
|
|
* Error during AIO DIO. We cannot convert unwritten extents as the
|
|
* data was not written. Just clear the unwritten flag and drop io_end.
|
|
*/
|
|
if (size <= 0) {
|
|
ext4_clear_io_unwritten_flag(io_end);
|
|
size = 0;
|
|
}
|
|
io_end->offset = offset;
|
|
io_end->size = size;
|
|
ext4_put_io_end(io_end);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Handling of direct IO writes.
|
|
*
|
|
* For ext4 extent files, ext4 will do direct-io write even to holes,
|
|
* preallocated extents, and those write extend the file, no need to
|
|
* fall back to buffered IO.
|
|
*
|
|
* For holes, we fallocate those blocks, mark them as unwritten
|
|
* If those blocks were preallocated, we mark sure they are split, but
|
|
* still keep the range to write as unwritten.
|
|
*
|
|
* The unwritten extents will be converted to written when DIO is completed.
|
|
* For async direct IO, since the IO may still pending when return, we
|
|
* set up an end_io call back function, which will do the conversion
|
|
* when async direct IO completed.
|
|
*
|
|
* If the O_DIRECT write will extend the file then add this inode to the
|
|
* orphan list. So recovery will truncate it back to the original size
|
|
* if the machine crashes during the write.
|
|
*
|
|
*/
|
|
static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
ssize_t ret;
|
|
loff_t offset = iocb->ki_pos;
|
|
size_t count = iov_iter_count(iter);
|
|
int overwrite = 0;
|
|
get_block_t *get_block_func = NULL;
|
|
int dio_flags = 0;
|
|
loff_t final_size = offset + count;
|
|
int orphan = 0;
|
|
handle_t *handle;
|
|
|
|
if (final_size > inode->i_size || final_size > ei->i_disksize) {
|
|
/* Credits for sb + inode write */
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
goto out;
|
|
}
|
|
ret = ext4_orphan_add(handle, inode);
|
|
if (ret) {
|
|
ext4_journal_stop(handle);
|
|
goto out;
|
|
}
|
|
orphan = 1;
|
|
ext4_update_i_disksize(inode, inode->i_size);
|
|
ext4_journal_stop(handle);
|
|
}
|
|
|
|
BUG_ON(iocb->private == NULL);
|
|
|
|
/*
|
|
* Make all waiters for direct IO properly wait also for extent
|
|
* conversion. This also disallows race between truncate() and
|
|
* overwrite DIO as i_dio_count needs to be incremented under i_mutex.
|
|
*/
|
|
inode_dio_begin(inode);
|
|
|
|
/* If we do a overwrite dio, i_mutex locking can be released */
|
|
overwrite = *((int *)iocb->private);
|
|
|
|
if (overwrite)
|
|
inode_unlock(inode);
|
|
|
|
/*
|
|
* For extent mapped files we could direct write to holes and fallocate.
|
|
*
|
|
* Allocated blocks to fill the hole are marked as unwritten to prevent
|
|
* parallel buffered read to expose the stale data before DIO complete
|
|
* the data IO.
|
|
*
|
|
* As to previously fallocated extents, ext4 get_block will just simply
|
|
* mark the buffer mapped but still keep the extents unwritten.
|
|
*
|
|
* For non AIO case, we will convert those unwritten extents to written
|
|
* after return back from blockdev_direct_IO. That way we save us from
|
|
* allocating io_end structure and also the overhead of offloading
|
|
* the extent convertion to a workqueue.
|
|
*
|
|
* For async DIO, the conversion needs to be deferred when the
|
|
* IO is completed. The ext4 end_io callback function will be
|
|
* called to take care of the conversion work. Here for async
|
|
* case, we allocate an io_end structure to hook to the iocb.
|
|
*/
|
|
iocb->private = NULL;
|
|
if (overwrite)
|
|
get_block_func = ext4_dio_get_block_overwrite;
|
|
else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
|
|
round_down(offset, i_blocksize(inode)) >= inode->i_size) {
|
|
get_block_func = ext4_dio_get_block;
|
|
dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
|
|
} else if (is_sync_kiocb(iocb)) {
|
|
get_block_func = ext4_dio_get_block_unwritten_sync;
|
|
dio_flags = DIO_LOCKING;
|
|
} else {
|
|
get_block_func = ext4_dio_get_block_unwritten_async;
|
|
dio_flags = DIO_LOCKING;
|
|
}
|
|
ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
|
|
get_block_func, ext4_end_io_dio, NULL,
|
|
dio_flags);
|
|
|
|
if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
|
|
EXT4_STATE_DIO_UNWRITTEN)) {
|
|
int err;
|
|
/*
|
|
* for non AIO case, since the IO is already
|
|
* completed, we could do the conversion right here
|
|
*/
|
|
err = ext4_convert_unwritten_extents(NULL, inode,
|
|
offset, ret);
|
|
if (err < 0)
|
|
ret = err;
|
|
ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
|
|
}
|
|
|
|
inode_dio_end(inode);
|
|
/* take i_mutex locking again if we do a ovewrite dio */
|
|
if (overwrite)
|
|
inode_lock(inode);
|
|
|
|
if (ret < 0 && final_size > inode->i_size)
|
|
ext4_truncate_failed_write(inode);
|
|
|
|
/* Handle extending of i_size after direct IO write */
|
|
if (orphan) {
|
|
int err;
|
|
|
|
/* Credits for sb + inode write */
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
|
|
if (IS_ERR(handle)) {
|
|
/*
|
|
* We wrote the data but cannot extend
|
|
* i_size. Bail out. In async io case, we do
|
|
* not return error here because we have
|
|
* already submmitted the corresponding
|
|
* bio. Returning error here makes the caller
|
|
* think that this IO is done and failed
|
|
* resulting in race with bio's completion
|
|
* handler.
|
|
*/
|
|
if (!ret)
|
|
ret = PTR_ERR(handle);
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(NULL, inode);
|
|
|
|
goto out;
|
|
}
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(handle, inode);
|
|
if (ret > 0) {
|
|
loff_t end = offset + ret;
|
|
if (end > inode->i_size || end > ei->i_disksize) {
|
|
ext4_update_i_disksize(inode, end);
|
|
if (end > inode->i_size)
|
|
i_size_write(inode, end);
|
|
/*
|
|
* We're going to return a positive `ret'
|
|
* here due to non-zero-length I/O, so there's
|
|
* no way of reporting error returns from
|
|
* ext4_mark_inode_dirty() to userspace. So
|
|
* ignore it.
|
|
*/
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
}
|
|
}
|
|
err = ext4_journal_stop(handle);
|
|
if (ret == 0)
|
|
ret = err;
|
|
}
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct address_space *mapping = iocb->ki_filp->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
size_t count = iov_iter_count(iter);
|
|
ssize_t ret;
|
|
|
|
/*
|
|
* Shared inode_lock is enough for us - it protects against concurrent
|
|
* writes & truncates and since we take care of writing back page cache,
|
|
* we are protected against page writeback as well.
|
|
*/
|
|
inode_lock_shared(inode);
|
|
ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
|
|
iocb->ki_pos + count - 1);
|
|
if (ret)
|
|
goto out_unlock;
|
|
ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
|
|
iter, ext4_dio_get_block, NULL, NULL, 0);
|
|
out_unlock:
|
|
inode_unlock_shared(inode);
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file->f_mapping->host;
|
|
size_t count = iov_iter_count(iter);
|
|
loff_t offset = iocb->ki_pos;
|
|
ssize_t ret;
|
|
|
|
#ifdef CONFIG_FS_ENCRYPTION
|
|
if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
|
|
return 0;
|
|
#endif
|
|
if (fsverity_active(inode))
|
|
return 0;
|
|
|
|
/*
|
|
* If we are doing data journalling we don't support O_DIRECT
|
|
*/
|
|
if (ext4_should_journal_data(inode))
|
|
return 0;
|
|
|
|
/* Let buffer I/O handle the inline data case. */
|
|
if (ext4_has_inline_data(inode))
|
|
return 0;
|
|
|
|
trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
|
|
if (iov_iter_rw(iter) == READ)
|
|
ret = ext4_direct_IO_read(iocb, iter);
|
|
else
|
|
ret = ext4_direct_IO_write(iocb, iter);
|
|
trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Pages can be marked dirty completely asynchronously from ext4's journalling
|
|
* activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
|
|
* much here because ->set_page_dirty is called under VFS locks. The page is
|
|
* not necessarily locked.
|
|
*
|
|
* We cannot just dirty the page and leave attached buffers clean, because the
|
|
* buffers' dirty state is "definitive". We cannot just set the buffers dirty
|
|
* or jbddirty because all the journalling code will explode.
|
|
*
|
|
* So what we do is to mark the page "pending dirty" and next time writepage
|
|
* is called, propagate that into the buffers appropriately.
|
|
*/
|
|
static int ext4_journalled_set_page_dirty(struct page *page)
|
|
{
|
|
SetPageChecked(page);
|
|
return __set_page_dirty_nobuffers(page);
|
|
}
|
|
|
|
static int ext4_set_page_dirty(struct page *page)
|
|
{
|
|
WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
|
|
WARN_ON_ONCE(!page_has_buffers(page));
|
|
return __set_page_dirty_buffers(page);
|
|
}
|
|
|
|
static const struct address_space_operations ext4_aops = {
|
|
.readpage = ext4_readpage,
|
|
.readpages = ext4_readpages,
|
|
.writepage = ext4_writepage,
|
|
.writepages = ext4_writepages,
|
|
.write_begin = ext4_write_begin,
|
|
.write_end = ext4_write_end,
|
|
.set_page_dirty = ext4_set_page_dirty,
|
|
.bmap = ext4_bmap,
|
|
.invalidatepage = ext4_invalidatepage,
|
|
.releasepage = ext4_releasepage,
|
|
.direct_IO = ext4_direct_IO,
|
|
.migratepage = buffer_migrate_page,
|
|
.is_partially_uptodate = block_is_partially_uptodate,
|
|
.error_remove_page = generic_error_remove_page,
|
|
};
|
|
|
|
static const struct address_space_operations ext4_journalled_aops = {
|
|
.readpage = ext4_readpage,
|
|
.readpages = ext4_readpages,
|
|
.writepage = ext4_writepage,
|
|
.writepages = ext4_writepages,
|
|
.write_begin = ext4_write_begin,
|
|
.write_end = ext4_journalled_write_end,
|
|
.set_page_dirty = ext4_journalled_set_page_dirty,
|
|
.bmap = ext4_bmap,
|
|
.invalidatepage = ext4_journalled_invalidatepage,
|
|
.releasepage = ext4_releasepage,
|
|
.direct_IO = ext4_direct_IO,
|
|
.is_partially_uptodate = block_is_partially_uptodate,
|
|
.error_remove_page = generic_error_remove_page,
|
|
};
|
|
|
|
static const struct address_space_operations ext4_da_aops = {
|
|
.readpage = ext4_readpage,
|
|
.readpages = ext4_readpages,
|
|
.writepage = ext4_writepage,
|
|
.writepages = ext4_writepages,
|
|
.write_begin = ext4_da_write_begin,
|
|
.write_end = ext4_da_write_end,
|
|
.set_page_dirty = ext4_set_page_dirty,
|
|
.bmap = ext4_bmap,
|
|
.invalidatepage = ext4_invalidatepage,
|
|
.releasepage = ext4_releasepage,
|
|
.direct_IO = ext4_direct_IO,
|
|
.migratepage = buffer_migrate_page,
|
|
.is_partially_uptodate = block_is_partially_uptodate,
|
|
.error_remove_page = generic_error_remove_page,
|
|
};
|
|
|
|
static const struct address_space_operations ext4_dax_aops = {
|
|
.writepages = ext4_dax_writepages,
|
|
.direct_IO = noop_direct_IO,
|
|
.set_page_dirty = noop_set_page_dirty,
|
|
.bmap = ext4_bmap,
|
|
.invalidatepage = noop_invalidatepage,
|
|
};
|
|
|
|
void ext4_set_aops(struct inode *inode)
|
|
{
|
|
switch (ext4_inode_journal_mode(inode)) {
|
|
case EXT4_INODE_ORDERED_DATA_MODE:
|
|
case EXT4_INODE_WRITEBACK_DATA_MODE:
|
|
break;
|
|
case EXT4_INODE_JOURNAL_DATA_MODE:
|
|
inode->i_mapping->a_ops = &ext4_journalled_aops;
|
|
return;
|
|
default:
|
|
BUG();
|
|
}
|
|
if (IS_DAX(inode))
|
|
inode->i_mapping->a_ops = &ext4_dax_aops;
|
|
else if (test_opt(inode->i_sb, DELALLOC))
|
|
inode->i_mapping->a_ops = &ext4_da_aops;
|
|
else
|
|
inode->i_mapping->a_ops = &ext4_aops;
|
|
}
|
|
|
|
static int __ext4_block_zero_page_range(handle_t *handle,
|
|
struct address_space *mapping, loff_t from, loff_t length)
|
|
{
|
|
ext4_fsblk_t index = from >> PAGE_SHIFT;
|
|
unsigned offset = from & (PAGE_SIZE-1);
|
|
unsigned blocksize, pos;
|
|
ext4_lblk_t iblock;
|
|
struct inode *inode = mapping->host;
|
|
struct buffer_head *bh;
|
|
struct page *page;
|
|
int err = 0;
|
|
|
|
page = find_or_create_page(mapping, from >> PAGE_SHIFT,
|
|
mapping_gfp_constraint(mapping, ~__GFP_FS));
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
blocksize = inode->i_sb->s_blocksize;
|
|
|
|
iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
|
|
|
|
if (!page_has_buffers(page))
|
|
create_empty_buffers(page, blocksize, 0);
|
|
|
|
/* Find the buffer that contains "offset" */
|
|
bh = page_buffers(page);
|
|
pos = blocksize;
|
|
while (offset >= pos) {
|
|
bh = bh->b_this_page;
|
|
iblock++;
|
|
pos += blocksize;
|
|
}
|
|
if (buffer_freed(bh)) {
|
|
BUFFER_TRACE(bh, "freed: skip");
|
|
goto unlock;
|
|
}
|
|
if (!buffer_mapped(bh)) {
|
|
BUFFER_TRACE(bh, "unmapped");
|
|
ext4_get_block(inode, iblock, bh, 0);
|
|
/* unmapped? It's a hole - nothing to do */
|
|
if (!buffer_mapped(bh)) {
|
|
BUFFER_TRACE(bh, "still unmapped");
|
|
goto unlock;
|
|
}
|
|
}
|
|
|
|
/* Ok, it's mapped. Make sure it's up-to-date */
|
|
if (PageUptodate(page))
|
|
set_buffer_uptodate(bh);
|
|
|
|
if (!buffer_uptodate(bh)) {
|
|
err = -EIO;
|
|
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
|
|
wait_on_buffer(bh);
|
|
/* Uhhuh. Read error. Complain and punt. */
|
|
if (!buffer_uptodate(bh))
|
|
goto unlock;
|
|
if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
|
|
/* We expect the key to be set. */
|
|
BUG_ON(!fscrypt_has_encryption_key(inode));
|
|
WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
|
|
page, blocksize, bh_offset(bh)));
|
|
}
|
|
}
|
|
if (ext4_should_journal_data(inode)) {
|
|
BUFFER_TRACE(bh, "get write access");
|
|
err = ext4_journal_get_write_access(handle, bh);
|
|
if (err)
|
|
goto unlock;
|
|
}
|
|
zero_user(page, offset, length);
|
|
BUFFER_TRACE(bh, "zeroed end of block");
|
|
|
|
if (ext4_should_journal_data(inode)) {
|
|
err = ext4_handle_dirty_metadata(handle, inode, bh);
|
|
} else {
|
|
err = 0;
|
|
mark_buffer_dirty(bh);
|
|
if (ext4_should_order_data(inode))
|
|
err = ext4_jbd2_inode_add_write(handle, inode, from,
|
|
length);
|
|
}
|
|
|
|
unlock:
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_block_zero_page_range() zeros out a mapping of length 'length'
|
|
* starting from file offset 'from'. The range to be zero'd must
|
|
* be contained with in one block. If the specified range exceeds
|
|
* the end of the block it will be shortened to end of the block
|
|
* that cooresponds to 'from'
|
|
*/
|
|
static int ext4_block_zero_page_range(handle_t *handle,
|
|
struct address_space *mapping, loff_t from, loff_t length)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
unsigned offset = from & (PAGE_SIZE-1);
|
|
unsigned blocksize = inode->i_sb->s_blocksize;
|
|
unsigned max = blocksize - (offset & (blocksize - 1));
|
|
|
|
/*
|
|
* correct length if it does not fall between
|
|
* 'from' and the end of the block
|
|
*/
|
|
if (length > max || length < 0)
|
|
length = max;
|
|
|
|
if (IS_DAX(inode)) {
|
|
return iomap_zero_range(inode, from, length, NULL,
|
|
&ext4_iomap_ops);
|
|
}
|
|
return __ext4_block_zero_page_range(handle, mapping, from, length);
|
|
}
|
|
|
|
/*
|
|
* ext4_block_truncate_page() zeroes out a mapping from file offset `from'
|
|
* up to the end of the block which corresponds to `from'.
|
|
* This required during truncate. We need to physically zero the tail end
|
|
* of that block so it doesn't yield old data if the file is later grown.
|
|
*/
|
|
static int ext4_block_truncate_page(handle_t *handle,
|
|
struct address_space *mapping, loff_t from)
|
|
{
|
|
unsigned offset = from & (PAGE_SIZE-1);
|
|
unsigned length;
|
|
unsigned blocksize;
|
|
struct inode *inode = mapping->host;
|
|
|
|
/* If we are processing an encrypted inode during orphan list handling */
|
|
if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
|
|
return 0;
|
|
|
|
blocksize = inode->i_sb->s_blocksize;
|
|
length = blocksize - (offset & (blocksize - 1));
|
|
|
|
return ext4_block_zero_page_range(handle, mapping, from, length);
|
|
}
|
|
|
|
int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
|
|
loff_t lstart, loff_t length)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
unsigned partial_start, partial_end;
|
|
ext4_fsblk_t start, end;
|
|
loff_t byte_end = (lstart + length - 1);
|
|
int err = 0;
|
|
|
|
partial_start = lstart & (sb->s_blocksize - 1);
|
|
partial_end = byte_end & (sb->s_blocksize - 1);
|
|
|
|
start = lstart >> sb->s_blocksize_bits;
|
|
end = byte_end >> sb->s_blocksize_bits;
|
|
|
|
/* Handle partial zero within the single block */
|
|
if (start == end &&
|
|
(partial_start || (partial_end != sb->s_blocksize - 1))) {
|
|
err = ext4_block_zero_page_range(handle, mapping,
|
|
lstart, length);
|
|
return err;
|
|
}
|
|
/* Handle partial zero out on the start of the range */
|
|
if (partial_start) {
|
|
err = ext4_block_zero_page_range(handle, mapping,
|
|
lstart, sb->s_blocksize);
|
|
if (err)
|
|
return err;
|
|
}
|
|
/* Handle partial zero out on the end of the range */
|
|
if (partial_end != sb->s_blocksize - 1)
|
|
err = ext4_block_zero_page_range(handle, mapping,
|
|
byte_end - partial_end,
|
|
partial_end + 1);
|
|
return err;
|
|
}
|
|
|
|
int ext4_can_truncate(struct inode *inode)
|
|
{
|
|
if (S_ISREG(inode->i_mode))
|
|
return 1;
|
|
if (S_ISDIR(inode->i_mode))
|
|
return 1;
|
|
if (S_ISLNK(inode->i_mode))
|
|
return !ext4_inode_is_fast_symlink(inode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We have to make sure i_disksize gets properly updated before we truncate
|
|
* page cache due to hole punching or zero range. Otherwise i_disksize update
|
|
* can get lost as it may have been postponed to submission of writeback but
|
|
* that will never happen after we truncate page cache.
|
|
*/
|
|
int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
|
|
loff_t len)
|
|
{
|
|
handle_t *handle;
|
|
loff_t size = i_size_read(inode);
|
|
|
|
WARN_ON(!inode_is_locked(inode));
|
|
if (offset > size || offset + len < size)
|
|
return 0;
|
|
|
|
if (EXT4_I(inode)->i_disksize >= size)
|
|
return 0;
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
ext4_update_i_disksize(inode, size);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ext4_wait_dax_page(struct ext4_inode_info *ei)
|
|
{
|
|
up_write(&ei->i_mmap_sem);
|
|
schedule();
|
|
down_write(&ei->i_mmap_sem);
|
|
}
|
|
|
|
int ext4_break_layouts(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct page *page;
|
|
int error;
|
|
|
|
if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
|
|
return -EINVAL;
|
|
|
|
do {
|
|
page = dax_layout_busy_page(inode->i_mapping);
|
|
if (!page)
|
|
return 0;
|
|
|
|
error = ___wait_var_event(&page->_refcount,
|
|
atomic_read(&page->_refcount) == 1,
|
|
TASK_INTERRUPTIBLE, 0, 0,
|
|
ext4_wait_dax_page(ei));
|
|
} while (error == 0);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* ext4_punch_hole: punches a hole in a file by releasing the blocks
|
|
* associated with the given offset and length
|
|
*
|
|
* @inode: File inode
|
|
* @offset: The offset where the hole will begin
|
|
* @len: The length of the hole
|
|
*
|
|
* Returns: 0 on success or negative on failure
|
|
*/
|
|
|
|
int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
ext4_lblk_t first_block, stop_block;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
loff_t first_block_offset, last_block_offset;
|
|
handle_t *handle;
|
|
unsigned int credits;
|
|
int ret = 0;
|
|
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EOPNOTSUPP;
|
|
|
|
trace_ext4_punch_hole(inode, offset, length, 0);
|
|
|
|
ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
|
|
if (ext4_has_inline_data(inode)) {
|
|
down_write(&EXT4_I(inode)->i_mmap_sem);
|
|
ret = ext4_convert_inline_data(inode);
|
|
up_write(&EXT4_I(inode)->i_mmap_sem);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write out all dirty pages to avoid race conditions
|
|
* Then release them.
|
|
*/
|
|
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
|
|
ret = filemap_write_and_wait_range(mapping, offset,
|
|
offset + length - 1);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
inode_lock(inode);
|
|
|
|
/* No need to punch hole beyond i_size */
|
|
if (offset >= inode->i_size)
|
|
goto out_mutex;
|
|
|
|
/*
|
|
* If the hole extends beyond i_size, set the hole
|
|
* to end after the page that contains i_size
|
|
*/
|
|
if (offset + length > inode->i_size) {
|
|
length = inode->i_size +
|
|
PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
|
|
offset;
|
|
}
|
|
|
|
if (offset & (sb->s_blocksize - 1) ||
|
|
(offset + length) & (sb->s_blocksize - 1)) {
|
|
/*
|
|
* Attach jinode to inode for jbd2 if we do any zeroing of
|
|
* partial block
|
|
*/
|
|
ret = ext4_inode_attach_jinode(inode);
|
|
if (ret < 0)
|
|
goto out_mutex;
|
|
|
|
}
|
|
|
|
/* Wait all existing dio workers, newcomers will block on i_mutex */
|
|
inode_dio_wait(inode);
|
|
|
|
/*
|
|
* Prevent page faults from reinstantiating pages we have released from
|
|
* page cache.
|
|
*/
|
|
down_write(&EXT4_I(inode)->i_mmap_sem);
|
|
|
|
ret = ext4_break_layouts(inode);
|
|
if (ret)
|
|
goto out_dio;
|
|
|
|
first_block_offset = round_up(offset, sb->s_blocksize);
|
|
last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
|
|
|
|
/* Now release the pages and zero block aligned part of pages*/
|
|
if (last_block_offset > first_block_offset) {
|
|
ret = ext4_update_disksize_before_punch(inode, offset, length);
|
|
if (ret)
|
|
goto out_dio;
|
|
truncate_pagecache_range(inode, first_block_offset,
|
|
last_block_offset);
|
|
}
|
|
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
credits = ext4_writepage_trans_blocks(inode);
|
|
else
|
|
credits = ext4_blocks_for_truncate(inode);
|
|
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
|
|
if (IS_ERR(handle)) {
|
|
ret = PTR_ERR(handle);
|
|
ext4_std_error(sb, ret);
|
|
goto out_dio;
|
|
}
|
|
|
|
ret = ext4_zero_partial_blocks(handle, inode, offset,
|
|
length);
|
|
if (ret)
|
|
goto out_stop;
|
|
|
|
first_block = (offset + sb->s_blocksize - 1) >>
|
|
EXT4_BLOCK_SIZE_BITS(sb);
|
|
stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
|
|
|
|
/* If there are blocks to remove, do it */
|
|
if (stop_block > first_block) {
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_discard_preallocations(inode);
|
|
|
|
ret = ext4_es_remove_extent(inode, first_block,
|
|
stop_block - first_block);
|
|
if (ret) {
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
goto out_stop;
|
|
}
|
|
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
ret = ext4_ext_remove_space(inode, first_block,
|
|
stop_block - 1);
|
|
else
|
|
ret = ext4_ind_remove_space(handle, inode, first_block,
|
|
stop_block);
|
|
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
}
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
if (ret >= 0)
|
|
ext4_update_inode_fsync_trans(handle, inode, 1);
|
|
out_stop:
|
|
ext4_journal_stop(handle);
|
|
out_dio:
|
|
up_write(&EXT4_I(inode)->i_mmap_sem);
|
|
out_mutex:
|
|
inode_unlock(inode);
|
|
return ret;
|
|
}
|
|
|
|
int ext4_inode_attach_jinode(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct jbd2_inode *jinode;
|
|
|
|
if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
|
|
return 0;
|
|
|
|
jinode = jbd2_alloc_inode(GFP_KERNEL);
|
|
spin_lock(&inode->i_lock);
|
|
if (!ei->jinode) {
|
|
if (!jinode) {
|
|
spin_unlock(&inode->i_lock);
|
|
return -ENOMEM;
|
|
}
|
|
ei->jinode = jinode;
|
|
jbd2_journal_init_jbd_inode(ei->jinode, inode);
|
|
jinode = NULL;
|
|
}
|
|
spin_unlock(&inode->i_lock);
|
|
if (unlikely(jinode != NULL))
|
|
jbd2_free_inode(jinode);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4_truncate()
|
|
*
|
|
* We block out ext4_get_block() block instantiations across the entire
|
|
* transaction, and VFS/VM ensures that ext4_truncate() cannot run
|
|
* simultaneously on behalf of the same inode.
|
|
*
|
|
* As we work through the truncate and commit bits of it to the journal there
|
|
* is one core, guiding principle: the file's tree must always be consistent on
|
|
* disk. We must be able to restart the truncate after a crash.
|
|
*
|
|
* The file's tree may be transiently inconsistent in memory (although it
|
|
* probably isn't), but whenever we close off and commit a journal transaction,
|
|
* the contents of (the filesystem + the journal) must be consistent and
|
|
* restartable. It's pretty simple, really: bottom up, right to left (although
|
|
* left-to-right works OK too).
|
|
*
|
|
* Note that at recovery time, journal replay occurs *before* the restart of
|
|
* truncate against the orphan inode list.
|
|
*
|
|
* The committed inode has the new, desired i_size (which is the same as
|
|
* i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
|
|
* that this inode's truncate did not complete and it will again call
|
|
* ext4_truncate() to have another go. So there will be instantiated blocks
|
|
* to the right of the truncation point in a crashed ext4 filesystem. But
|
|
* that's fine - as long as they are linked from the inode, the post-crash
|
|
* ext4_truncate() run will find them and release them.
|
|
*/
|
|
int ext4_truncate(struct inode *inode)
|
|
{
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
unsigned int credits;
|
|
int err = 0;
|
|
handle_t *handle;
|
|
struct address_space *mapping = inode->i_mapping;
|
|
|
|
/*
|
|
* There is a possibility that we're either freeing the inode
|
|
* or it's a completely new inode. In those cases we might not
|
|
* have i_mutex locked because it's not necessary.
|
|
*/
|
|
if (!(inode->i_state & (I_NEW|I_FREEING)))
|
|
WARN_ON(!inode_is_locked(inode));
|
|
trace_ext4_truncate_enter(inode);
|
|
|
|
if (!ext4_can_truncate(inode))
|
|
return 0;
|
|
|
|
ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
|
|
|
|
if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
|
|
ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
|
|
|
|
if (ext4_has_inline_data(inode)) {
|
|
int has_inline = 1;
|
|
|
|
err = ext4_inline_data_truncate(inode, &has_inline);
|
|
if (err)
|
|
return err;
|
|
if (has_inline)
|
|
return 0;
|
|
}
|
|
|
|
/* If we zero-out tail of the page, we have to create jinode for jbd2 */
|
|
if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
|
|
if (ext4_inode_attach_jinode(inode) < 0)
|
|
return 0;
|
|
}
|
|
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
credits = ext4_writepage_trans_blocks(inode);
|
|
else
|
|
credits = ext4_blocks_for_truncate(inode);
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
if (inode->i_size & (inode->i_sb->s_blocksize - 1))
|
|
ext4_block_truncate_page(handle, mapping, inode->i_size);
|
|
|
|
/*
|
|
* We add the inode to the orphan list, so that if this
|
|
* truncate spans multiple transactions, and we crash, we will
|
|
* resume the truncate when the filesystem recovers. It also
|
|
* marks the inode dirty, to catch the new size.
|
|
*
|
|
* Implication: the file must always be in a sane, consistent
|
|
* truncatable state while each transaction commits.
|
|
*/
|
|
err = ext4_orphan_add(handle, inode);
|
|
if (err)
|
|
goto out_stop;
|
|
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
|
|
ext4_discard_preallocations(inode);
|
|
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
err = ext4_ext_truncate(handle, inode);
|
|
else
|
|
ext4_ind_truncate(handle, inode);
|
|
|
|
up_write(&ei->i_data_sem);
|
|
if (err)
|
|
goto out_stop;
|
|
|
|
if (IS_SYNC(inode))
|
|
ext4_handle_sync(handle);
|
|
|
|
out_stop:
|
|
/*
|
|
* If this was a simple ftruncate() and the file will remain alive,
|
|
* then we need to clear up the orphan record which we created above.
|
|
* However, if this was a real unlink then we were called by
|
|
* ext4_evict_inode(), and we allow that function to clean up the
|
|
* orphan info for us.
|
|
*/
|
|
if (inode->i_nlink)
|
|
ext4_orphan_del(handle, inode);
|
|
|
|
inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
|
|
trace_ext4_truncate_exit(inode);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_get_inode_loc returns with an extra refcount against the inode's
|
|
* underlying buffer_head on success. If 'in_mem' is true, we have all
|
|
* data in memory that is needed to recreate the on-disk version of this
|
|
* inode.
|
|
*/
|
|
static int __ext4_get_inode_loc(struct inode *inode,
|
|
struct ext4_iloc *iloc, int in_mem)
|
|
{
|
|
struct ext4_group_desc *gdp;
|
|
struct buffer_head *bh;
|
|
struct super_block *sb = inode->i_sb;
|
|
ext4_fsblk_t block;
|
|
struct blk_plug plug;
|
|
int inodes_per_block, inode_offset;
|
|
|
|
iloc->bh = NULL;
|
|
if (inode->i_ino < EXT4_ROOT_INO ||
|
|
inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
|
|
return -EFSCORRUPTED;
|
|
|
|
iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
|
|
gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
|
|
if (!gdp)
|
|
return -EIO;
|
|
|
|
/*
|
|
* Figure out the offset within the block group inode table
|
|
*/
|
|
inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
|
|
inode_offset = ((inode->i_ino - 1) %
|
|
EXT4_INODES_PER_GROUP(sb));
|
|
block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
|
|
iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
|
|
|
|
bh = sb_getblk(sb, block);
|
|
if (unlikely(!bh))
|
|
return -ENOMEM;
|
|
if (!buffer_uptodate(bh)) {
|
|
lock_buffer(bh);
|
|
|
|
/*
|
|
* If the buffer has the write error flag, we have failed
|
|
* to write out another inode in the same block. In this
|
|
* case, we don't have to read the block because we may
|
|
* read the old inode data successfully.
|
|
*/
|
|
if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
|
|
set_buffer_uptodate(bh);
|
|
|
|
if (buffer_uptodate(bh)) {
|
|
/* someone brought it uptodate while we waited */
|
|
unlock_buffer(bh);
|
|
goto has_buffer;
|
|
}
|
|
|
|
/*
|
|
* If we have all information of the inode in memory and this
|
|
* is the only valid inode in the block, we need not read the
|
|
* block.
|
|
*/
|
|
if (in_mem) {
|
|
struct buffer_head *bitmap_bh;
|
|
int i, start;
|
|
|
|
start = inode_offset & ~(inodes_per_block - 1);
|
|
|
|
/* Is the inode bitmap in cache? */
|
|
bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
|
|
if (unlikely(!bitmap_bh))
|
|
goto make_io;
|
|
|
|
/*
|
|
* If the inode bitmap isn't in cache then the
|
|
* optimisation may end up performing two reads instead
|
|
* of one, so skip it.
|
|
*/
|
|
if (!buffer_uptodate(bitmap_bh)) {
|
|
brelse(bitmap_bh);
|
|
goto make_io;
|
|
}
|
|
for (i = start; i < start + inodes_per_block; i++) {
|
|
if (i == inode_offset)
|
|
continue;
|
|
if (ext4_test_bit(i, bitmap_bh->b_data))
|
|
break;
|
|
}
|
|
brelse(bitmap_bh);
|
|
if (i == start + inodes_per_block) {
|
|
/* all other inodes are free, so skip I/O */
|
|
memset(bh->b_data, 0, bh->b_size);
|
|
set_buffer_uptodate(bh);
|
|
unlock_buffer(bh);
|
|
goto has_buffer;
|
|
}
|
|
}
|
|
|
|
make_io:
|
|
/*
|
|
* If we need to do any I/O, try to pre-readahead extra
|
|
* blocks from the inode table.
|
|
*/
|
|
blk_start_plug(&plug);
|
|
if (EXT4_SB(sb)->s_inode_readahead_blks) {
|
|
ext4_fsblk_t b, end, table;
|
|
unsigned num;
|
|
__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
|
|
|
|
table = ext4_inode_table(sb, gdp);
|
|
/* s_inode_readahead_blks is always a power of 2 */
|
|
b = block & ~((ext4_fsblk_t) ra_blks - 1);
|
|
if (table > b)
|
|
b = table;
|
|
end = b + ra_blks;
|
|
num = EXT4_INODES_PER_GROUP(sb);
|
|
if (ext4_has_group_desc_csum(sb))
|
|
num -= ext4_itable_unused_count(sb, gdp);
|
|
table += num / inodes_per_block;
|
|
if (end > table)
|
|
end = table;
|
|
while (b <= end)
|
|
sb_breadahead(sb, b++);
|
|
}
|
|
|
|
/*
|
|
* There are other valid inodes in the buffer, this inode
|
|
* has in-inode xattrs, or we don't have this inode in memory.
|
|
* Read the block from disk.
|
|
*/
|
|
trace_ext4_load_inode(inode);
|
|
get_bh(bh);
|
|
bh->b_end_io = end_buffer_read_sync;
|
|
submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
|
|
blk_finish_plug(&plug);
|
|
wait_on_buffer(bh);
|
|
if (!buffer_uptodate(bh)) {
|
|
EXT4_ERROR_INODE_BLOCK(inode, block,
|
|
"unable to read itable block");
|
|
brelse(bh);
|
|
return -EIO;
|
|
}
|
|
}
|
|
has_buffer:
|
|
iloc->bh = bh;
|
|
return 0;
|
|
}
|
|
|
|
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
|
|
{
|
|
/* We have all inode data except xattrs in memory here. */
|
|
return __ext4_get_inode_loc(inode, iloc,
|
|
!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
|
|
}
|
|
|
|
static bool ext4_should_use_dax(struct inode *inode)
|
|
{
|
|
if (!test_opt(inode->i_sb, DAX))
|
|
return false;
|
|
if (!S_ISREG(inode->i_mode))
|
|
return false;
|
|
if (ext4_should_journal_data(inode))
|
|
return false;
|
|
if (ext4_has_inline_data(inode))
|
|
return false;
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
|
|
return false;
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void ext4_set_inode_flags(struct inode *inode)
|
|
{
|
|
unsigned int flags = EXT4_I(inode)->i_flags;
|
|
unsigned int new_fl = 0;
|
|
|
|
if (flags & EXT4_SYNC_FL)
|
|
new_fl |= S_SYNC;
|
|
if (flags & EXT4_APPEND_FL)
|
|
new_fl |= S_APPEND;
|
|
if (flags & EXT4_IMMUTABLE_FL)
|
|
new_fl |= S_IMMUTABLE;
|
|
if (flags & EXT4_NOATIME_FL)
|
|
new_fl |= S_NOATIME;
|
|
if (flags & EXT4_DIRSYNC_FL)
|
|
new_fl |= S_DIRSYNC;
|
|
if (ext4_should_use_dax(inode))
|
|
new_fl |= S_DAX;
|
|
if (flags & EXT4_ENCRYPT_FL)
|
|
new_fl |= S_ENCRYPTED;
|
|
if (flags & EXT4_CASEFOLD_FL)
|
|
new_fl |= S_CASEFOLD;
|
|
if (flags & EXT4_VERITY_FL)
|
|
new_fl |= S_VERITY;
|
|
inode_set_flags(inode, new_fl,
|
|
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
|
|
S_ENCRYPTED|S_CASEFOLD|S_VERITY);
|
|
}
|
|
|
|
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
|
|
struct ext4_inode_info *ei)
|
|
{
|
|
blkcnt_t i_blocks ;
|
|
struct inode *inode = &(ei->vfs_inode);
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
if (ext4_has_feature_huge_file(sb)) {
|
|
/* we are using combined 48 bit field */
|
|
i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
|
|
le32_to_cpu(raw_inode->i_blocks_lo);
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
|
|
/* i_blocks represent file system block size */
|
|
return i_blocks << (inode->i_blkbits - 9);
|
|
} else {
|
|
return i_blocks;
|
|
}
|
|
} else {
|
|
return le32_to_cpu(raw_inode->i_blocks_lo);
|
|
}
|
|
}
|
|
|
|
static inline int ext4_iget_extra_inode(struct inode *inode,
|
|
struct ext4_inode *raw_inode,
|
|
struct ext4_inode_info *ei)
|
|
{
|
|
__le32 *magic = (void *)raw_inode +
|
|
EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
|
|
|
|
if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
|
|
EXT4_INODE_SIZE(inode->i_sb) &&
|
|
*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
|
|
ext4_set_inode_state(inode, EXT4_STATE_XATTR);
|
|
return ext4_find_inline_data_nolock(inode);
|
|
} else
|
|
EXT4_I(inode)->i_inline_off = 0;
|
|
return 0;
|
|
}
|
|
|
|
int ext4_get_projid(struct inode *inode, kprojid_t *projid)
|
|
{
|
|
if (!ext4_has_feature_project(inode->i_sb))
|
|
return -EOPNOTSUPP;
|
|
*projid = EXT4_I(inode)->i_projid;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
|
|
* refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
|
|
* set.
|
|
*/
|
|
static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
|
|
{
|
|
if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
|
|
inode_set_iversion_raw(inode, val);
|
|
else
|
|
inode_set_iversion_queried(inode, val);
|
|
}
|
|
static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
|
|
{
|
|
if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
|
|
return inode_peek_iversion_raw(inode);
|
|
else
|
|
return inode_peek_iversion(inode);
|
|
}
|
|
|
|
struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
|
|
ext4_iget_flags flags, const char *function,
|
|
unsigned int line)
|
|
{
|
|
struct ext4_iloc iloc;
|
|
struct ext4_inode *raw_inode;
|
|
struct ext4_inode_info *ei;
|
|
struct inode *inode;
|
|
journal_t *journal = EXT4_SB(sb)->s_journal;
|
|
long ret;
|
|
loff_t size;
|
|
int block;
|
|
uid_t i_uid;
|
|
gid_t i_gid;
|
|
projid_t i_projid;
|
|
|
|
if ((!(flags & EXT4_IGET_SPECIAL) &&
|
|
(ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
|
|
(ino < EXT4_ROOT_INO) ||
|
|
(ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
|
|
if (flags & EXT4_IGET_HANDLE)
|
|
return ERR_PTR(-ESTALE);
|
|
__ext4_error(sb, function, line,
|
|
"inode #%lu: comm %s: iget: illegal inode #",
|
|
ino, current->comm);
|
|
return ERR_PTR(-EFSCORRUPTED);
|
|
}
|
|
|
|
inode = iget_locked(sb, ino);
|
|
if (!inode)
|
|
return ERR_PTR(-ENOMEM);
|
|
if (!(inode->i_state & I_NEW))
|
|
return inode;
|
|
|
|
ei = EXT4_I(inode);
|
|
iloc.bh = NULL;
|
|
|
|
ret = __ext4_get_inode_loc(inode, &iloc, 0);
|
|
if (ret < 0)
|
|
goto bad_inode;
|
|
raw_inode = ext4_raw_inode(&iloc);
|
|
|
|
if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"iget: root inode unallocated");
|
|
ret = -EFSCORRUPTED;
|
|
goto bad_inode;
|
|
}
|
|
|
|
if ((flags & EXT4_IGET_HANDLE) &&
|
|
(raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
|
|
ret = -ESTALE;
|
|
goto bad_inode;
|
|
}
|
|
|
|
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
|
|
ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
|
|
if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
|
|
EXT4_INODE_SIZE(inode->i_sb) ||
|
|
(ei->i_extra_isize & 3)) {
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"iget: bad extra_isize %u "
|
|
"(inode size %u)",
|
|
ei->i_extra_isize,
|
|
EXT4_INODE_SIZE(inode->i_sb));
|
|
ret = -EFSCORRUPTED;
|
|
goto bad_inode;
|
|
}
|
|
} else
|
|
ei->i_extra_isize = 0;
|
|
|
|
/* Precompute checksum seed for inode metadata */
|
|
if (ext4_has_metadata_csum(sb)) {
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
__u32 csum;
|
|
__le32 inum = cpu_to_le32(inode->i_ino);
|
|
__le32 gen = raw_inode->i_generation;
|
|
csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
|
|
sizeof(inum));
|
|
ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
|
|
sizeof(gen));
|
|
}
|
|
|
|
if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"iget: checksum invalid");
|
|
ret = -EFSBADCRC;
|
|
goto bad_inode;
|
|
}
|
|
|
|
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
|
|
i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
|
|
i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
|
|
if (ext4_has_feature_project(sb) &&
|
|
EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
|
|
EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
|
|
i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
|
|
else
|
|
i_projid = EXT4_DEF_PROJID;
|
|
|
|
if (!(test_opt(inode->i_sb, NO_UID32))) {
|
|
i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
|
|
i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
|
|
}
|
|
i_uid_write(inode, i_uid);
|
|
i_gid_write(inode, i_gid);
|
|
ei->i_projid = make_kprojid(&init_user_ns, i_projid);
|
|
set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
|
|
|
|
ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
|
|
ei->i_inline_off = 0;
|
|
ei->i_dir_start_lookup = 0;
|
|
ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
|
|
/* We now have enough fields to check if the inode was active or not.
|
|
* This is needed because nfsd might try to access dead inodes
|
|
* the test is that same one that e2fsck uses
|
|
* NeilBrown 1999oct15
|
|
*/
|
|
if (inode->i_nlink == 0) {
|
|
if ((inode->i_mode == 0 ||
|
|
!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
|
|
ino != EXT4_BOOT_LOADER_INO) {
|
|
/* this inode is deleted */
|
|
ret = -ESTALE;
|
|
goto bad_inode;
|
|
}
|
|
/* The only unlinked inodes we let through here have
|
|
* valid i_mode and are being read by the orphan
|
|
* recovery code: that's fine, we're about to complete
|
|
* the process of deleting those.
|
|
* OR it is the EXT4_BOOT_LOADER_INO which is
|
|
* not initialized on a new filesystem. */
|
|
}
|
|
ei->i_flags = le32_to_cpu(raw_inode->i_flags);
|
|
ext4_set_inode_flags(inode);
|
|
inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
|
|
ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
|
|
if (ext4_has_feature_64bit(sb))
|
|
ei->i_file_acl |=
|
|
((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
|
|
inode->i_size = ext4_isize(sb, raw_inode);
|
|
if ((size = i_size_read(inode)) < 0) {
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"iget: bad i_size value: %lld", size);
|
|
ret = -EFSCORRUPTED;
|
|
goto bad_inode;
|
|
}
|
|
ei->i_disksize = inode->i_size;
|
|
#ifdef CONFIG_QUOTA
|
|
ei->i_reserved_quota = 0;
|
|
#endif
|
|
inode->i_generation = le32_to_cpu(raw_inode->i_generation);
|
|
ei->i_block_group = iloc.block_group;
|
|
ei->i_last_alloc_group = ~0;
|
|
/*
|
|
* NOTE! The in-memory inode i_data array is in little-endian order
|
|
* even on big-endian machines: we do NOT byteswap the block numbers!
|
|
*/
|
|
for (block = 0; block < EXT4_N_BLOCKS; block++)
|
|
ei->i_data[block] = raw_inode->i_block[block];
|
|
INIT_LIST_HEAD(&ei->i_orphan);
|
|
|
|
/*
|
|
* Set transaction id's of transactions that have to be committed
|
|
* to finish f[data]sync. We set them to currently running transaction
|
|
* as we cannot be sure that the inode or some of its metadata isn't
|
|
* part of the transaction - the inode could have been reclaimed and
|
|
* now it is reread from disk.
|
|
*/
|
|
if (journal) {
|
|
transaction_t *transaction;
|
|
tid_t tid;
|
|
|
|
read_lock(&journal->j_state_lock);
|
|
if (journal->j_running_transaction)
|
|
transaction = journal->j_running_transaction;
|
|
else
|
|
transaction = journal->j_committing_transaction;
|
|
if (transaction)
|
|
tid = transaction->t_tid;
|
|
else
|
|
tid = journal->j_commit_sequence;
|
|
read_unlock(&journal->j_state_lock);
|
|
ei->i_sync_tid = tid;
|
|
ei->i_datasync_tid = tid;
|
|
}
|
|
|
|
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
|
|
if (ei->i_extra_isize == 0) {
|
|
/* The extra space is currently unused. Use it. */
|
|
BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
|
|
ei->i_extra_isize = sizeof(struct ext4_inode) -
|
|
EXT4_GOOD_OLD_INODE_SIZE;
|
|
} else {
|
|
ret = ext4_iget_extra_inode(inode, raw_inode, ei);
|
|
if (ret)
|
|
goto bad_inode;
|
|
}
|
|
}
|
|
|
|
EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
|
|
EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
|
|
EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
|
|
EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
|
|
|
|
if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
|
|
u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
|
|
|
|
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
|
|
if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
|
|
ivers |=
|
|
(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
|
|
}
|
|
ext4_inode_set_iversion_queried(inode, ivers);
|
|
}
|
|
|
|
ret = 0;
|
|
if (ei->i_file_acl &&
|
|
!ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"iget: bad extended attribute block %llu",
|
|
ei->i_file_acl);
|
|
ret = -EFSCORRUPTED;
|
|
goto bad_inode;
|
|
} else if (!ext4_has_inline_data(inode)) {
|
|
/* validate the block references in the inode */
|
|
if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
|
|
(S_ISLNK(inode->i_mode) &&
|
|
!ext4_inode_is_fast_symlink(inode))) {
|
|
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
|
|
ret = ext4_ext_check_inode(inode);
|
|
else
|
|
ret = ext4_ind_check_inode(inode);
|
|
}
|
|
}
|
|
if (ret)
|
|
goto bad_inode;
|
|
|
|
if (S_ISREG(inode->i_mode)) {
|
|
inode->i_op = &ext4_file_inode_operations;
|
|
inode->i_fop = &ext4_file_operations;
|
|
ext4_set_aops(inode);
|
|
} else if (S_ISDIR(inode->i_mode)) {
|
|
inode->i_op = &ext4_dir_inode_operations;
|
|
inode->i_fop = &ext4_dir_operations;
|
|
} else if (S_ISLNK(inode->i_mode)) {
|
|
/* VFS does not allow setting these so must be corruption */
|
|
if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"iget: immutable or append flags "
|
|
"not allowed on symlinks");
|
|
ret = -EFSCORRUPTED;
|
|
goto bad_inode;
|
|
}
|
|
if (IS_ENCRYPTED(inode)) {
|
|
inode->i_op = &ext4_encrypted_symlink_inode_operations;
|
|
ext4_set_aops(inode);
|
|
} else if (ext4_inode_is_fast_symlink(inode)) {
|
|
inode->i_link = (char *)ei->i_data;
|
|
inode->i_op = &ext4_fast_symlink_inode_operations;
|
|
nd_terminate_link(ei->i_data, inode->i_size,
|
|
sizeof(ei->i_data) - 1);
|
|
} else {
|
|
inode->i_op = &ext4_symlink_inode_operations;
|
|
ext4_set_aops(inode);
|
|
}
|
|
inode_nohighmem(inode);
|
|
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
|
|
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
|
|
inode->i_op = &ext4_special_inode_operations;
|
|
if (raw_inode->i_block[0])
|
|
init_special_inode(inode, inode->i_mode,
|
|
old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
|
|
else
|
|
init_special_inode(inode, inode->i_mode,
|
|
new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
|
|
} else if (ino == EXT4_BOOT_LOADER_INO) {
|
|
make_bad_inode(inode);
|
|
} else {
|
|
ret = -EFSCORRUPTED;
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"iget: bogus i_mode (%o)", inode->i_mode);
|
|
goto bad_inode;
|
|
}
|
|
if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
|
|
ext4_error_inode(inode, function, line, 0,
|
|
"casefold flag without casefold feature");
|
|
brelse(iloc.bh);
|
|
|
|
unlock_new_inode(inode);
|
|
return inode;
|
|
|
|
bad_inode:
|
|
brelse(iloc.bh);
|
|
iget_failed(inode);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int ext4_inode_blocks_set(handle_t *handle,
|
|
struct ext4_inode *raw_inode,
|
|
struct ext4_inode_info *ei)
|
|
{
|
|
struct inode *inode = &(ei->vfs_inode);
|
|
u64 i_blocks = inode->i_blocks;
|
|
struct super_block *sb = inode->i_sb;
|
|
|
|
if (i_blocks <= ~0U) {
|
|
/*
|
|
* i_blocks can be represented in a 32 bit variable
|
|
* as multiple of 512 bytes
|
|
*/
|
|
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
|
|
raw_inode->i_blocks_high = 0;
|
|
ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
|
|
return 0;
|
|
}
|
|
if (!ext4_has_feature_huge_file(sb))
|
|
return -EFBIG;
|
|
|
|
if (i_blocks <= 0xffffffffffffULL) {
|
|
/*
|
|
* i_blocks can be represented in a 48 bit variable
|
|
* as multiple of 512 bytes
|
|
*/
|
|
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
|
|
raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
|
|
ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
|
|
} else {
|
|
ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
|
|
/* i_block is stored in file system block size */
|
|
i_blocks = i_blocks >> (inode->i_blkbits - 9);
|
|
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
|
|
raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
struct other_inode {
|
|
unsigned long orig_ino;
|
|
struct ext4_inode *raw_inode;
|
|
};
|
|
|
|
static int other_inode_match(struct inode * inode, unsigned long ino,
|
|
void *data)
|
|
{
|
|
struct other_inode *oi = (struct other_inode *) data;
|
|
|
|
if ((inode->i_ino != ino) ||
|
|
(inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
|
|
I_DIRTY_INODE)) ||
|
|
((inode->i_state & I_DIRTY_TIME) == 0))
|
|
return 0;
|
|
spin_lock(&inode->i_lock);
|
|
if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
|
|
I_DIRTY_INODE)) == 0) &&
|
|
(inode->i_state & I_DIRTY_TIME)) {
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
|
|
inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
spin_lock(&ei->i_raw_lock);
|
|
EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
|
|
EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
|
|
EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
|
|
ext4_inode_csum_set(inode, oi->raw_inode, ei);
|
|
spin_unlock(&ei->i_raw_lock);
|
|
trace_ext4_other_inode_update_time(inode, oi->orig_ino);
|
|
return -1;
|
|
}
|
|
spin_unlock(&inode->i_lock);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Opportunistically update the other time fields for other inodes in
|
|
* the same inode table block.
|
|
*/
|
|
static void ext4_update_other_inodes_time(struct super_block *sb,
|
|
unsigned long orig_ino, char *buf)
|
|
{
|
|
struct other_inode oi;
|
|
unsigned long ino;
|
|
int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
|
|
int inode_size = EXT4_INODE_SIZE(sb);
|
|
|
|
oi.orig_ino = orig_ino;
|
|
/*
|
|
* Calculate the first inode in the inode table block. Inode
|
|
* numbers are one-based. That is, the first inode in a block
|
|
* (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
|
|
*/
|
|
ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
|
|
for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
|
|
if (ino == orig_ino)
|
|
continue;
|
|
oi.raw_inode = (struct ext4_inode *) buf;
|
|
(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Post the struct inode info into an on-disk inode location in the
|
|
* buffer-cache. This gobbles the caller's reference to the
|
|
* buffer_head in the inode location struct.
|
|
*
|
|
* The caller must have write access to iloc->bh.
|
|
*/
|
|
static int ext4_do_update_inode(handle_t *handle,
|
|
struct inode *inode,
|
|
struct ext4_iloc *iloc)
|
|
{
|
|
struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
struct buffer_head *bh = iloc->bh;
|
|
struct super_block *sb = inode->i_sb;
|
|
int err = 0, rc, block;
|
|
int need_datasync = 0, set_large_file = 0;
|
|
uid_t i_uid;
|
|
gid_t i_gid;
|
|
projid_t i_projid;
|
|
|
|
spin_lock(&ei->i_raw_lock);
|
|
|
|
/* For fields not tracked in the in-memory inode,
|
|
* initialise them to zero for new inodes. */
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
|
|
memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
|
|
|
|
raw_inode->i_mode = cpu_to_le16(inode->i_mode);
|
|
i_uid = i_uid_read(inode);
|
|
i_gid = i_gid_read(inode);
|
|
i_projid = from_kprojid(&init_user_ns, ei->i_projid);
|
|
if (!(test_opt(inode->i_sb, NO_UID32))) {
|
|
raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
|
|
raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
|
|
/*
|
|
* Fix up interoperability with old kernels. Otherwise, old inodes get
|
|
* re-used with the upper 16 bits of the uid/gid intact
|
|
*/
|
|
if (ei->i_dtime && list_empty(&ei->i_orphan)) {
|
|
raw_inode->i_uid_high = 0;
|
|
raw_inode->i_gid_high = 0;
|
|
} else {
|
|
raw_inode->i_uid_high =
|
|
cpu_to_le16(high_16_bits(i_uid));
|
|
raw_inode->i_gid_high =
|
|
cpu_to_le16(high_16_bits(i_gid));
|
|
}
|
|
} else {
|
|
raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
|
|
raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
|
|
raw_inode->i_uid_high = 0;
|
|
raw_inode->i_gid_high = 0;
|
|
}
|
|
raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
|
|
|
|
EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
|
|
EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
|
|
EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
|
|
EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
|
|
|
|
err = ext4_inode_blocks_set(handle, raw_inode, ei);
|
|
if (err) {
|
|
spin_unlock(&ei->i_raw_lock);
|
|
goto out_brelse;
|
|
}
|
|
raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
|
|
raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
|
|
if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
|
|
raw_inode->i_file_acl_high =
|
|
cpu_to_le16(ei->i_file_acl >> 32);
|
|
raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
|
|
if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
|
|
ext4_isize_set(raw_inode, ei->i_disksize);
|
|
need_datasync = 1;
|
|
}
|
|
if (ei->i_disksize > 0x7fffffffULL) {
|
|
if (!ext4_has_feature_large_file(sb) ||
|
|
EXT4_SB(sb)->s_es->s_rev_level ==
|
|
cpu_to_le32(EXT4_GOOD_OLD_REV))
|
|
set_large_file = 1;
|
|
}
|
|
raw_inode->i_generation = cpu_to_le32(inode->i_generation);
|
|
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
|
|
if (old_valid_dev(inode->i_rdev)) {
|
|
raw_inode->i_block[0] =
|
|
cpu_to_le32(old_encode_dev(inode->i_rdev));
|
|
raw_inode->i_block[1] = 0;
|
|
} else {
|
|
raw_inode->i_block[0] = 0;
|
|
raw_inode->i_block[1] =
|
|
cpu_to_le32(new_encode_dev(inode->i_rdev));
|
|
raw_inode->i_block[2] = 0;
|
|
}
|
|
} else if (!ext4_has_inline_data(inode)) {
|
|
for (block = 0; block < EXT4_N_BLOCKS; block++)
|
|
raw_inode->i_block[block] = ei->i_data[block];
|
|
}
|
|
|
|
if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
|
|
u64 ivers = ext4_inode_peek_iversion(inode);
|
|
|
|
raw_inode->i_disk_version = cpu_to_le32(ivers);
|
|
if (ei->i_extra_isize) {
|
|
if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
|
|
raw_inode->i_version_hi =
|
|
cpu_to_le32(ivers >> 32);
|
|
raw_inode->i_extra_isize =
|
|
cpu_to_le16(ei->i_extra_isize);
|
|
}
|
|
}
|
|
|
|
BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
|
|
i_projid != EXT4_DEF_PROJID);
|
|
|
|
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
|
|
EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
|
|
raw_inode->i_projid = cpu_to_le32(i_projid);
|
|
|
|
ext4_inode_csum_set(inode, raw_inode, ei);
|
|
spin_unlock(&ei->i_raw_lock);
|
|
if (inode->i_sb->s_flags & SB_LAZYTIME)
|
|
ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
|
|
bh->b_data);
|
|
|
|
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
|
|
rc = ext4_handle_dirty_metadata(handle, NULL, bh);
|
|
if (!err)
|
|
err = rc;
|
|
ext4_clear_inode_state(inode, EXT4_STATE_NEW);
|
|
if (set_large_file) {
|
|
BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
|
|
err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
|
|
if (err)
|
|
goto out_brelse;
|
|
ext4_set_feature_large_file(sb);
|
|
ext4_handle_sync(handle);
|
|
err = ext4_handle_dirty_super(handle, sb);
|
|
}
|
|
ext4_update_inode_fsync_trans(handle, inode, need_datasync);
|
|
out_brelse:
|
|
brelse(bh);
|
|
ext4_std_error(inode->i_sb, err);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_write_inode()
|
|
*
|
|
* We are called from a few places:
|
|
*
|
|
* - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
|
|
* Here, there will be no transaction running. We wait for any running
|
|
* transaction to commit.
|
|
*
|
|
* - Within flush work (sys_sync(), kupdate and such).
|
|
* We wait on commit, if told to.
|
|
*
|
|
* - Within iput_final() -> write_inode_now()
|
|
* We wait on commit, if told to.
|
|
*
|
|
* In all cases it is actually safe for us to return without doing anything,
|
|
* because the inode has been copied into a raw inode buffer in
|
|
* ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
|
|
* writeback.
|
|
*
|
|
* Note that we are absolutely dependent upon all inode dirtiers doing the
|
|
* right thing: they *must* call mark_inode_dirty() after dirtying info in
|
|
* which we are interested.
|
|
*
|
|
* It would be a bug for them to not do this. The code:
|
|
*
|
|
* mark_inode_dirty(inode)
|
|
* stuff();
|
|
* inode->i_size = expr;
|
|
*
|
|
* is in error because write_inode() could occur while `stuff()' is running,
|
|
* and the new i_size will be lost. Plus the inode will no longer be on the
|
|
* superblock's dirty inode list.
|
|
*/
|
|
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
|
|
{
|
|
int err;
|
|
|
|
if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
|
|
sb_rdonly(inode->i_sb))
|
|
return 0;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
if (EXT4_SB(inode->i_sb)->s_journal) {
|
|
if (ext4_journal_current_handle()) {
|
|
jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
|
|
dump_stack();
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* No need to force transaction in WB_SYNC_NONE mode. Also
|
|
* ext4_sync_fs() will force the commit after everything is
|
|
* written.
|
|
*/
|
|
if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
|
|
return 0;
|
|
|
|
err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
|
|
EXT4_I(inode)->i_sync_tid);
|
|
} else {
|
|
struct ext4_iloc iloc;
|
|
|
|
err = __ext4_get_inode_loc(inode, &iloc, 0);
|
|
if (err)
|
|
return err;
|
|
/*
|
|
* sync(2) will flush the whole buffer cache. No need to do
|
|
* it here separately for each inode.
|
|
*/
|
|
if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
|
|
sync_dirty_buffer(iloc.bh);
|
|
if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
|
|
EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
|
|
"IO error syncing inode");
|
|
err = -EIO;
|
|
}
|
|
brelse(iloc.bh);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
|
|
* buffers that are attached to a page stradding i_size and are undergoing
|
|
* commit. In that case we have to wait for commit to finish and try again.
|
|
*/
|
|
static void ext4_wait_for_tail_page_commit(struct inode *inode)
|
|
{
|
|
struct page *page;
|
|
unsigned offset;
|
|
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
|
|
tid_t commit_tid = 0;
|
|
int ret;
|
|
|
|
offset = inode->i_size & (PAGE_SIZE - 1);
|
|
/*
|
|
* All buffers in the last page remain valid? Then there's nothing to
|
|
* do. We do the check mainly to optimize the common PAGE_SIZE ==
|
|
* blocksize case
|
|
*/
|
|
if (offset > PAGE_SIZE - i_blocksize(inode))
|
|
return;
|
|
while (1) {
|
|
page = find_lock_page(inode->i_mapping,
|
|
inode->i_size >> PAGE_SHIFT);
|
|
if (!page)
|
|
return;
|
|
ret = __ext4_journalled_invalidatepage(page, offset,
|
|
PAGE_SIZE - offset);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
if (ret != -EBUSY)
|
|
return;
|
|
commit_tid = 0;
|
|
read_lock(&journal->j_state_lock);
|
|
if (journal->j_committing_transaction)
|
|
commit_tid = journal->j_committing_transaction->t_tid;
|
|
read_unlock(&journal->j_state_lock);
|
|
if (commit_tid)
|
|
jbd2_log_wait_commit(journal, commit_tid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ext4_setattr()
|
|
*
|
|
* Called from notify_change.
|
|
*
|
|
* We want to trap VFS attempts to truncate the file as soon as
|
|
* possible. In particular, we want to make sure that when the VFS
|
|
* shrinks i_size, we put the inode on the orphan list and modify
|
|
* i_disksize immediately, so that during the subsequent flushing of
|
|
* dirty pages and freeing of disk blocks, we can guarantee that any
|
|
* commit will leave the blocks being flushed in an unused state on
|
|
* disk. (On recovery, the inode will get truncated and the blocks will
|
|
* be freed, so we have a strong guarantee that no future commit will
|
|
* leave these blocks visible to the user.)
|
|
*
|
|
* Another thing we have to assure is that if we are in ordered mode
|
|
* and inode is still attached to the committing transaction, we must
|
|
* we start writeout of all the dirty pages which are being truncated.
|
|
* This way we are sure that all the data written in the previous
|
|
* transaction are already on disk (truncate waits for pages under
|
|
* writeback).
|
|
*
|
|
* Called with inode->i_mutex down.
|
|
*/
|
|
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
int error, rc = 0;
|
|
int orphan = 0;
|
|
const unsigned int ia_valid = attr->ia_valid;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
if (unlikely(IS_IMMUTABLE(inode)))
|
|
return -EPERM;
|
|
|
|
if (unlikely(IS_APPEND(inode) &&
|
|
(ia_valid & (ATTR_MODE | ATTR_UID |
|
|
ATTR_GID | ATTR_TIMES_SET))))
|
|
return -EPERM;
|
|
|
|
error = setattr_prepare(dentry, attr);
|
|
if (error)
|
|
return error;
|
|
|
|
error = fscrypt_prepare_setattr(dentry, attr);
|
|
if (error)
|
|
return error;
|
|
|
|
error = fsverity_prepare_setattr(dentry, attr);
|
|
if (error)
|
|
return error;
|
|
|
|
if (is_quota_modification(inode, attr)) {
|
|
error = dquot_initialize(inode);
|
|
if (error)
|
|
return error;
|
|
}
|
|
if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
|
|
(ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
|
|
handle_t *handle;
|
|
|
|
/* (user+group)*(old+new) structure, inode write (sb,
|
|
* inode block, ? - but truncate inode update has it) */
|
|
handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
|
|
(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
|
|
EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
|
|
if (IS_ERR(handle)) {
|
|
error = PTR_ERR(handle);
|
|
goto err_out;
|
|
}
|
|
|
|
/* dquot_transfer() calls back ext4_get_inode_usage() which
|
|
* counts xattr inode references.
|
|
*/
|
|
down_read(&EXT4_I(inode)->xattr_sem);
|
|
error = dquot_transfer(inode, attr);
|
|
up_read(&EXT4_I(inode)->xattr_sem);
|
|
|
|
if (error) {
|
|
ext4_journal_stop(handle);
|
|
return error;
|
|
}
|
|
/* Update corresponding info in inode so that everything is in
|
|
* one transaction */
|
|
if (attr->ia_valid & ATTR_UID)
|
|
inode->i_uid = attr->ia_uid;
|
|
if (attr->ia_valid & ATTR_GID)
|
|
inode->i_gid = attr->ia_gid;
|
|
error = ext4_mark_inode_dirty(handle, inode);
|
|
ext4_journal_stop(handle);
|
|
}
|
|
|
|
if (attr->ia_valid & ATTR_SIZE) {
|
|
handle_t *handle;
|
|
loff_t oldsize = inode->i_size;
|
|
int shrink = (attr->ia_size < inode->i_size);
|
|
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
|
|
if (attr->ia_size > sbi->s_bitmap_maxbytes)
|
|
return -EFBIG;
|
|
}
|
|
if (!S_ISREG(inode->i_mode))
|
|
return -EINVAL;
|
|
|
|
if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
|
|
inode_inc_iversion(inode);
|
|
|
|
if (shrink) {
|
|
if (ext4_should_order_data(inode)) {
|
|
error = ext4_begin_ordered_truncate(inode,
|
|
attr->ia_size);
|
|
if (error)
|
|
goto err_out;
|
|
}
|
|
/*
|
|
* Blocks are going to be removed from the inode. Wait
|
|
* for dio in flight.
|
|
*/
|
|
inode_dio_wait(inode);
|
|
}
|
|
|
|
down_write(&EXT4_I(inode)->i_mmap_sem);
|
|
|
|
rc = ext4_break_layouts(inode);
|
|
if (rc) {
|
|
up_write(&EXT4_I(inode)->i_mmap_sem);
|
|
return rc;
|
|
}
|
|
|
|
if (attr->ia_size != inode->i_size) {
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
|
|
if (IS_ERR(handle)) {
|
|
error = PTR_ERR(handle);
|
|
goto out_mmap_sem;
|
|
}
|
|
if (ext4_handle_valid(handle) && shrink) {
|
|
error = ext4_orphan_add(handle, inode);
|
|
orphan = 1;
|
|
}
|
|
/*
|
|
* Update c/mtime on truncate up, ext4_truncate() will
|
|
* update c/mtime in shrink case below
|
|
*/
|
|
if (!shrink) {
|
|
inode->i_mtime = current_time(inode);
|
|
inode->i_ctime = inode->i_mtime;
|
|
}
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
EXT4_I(inode)->i_disksize = attr->ia_size;
|
|
rc = ext4_mark_inode_dirty(handle, inode);
|
|
if (!error)
|
|
error = rc;
|
|
/*
|
|
* We have to update i_size under i_data_sem together
|
|
* with i_disksize to avoid races with writeback code
|
|
* running ext4_wb_update_i_disksize().
|
|
*/
|
|
if (!error)
|
|
i_size_write(inode, attr->ia_size);
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_journal_stop(handle);
|
|
if (error)
|
|
goto out_mmap_sem;
|
|
if (!shrink) {
|
|
pagecache_isize_extended(inode, oldsize,
|
|
inode->i_size);
|
|
} else if (ext4_should_journal_data(inode)) {
|
|
ext4_wait_for_tail_page_commit(inode);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Truncate pagecache after we've waited for commit
|
|
* in data=journal mode to make pages freeable.
|
|
*/
|
|
truncate_pagecache(inode, inode->i_size);
|
|
/*
|
|
* Call ext4_truncate() even if i_size didn't change to
|
|
* truncate possible preallocated blocks.
|
|
*/
|
|
if (attr->ia_size <= oldsize) {
|
|
rc = ext4_truncate(inode);
|
|
if (rc)
|
|
error = rc;
|
|
}
|
|
out_mmap_sem:
|
|
up_write(&EXT4_I(inode)->i_mmap_sem);
|
|
}
|
|
|
|
if (!error) {
|
|
setattr_copy(inode, attr);
|
|
mark_inode_dirty(inode);
|
|
}
|
|
|
|
/*
|
|
* If the call to ext4_truncate failed to get a transaction handle at
|
|
* all, we need to clean up the in-core orphan list manually.
|
|
*/
|
|
if (orphan && inode->i_nlink)
|
|
ext4_orphan_del(NULL, inode);
|
|
|
|
if (!error && (ia_valid & ATTR_MODE))
|
|
rc = posix_acl_chmod(inode, inode->i_mode);
|
|
|
|
err_out:
|
|
ext4_std_error(inode->i_sb, error);
|
|
if (!error)
|
|
error = rc;
|
|
return error;
|
|
}
|
|
|
|
int ext4_getattr(const struct path *path, struct kstat *stat,
|
|
u32 request_mask, unsigned int query_flags)
|
|
{
|
|
struct inode *inode = d_inode(path->dentry);
|
|
struct ext4_inode *raw_inode;
|
|
struct ext4_inode_info *ei = EXT4_I(inode);
|
|
unsigned int flags;
|
|
|
|
if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
|
|
stat->result_mask |= STATX_BTIME;
|
|
stat->btime.tv_sec = ei->i_crtime.tv_sec;
|
|
stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
|
|
}
|
|
|
|
flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
|
|
if (flags & EXT4_APPEND_FL)
|
|
stat->attributes |= STATX_ATTR_APPEND;
|
|
if (flags & EXT4_COMPR_FL)
|
|
stat->attributes |= STATX_ATTR_COMPRESSED;
|
|
if (flags & EXT4_ENCRYPT_FL)
|
|
stat->attributes |= STATX_ATTR_ENCRYPTED;
|
|
if (flags & EXT4_IMMUTABLE_FL)
|
|
stat->attributes |= STATX_ATTR_IMMUTABLE;
|
|
if (flags & EXT4_NODUMP_FL)
|
|
stat->attributes |= STATX_ATTR_NODUMP;
|
|
|
|
stat->attributes_mask |= (STATX_ATTR_APPEND |
|
|
STATX_ATTR_COMPRESSED |
|
|
STATX_ATTR_ENCRYPTED |
|
|
STATX_ATTR_IMMUTABLE |
|
|
STATX_ATTR_NODUMP);
|
|
|
|
generic_fillattr(inode, stat);
|
|
return 0;
|
|
}
|
|
|
|
int ext4_file_getattr(const struct path *path, struct kstat *stat,
|
|
u32 request_mask, unsigned int query_flags)
|
|
{
|
|
struct inode *inode = d_inode(path->dentry);
|
|
u64 delalloc_blocks;
|
|
|
|
ext4_getattr(path, stat, request_mask, query_flags);
|
|
|
|
/*
|
|
* If there is inline data in the inode, the inode will normally not
|
|
* have data blocks allocated (it may have an external xattr block).
|
|
* Report at least one sector for such files, so tools like tar, rsync,
|
|
* others don't incorrectly think the file is completely sparse.
|
|
*/
|
|
if (unlikely(ext4_has_inline_data(inode)))
|
|
stat->blocks += (stat->size + 511) >> 9;
|
|
|
|
/*
|
|
* We can't update i_blocks if the block allocation is delayed
|
|
* otherwise in the case of system crash before the real block
|
|
* allocation is done, we will have i_blocks inconsistent with
|
|
* on-disk file blocks.
|
|
* We always keep i_blocks updated together with real
|
|
* allocation. But to not confuse with user, stat
|
|
* will return the blocks that include the delayed allocation
|
|
* blocks for this file.
|
|
*/
|
|
delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
|
|
EXT4_I(inode)->i_reserved_data_blocks);
|
|
stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
|
|
return 0;
|
|
}
|
|
|
|
static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
|
|
int pextents)
|
|
{
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
|
|
return ext4_ind_trans_blocks(inode, lblocks);
|
|
return ext4_ext_index_trans_blocks(inode, pextents);
|
|
}
|
|
|
|
/*
|
|
* Account for index blocks, block groups bitmaps and block group
|
|
* descriptor blocks if modify datablocks and index blocks
|
|
* worse case, the indexs blocks spread over different block groups
|
|
*
|
|
* If datablocks are discontiguous, they are possible to spread over
|
|
* different block groups too. If they are contiguous, with flexbg,
|
|
* they could still across block group boundary.
|
|
*
|
|
* Also account for superblock, inode, quota and xattr blocks
|
|
*/
|
|
static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
|
|
int pextents)
|
|
{
|
|
ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
|
|
int gdpblocks;
|
|
int idxblocks;
|
|
int ret = 0;
|
|
|
|
/*
|
|
* How many index blocks need to touch to map @lblocks logical blocks
|
|
* to @pextents physical extents?
|
|
*/
|
|
idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
|
|
|
|
ret = idxblocks;
|
|
|
|
/*
|
|
* Now let's see how many group bitmaps and group descriptors need
|
|
* to account
|
|
*/
|
|
groups = idxblocks + pextents;
|
|
gdpblocks = groups;
|
|
if (groups > ngroups)
|
|
groups = ngroups;
|
|
if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
|
|
gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
|
|
|
|
/* bitmaps and block group descriptor blocks */
|
|
ret += groups + gdpblocks;
|
|
|
|
/* Blocks for super block, inode, quota and xattr blocks */
|
|
ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate the total number of credits to reserve to fit
|
|
* the modification of a single pages into a single transaction,
|
|
* which may include multiple chunks of block allocations.
|
|
*
|
|
* This could be called via ext4_write_begin()
|
|
*
|
|
* We need to consider the worse case, when
|
|
* one new block per extent.
|
|
*/
|
|
int ext4_writepage_trans_blocks(struct inode *inode)
|
|
{
|
|
int bpp = ext4_journal_blocks_per_page(inode);
|
|
int ret;
|
|
|
|
ret = ext4_meta_trans_blocks(inode, bpp, bpp);
|
|
|
|
/* Account for data blocks for journalled mode */
|
|
if (ext4_should_journal_data(inode))
|
|
ret += bpp;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Calculate the journal credits for a chunk of data modification.
|
|
*
|
|
* This is called from DIO, fallocate or whoever calling
|
|
* ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
|
|
*
|
|
* journal buffers for data blocks are not included here, as DIO
|
|
* and fallocate do no need to journal data buffers.
|
|
*/
|
|
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
|
|
{
|
|
return ext4_meta_trans_blocks(inode, nrblocks, 1);
|
|
}
|
|
|
|
/*
|
|
* The caller must have previously called ext4_reserve_inode_write().
|
|
* Give this, we know that the caller already has write access to iloc->bh.
|
|
*/
|
|
int ext4_mark_iloc_dirty(handle_t *handle,
|
|
struct inode *inode, struct ext4_iloc *iloc)
|
|
{
|
|
int err = 0;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
|
|
put_bh(iloc->bh);
|
|
return -EIO;
|
|
}
|
|
if (IS_I_VERSION(inode))
|
|
inode_inc_iversion(inode);
|
|
|
|
/* the do_update_inode consumes one bh->b_count */
|
|
get_bh(iloc->bh);
|
|
|
|
/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
|
|
err = ext4_do_update_inode(handle, inode, iloc);
|
|
put_bh(iloc->bh);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* On success, We end up with an outstanding reference count against
|
|
* iloc->bh. This _must_ be cleaned up later.
|
|
*/
|
|
|
|
int
|
|
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
|
|
struct ext4_iloc *iloc)
|
|
{
|
|
int err;
|
|
|
|
if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
|
|
return -EIO;
|
|
|
|
err = ext4_get_inode_loc(inode, iloc);
|
|
if (!err) {
|
|
BUFFER_TRACE(iloc->bh, "get_write_access");
|
|
err = ext4_journal_get_write_access(handle, iloc->bh);
|
|
if (err) {
|
|
brelse(iloc->bh);
|
|
iloc->bh = NULL;
|
|
}
|
|
}
|
|
ext4_std_error(inode->i_sb, err);
|
|
return err;
|
|
}
|
|
|
|
static int __ext4_expand_extra_isize(struct inode *inode,
|
|
unsigned int new_extra_isize,
|
|
struct ext4_iloc *iloc,
|
|
handle_t *handle, int *no_expand)
|
|
{
|
|
struct ext4_inode *raw_inode;
|
|
struct ext4_xattr_ibody_header *header;
|
|
int error;
|
|
|
|
raw_inode = ext4_raw_inode(iloc);
|
|
|
|
header = IHDR(inode, raw_inode);
|
|
|
|
/* No extended attributes present */
|
|
if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
|
|
header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
|
|
memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
|
|
EXT4_I(inode)->i_extra_isize, 0,
|
|
new_extra_isize - EXT4_I(inode)->i_extra_isize);
|
|
EXT4_I(inode)->i_extra_isize = new_extra_isize;
|
|
return 0;
|
|
}
|
|
|
|
/* try to expand with EAs present */
|
|
error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
|
|
raw_inode, handle);
|
|
if (error) {
|
|
/*
|
|
* Inode size expansion failed; don't try again
|
|
*/
|
|
*no_expand = 1;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Expand an inode by new_extra_isize bytes.
|
|
* Returns 0 on success or negative error number on failure.
|
|
*/
|
|
static int ext4_try_to_expand_extra_isize(struct inode *inode,
|
|
unsigned int new_extra_isize,
|
|
struct ext4_iloc iloc,
|
|
handle_t *handle)
|
|
{
|
|
int no_expand;
|
|
int error;
|
|
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
|
|
return -EOVERFLOW;
|
|
|
|
/*
|
|
* In nojournal mode, we can immediately attempt to expand
|
|
* the inode. When journaled, we first need to obtain extra
|
|
* buffer credits since we may write into the EA block
|
|
* with this same handle. If journal_extend fails, then it will
|
|
* only result in a minor loss of functionality for that inode.
|
|
* If this is felt to be critical, then e2fsck should be run to
|
|
* force a large enough s_min_extra_isize.
|
|
*/
|
|
if (ext4_handle_valid(handle) &&
|
|
jbd2_journal_extend(handle,
|
|
EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
|
|
return -ENOSPC;
|
|
|
|
if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
|
|
return -EBUSY;
|
|
|
|
error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
|
|
handle, &no_expand);
|
|
ext4_write_unlock_xattr(inode, &no_expand);
|
|
|
|
return error;
|
|
}
|
|
|
|
int ext4_expand_extra_isize(struct inode *inode,
|
|
unsigned int new_extra_isize,
|
|
struct ext4_iloc *iloc)
|
|
{
|
|
handle_t *handle;
|
|
int no_expand;
|
|
int error, rc;
|
|
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
|
|
brelse(iloc->bh);
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE,
|
|
EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
|
|
if (IS_ERR(handle)) {
|
|
error = PTR_ERR(handle);
|
|
brelse(iloc->bh);
|
|
return error;
|
|
}
|
|
|
|
ext4_write_lock_xattr(inode, &no_expand);
|
|
|
|
BUFFER_TRACE(iloc->bh, "get_write_access");
|
|
error = ext4_journal_get_write_access(handle, iloc->bh);
|
|
if (error) {
|
|
brelse(iloc->bh);
|
|
goto out_stop;
|
|
}
|
|
|
|
error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
|
|
handle, &no_expand);
|
|
|
|
rc = ext4_mark_iloc_dirty(handle, inode, iloc);
|
|
if (!error)
|
|
error = rc;
|
|
|
|
ext4_write_unlock_xattr(inode, &no_expand);
|
|
out_stop:
|
|
ext4_journal_stop(handle);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* What we do here is to mark the in-core inode as clean with respect to inode
|
|
* dirtiness (it may still be data-dirty).
|
|
* This means that the in-core inode may be reaped by prune_icache
|
|
* without having to perform any I/O. This is a very good thing,
|
|
* because *any* task may call prune_icache - even ones which
|
|
* have a transaction open against a different journal.
|
|
*
|
|
* Is this cheating? Not really. Sure, we haven't written the
|
|
* inode out, but prune_icache isn't a user-visible syncing function.
|
|
* Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
|
|
* we start and wait on commits.
|
|
*/
|
|
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
|
|
{
|
|
struct ext4_iloc iloc;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
int err;
|
|
|
|
might_sleep();
|
|
trace_ext4_mark_inode_dirty(inode, _RET_IP_);
|
|
err = ext4_reserve_inode_write(handle, inode, &iloc);
|
|
if (err)
|
|
return err;
|
|
|
|
if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
|
|
ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
|
|
iloc, handle);
|
|
|
|
return ext4_mark_iloc_dirty(handle, inode, &iloc);
|
|
}
|
|
|
|
/*
|
|
* ext4_dirty_inode() is called from __mark_inode_dirty()
|
|
*
|
|
* We're really interested in the case where a file is being extended.
|
|
* i_size has been changed by generic_commit_write() and we thus need
|
|
* to include the updated inode in the current transaction.
|
|
*
|
|
* Also, dquot_alloc_block() will always dirty the inode when blocks
|
|
* are allocated to the file.
|
|
*
|
|
* If the inode is marked synchronous, we don't honour that here - doing
|
|
* so would cause a commit on atime updates, which we don't bother doing.
|
|
* We handle synchronous inodes at the highest possible level.
|
|
*
|
|
* If only the I_DIRTY_TIME flag is set, we can skip everything. If
|
|
* I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
|
|
* to copy into the on-disk inode structure are the timestamp files.
|
|
*/
|
|
void ext4_dirty_inode(struct inode *inode, int flags)
|
|
{
|
|
handle_t *handle;
|
|
|
|
if (flags == I_DIRTY_TIME)
|
|
return;
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
|
|
if (IS_ERR(handle))
|
|
goto out;
|
|
|
|
ext4_mark_inode_dirty(handle, inode);
|
|
|
|
ext4_journal_stop(handle);
|
|
out:
|
|
return;
|
|
}
|
|
|
|
int ext4_change_inode_journal_flag(struct inode *inode, int val)
|
|
{
|
|
journal_t *journal;
|
|
handle_t *handle;
|
|
int err;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
|
|
/*
|
|
* We have to be very careful here: changing a data block's
|
|
* journaling status dynamically is dangerous. If we write a
|
|
* data block to the journal, change the status and then delete
|
|
* that block, we risk forgetting to revoke the old log record
|
|
* from the journal and so a subsequent replay can corrupt data.
|
|
* So, first we make sure that the journal is empty and that
|
|
* nobody is changing anything.
|
|
*/
|
|
|
|
journal = EXT4_JOURNAL(inode);
|
|
if (!journal)
|
|
return 0;
|
|
if (is_journal_aborted(journal))
|
|
return -EROFS;
|
|
|
|
/* Wait for all existing dio workers */
|
|
inode_dio_wait(inode);
|
|
|
|
/*
|
|
* Before flushing the journal and switching inode's aops, we have
|
|
* to flush all dirty data the inode has. There can be outstanding
|
|
* delayed allocations, there can be unwritten extents created by
|
|
* fallocate or buffered writes in dioread_nolock mode covered by
|
|
* dirty data which can be converted only after flushing the dirty
|
|
* data (and journalled aops don't know how to handle these cases).
|
|
*/
|
|
if (val) {
|
|
down_write(&EXT4_I(inode)->i_mmap_sem);
|
|
err = filemap_write_and_wait(inode->i_mapping);
|
|
if (err < 0) {
|
|
up_write(&EXT4_I(inode)->i_mmap_sem);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
percpu_down_write(&sbi->s_journal_flag_rwsem);
|
|
jbd2_journal_lock_updates(journal);
|
|
|
|
/*
|
|
* OK, there are no updates running now, and all cached data is
|
|
* synced to disk. We are now in a completely consistent state
|
|
* which doesn't have anything in the journal, and we know that
|
|
* no filesystem updates are running, so it is safe to modify
|
|
* the inode's in-core data-journaling state flag now.
|
|
*/
|
|
|
|
if (val)
|
|
ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
|
|
else {
|
|
err = jbd2_journal_flush(journal);
|
|
if (err < 0) {
|
|
jbd2_journal_unlock_updates(journal);
|
|
percpu_up_write(&sbi->s_journal_flag_rwsem);
|
|
return err;
|
|
}
|
|
ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
|
|
}
|
|
ext4_set_aops(inode);
|
|
|
|
jbd2_journal_unlock_updates(journal);
|
|
percpu_up_write(&sbi->s_journal_flag_rwsem);
|
|
|
|
if (val)
|
|
up_write(&EXT4_I(inode)->i_mmap_sem);
|
|
|
|
/* Finally we can mark the inode as dirty. */
|
|
|
|
handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
|
|
err = ext4_mark_inode_dirty(handle, inode);
|
|
ext4_handle_sync(handle);
|
|
ext4_journal_stop(handle);
|
|
ext4_std_error(inode->i_sb, err);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
|
|
{
|
|
return !buffer_mapped(bh);
|
|
}
|
|
|
|
vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct page *page = vmf->page;
|
|
loff_t size;
|
|
unsigned long len;
|
|
int err;
|
|
vm_fault_t ret;
|
|
struct file *file = vma->vm_file;
|
|
struct inode *inode = file_inode(file);
|
|
struct address_space *mapping = inode->i_mapping;
|
|
handle_t *handle;
|
|
get_block_t *get_block;
|
|
int retries = 0;
|
|
|
|
if (unlikely(IS_IMMUTABLE(inode)))
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
sb_start_pagefault(inode->i_sb);
|
|
file_update_time(vma->vm_file);
|
|
|
|
down_read(&EXT4_I(inode)->i_mmap_sem);
|
|
|
|
err = ext4_convert_inline_data(inode);
|
|
if (err)
|
|
goto out_ret;
|
|
|
|
/* Delalloc case is easy... */
|
|
if (test_opt(inode->i_sb, DELALLOC) &&
|
|
!ext4_should_journal_data(inode) &&
|
|
!ext4_nonda_switch(inode->i_sb)) {
|
|
do {
|
|
err = block_page_mkwrite(vma, vmf,
|
|
ext4_da_get_block_prep);
|
|
} while (err == -ENOSPC &&
|
|
ext4_should_retry_alloc(inode->i_sb, &retries));
|
|
goto out_ret;
|
|
}
|
|
|
|
lock_page(page);
|
|
size = i_size_read(inode);
|
|
/* Page got truncated from under us? */
|
|
if (page->mapping != mapping || page_offset(page) > size) {
|
|
unlock_page(page);
|
|
ret = VM_FAULT_NOPAGE;
|
|
goto out;
|
|
}
|
|
|
|
if (page->index == size >> PAGE_SHIFT)
|
|
len = size & ~PAGE_MASK;
|
|
else
|
|
len = PAGE_SIZE;
|
|
/*
|
|
* Return if we have all the buffers mapped. This avoids the need to do
|
|
* journal_start/journal_stop which can block and take a long time
|
|
*/
|
|
if (page_has_buffers(page)) {
|
|
if (!ext4_walk_page_buffers(NULL, page_buffers(page),
|
|
0, len, NULL,
|
|
ext4_bh_unmapped)) {
|
|
/* Wait so that we don't change page under IO */
|
|
wait_for_stable_page(page);
|
|
ret = VM_FAULT_LOCKED;
|
|
goto out;
|
|
}
|
|
}
|
|
unlock_page(page);
|
|
/* OK, we need to fill the hole... */
|
|
if (ext4_should_dioread_nolock(inode))
|
|
get_block = ext4_get_block_unwritten;
|
|
else
|
|
get_block = ext4_get_block;
|
|
retry_alloc:
|
|
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
|
|
ext4_writepage_trans_blocks(inode));
|
|
if (IS_ERR(handle)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
err = block_page_mkwrite(vma, vmf, get_block);
|
|
if (!err && ext4_should_journal_data(inode)) {
|
|
if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
|
|
PAGE_SIZE, NULL, do_journal_get_write_access)) {
|
|
unlock_page(page);
|
|
ret = VM_FAULT_SIGBUS;
|
|
ext4_journal_stop(handle);
|
|
goto out;
|
|
}
|
|
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
|
|
}
|
|
ext4_journal_stop(handle);
|
|
if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
|
|
goto retry_alloc;
|
|
out_ret:
|
|
ret = block_page_mkwrite_return(err);
|
|
out:
|
|
up_read(&EXT4_I(inode)->i_mmap_sem);
|
|
sb_end_pagefault(inode->i_sb);
|
|
return ret;
|
|
}
|
|
|
|
vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
|
|
{
|
|
struct inode *inode = file_inode(vmf->vma->vm_file);
|
|
vm_fault_t ret;
|
|
|
|
down_read(&EXT4_I(inode)->i_mmap_sem);
|
|
ret = filemap_fault(vmf);
|
|
up_read(&EXT4_I(inode)->i_mmap_sem);
|
|
|
|
return ret;
|
|
}
|