mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
a00cc7d9dd
The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
677 lines
16 KiB
C
677 lines
16 KiB
C
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/mtrr.h>
|
|
|
|
#define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_NOTRACK | __GFP_ZERO)
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
#define PGALLOC_USER_GFP __GFP_HIGHMEM
|
|
#else
|
|
#define PGALLOC_USER_GFP 0
|
|
#endif
|
|
|
|
gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
|
|
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
|
|
}
|
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
struct page *pte;
|
|
|
|
pte = alloc_pages(__userpte_alloc_gfp, 0);
|
|
if (!pte)
|
|
return NULL;
|
|
if (!pgtable_page_ctor(pte)) {
|
|
__free_page(pte);
|
|
return NULL;
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
static int __init setup_userpte(char *arg)
|
|
{
|
|
if (!arg)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* "userpte=nohigh" disables allocation of user pagetables in
|
|
* high memory.
|
|
*/
|
|
if (strcmp(arg, "nohigh") == 0)
|
|
__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
|
|
else
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
early_param("userpte", setup_userpte);
|
|
|
|
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
|
|
{
|
|
pgtable_page_dtor(pte);
|
|
paravirt_release_pte(page_to_pfn(pte));
|
|
tlb_remove_page(tlb, pte);
|
|
}
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 2
|
|
void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
|
|
{
|
|
struct page *page = virt_to_page(pmd);
|
|
paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
|
|
/*
|
|
* NOTE! For PAE, any changes to the top page-directory-pointer-table
|
|
* entries need a full cr3 reload to flush.
|
|
*/
|
|
#ifdef CONFIG_X86_PAE
|
|
tlb->need_flush_all = 1;
|
|
#endif
|
|
pgtable_pmd_page_dtor(page);
|
|
tlb_remove_page(tlb, page);
|
|
}
|
|
|
|
#if CONFIG_PGTABLE_LEVELS > 3
|
|
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
|
|
{
|
|
paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
|
|
tlb_remove_page(tlb, virt_to_page(pud));
|
|
}
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
|
|
#endif /* CONFIG_PGTABLE_LEVELS > 2 */
|
|
|
|
static inline void pgd_list_add(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_add(&page->lru, &pgd_list);
|
|
}
|
|
|
|
static inline void pgd_list_del(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
#define UNSHARED_PTRS_PER_PGD \
|
|
(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
|
|
|
|
|
|
static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
|
|
{
|
|
BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
|
|
virt_to_page(pgd)->index = (pgoff_t)mm;
|
|
}
|
|
|
|
struct mm_struct *pgd_page_get_mm(struct page *page)
|
|
{
|
|
return (struct mm_struct *)page->index;
|
|
}
|
|
|
|
static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
/* If the pgd points to a shared pagetable level (either the
|
|
ptes in non-PAE, or shared PMD in PAE), then just copy the
|
|
references from swapper_pg_dir. */
|
|
if (CONFIG_PGTABLE_LEVELS == 2 ||
|
|
(CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
|
|
CONFIG_PGTABLE_LEVELS == 4) {
|
|
clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
|
|
swapper_pg_dir + KERNEL_PGD_BOUNDARY,
|
|
KERNEL_PGD_PTRS);
|
|
}
|
|
|
|
/* list required to sync kernel mapping updates */
|
|
if (!SHARED_KERNEL_PMD) {
|
|
pgd_set_mm(pgd, mm);
|
|
pgd_list_add(pgd);
|
|
}
|
|
}
|
|
|
|
static void pgd_dtor(pgd_t *pgd)
|
|
{
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
spin_lock(&pgd_lock);
|
|
pgd_list_del(pgd);
|
|
spin_unlock(&pgd_lock);
|
|
}
|
|
|
|
/*
|
|
* List of all pgd's needed for non-PAE so it can invalidate entries
|
|
* in both cached and uncached pgd's; not needed for PAE since the
|
|
* kernel pmd is shared. If PAE were not to share the pmd a similar
|
|
* tactic would be needed. This is essentially codepath-based locking
|
|
* against pageattr.c; it is the unique case in which a valid change
|
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
|
* vmalloc faults work because attached pagetables are never freed.
|
|
* -- nyc
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
/*
|
|
* In PAE mode, we need to do a cr3 reload (=tlb flush) when
|
|
* updating the top-level pagetable entries to guarantee the
|
|
* processor notices the update. Since this is expensive, and
|
|
* all 4 top-level entries are used almost immediately in a
|
|
* new process's life, we just pre-populate them here.
|
|
*
|
|
* Also, if we're in a paravirt environment where the kernel pmd is
|
|
* not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
|
|
* and initialize the kernel pmds here.
|
|
*/
|
|
#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
|
|
|
|
void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
|
|
{
|
|
paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
|
|
|
|
/* Note: almost everything apart from _PAGE_PRESENT is
|
|
reserved at the pmd (PDPT) level. */
|
|
set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
|
|
|
|
/*
|
|
* According to Intel App note "TLBs, Paging-Structure Caches,
|
|
* and Their Invalidation", April 2007, document 317080-001,
|
|
* section 8.1: in PAE mode we explicitly have to flush the
|
|
* TLB via cr3 if the top-level pgd is changed...
|
|
*/
|
|
flush_tlb_mm(mm);
|
|
}
|
|
#else /* !CONFIG_X86_PAE */
|
|
|
|
/* No need to prepopulate any pagetable entries in non-PAE modes. */
|
|
#define PREALLOCATED_PMDS 0
|
|
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++)
|
|
if (pmds[i]) {
|
|
pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
|
|
free_page((unsigned long)pmds[i]);
|
|
mm_dec_nr_pmds(mm);
|
|
}
|
|
}
|
|
|
|
static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
|
|
{
|
|
int i;
|
|
bool failed = false;
|
|
gfp_t gfp = PGALLOC_GFP;
|
|
|
|
if (mm == &init_mm)
|
|
gfp &= ~__GFP_ACCOUNT;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++) {
|
|
pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
|
|
if (!pmd)
|
|
failed = true;
|
|
if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
|
|
free_page((unsigned long)pmd);
|
|
pmd = NULL;
|
|
failed = true;
|
|
}
|
|
if (pmd)
|
|
mm_inc_nr_pmds(mm);
|
|
pmds[i] = pmd;
|
|
}
|
|
|
|
if (failed) {
|
|
free_pmds(mm, pmds);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mop up any pmd pages which may still be attached to the pgd.
|
|
* Normally they will be freed by munmap/exit_mmap, but any pmd we
|
|
* preallocate which never got a corresponding vma will need to be
|
|
* freed manually.
|
|
*/
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < PREALLOCATED_PMDS; i++) {
|
|
pgd_t pgd = pgdp[i];
|
|
|
|
if (pgd_val(pgd) != 0) {
|
|
pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
|
|
|
|
pgdp[i] = native_make_pgd(0);
|
|
|
|
paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
|
|
pmd_free(mm, pmd);
|
|
mm_dec_nr_pmds(mm);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
|
|
{
|
|
pud_t *pud;
|
|
int i;
|
|
|
|
if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
|
|
return;
|
|
|
|
pud = pud_offset(pgd, 0);
|
|
|
|
for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
|
|
pmd_t *pmd = pmds[i];
|
|
|
|
if (i >= KERNEL_PGD_BOUNDARY)
|
|
memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
|
|
sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
pud_populate(mm, pud, pmd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
|
|
* assumes that pgd should be in one page.
|
|
*
|
|
* But kernel with PAE paging that is not running as a Xen domain
|
|
* only needs to allocate 32 bytes for pgd instead of one page.
|
|
*/
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
#include <linux/slab.h>
|
|
|
|
#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
|
|
#define PGD_ALIGN 32
|
|
|
|
static struct kmem_cache *pgd_cache;
|
|
|
|
static int __init pgd_cache_init(void)
|
|
{
|
|
/*
|
|
* When PAE kernel is running as a Xen domain, it does not use
|
|
* shared kernel pmd. And this requires a whole page for pgd.
|
|
*/
|
|
if (!SHARED_KERNEL_PMD)
|
|
return 0;
|
|
|
|
/*
|
|
* when PAE kernel is not running as a Xen domain, it uses
|
|
* shared kernel pmd. Shared kernel pmd does not require a whole
|
|
* page for pgd. We are able to just allocate a 32-byte for pgd.
|
|
* During boot time, we create a 32-byte slab for pgd table allocation.
|
|
*/
|
|
pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
|
|
SLAB_PANIC, NULL);
|
|
if (!pgd_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(pgd_cache_init);
|
|
|
|
static inline pgd_t *_pgd_alloc(void)
|
|
{
|
|
/*
|
|
* If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
|
|
* We allocate one page for pgd.
|
|
*/
|
|
if (!SHARED_KERNEL_PMD)
|
|
return (pgd_t *)__get_free_page(PGALLOC_GFP);
|
|
|
|
/*
|
|
* Now PAE kernel is not running as a Xen domain. We can allocate
|
|
* a 32-byte slab for pgd to save memory space.
|
|
*/
|
|
return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
|
|
}
|
|
|
|
static inline void _pgd_free(pgd_t *pgd)
|
|
{
|
|
if (!SHARED_KERNEL_PMD)
|
|
free_page((unsigned long)pgd);
|
|
else
|
|
kmem_cache_free(pgd_cache, pgd);
|
|
}
|
|
#else
|
|
static inline pgd_t *_pgd_alloc(void)
|
|
{
|
|
return (pgd_t *)__get_free_page(PGALLOC_GFP);
|
|
}
|
|
|
|
static inline void _pgd_free(pgd_t *pgd)
|
|
{
|
|
free_page((unsigned long)pgd);
|
|
}
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd;
|
|
pmd_t *pmds[PREALLOCATED_PMDS];
|
|
|
|
pgd = _pgd_alloc();
|
|
|
|
if (pgd == NULL)
|
|
goto out;
|
|
|
|
mm->pgd = pgd;
|
|
|
|
if (preallocate_pmds(mm, pmds) != 0)
|
|
goto out_free_pgd;
|
|
|
|
if (paravirt_pgd_alloc(mm) != 0)
|
|
goto out_free_pmds;
|
|
|
|
/*
|
|
* Make sure that pre-populating the pmds is atomic with
|
|
* respect to anything walking the pgd_list, so that they
|
|
* never see a partially populated pgd.
|
|
*/
|
|
spin_lock(&pgd_lock);
|
|
|
|
pgd_ctor(mm, pgd);
|
|
pgd_prepopulate_pmd(mm, pgd, pmds);
|
|
|
|
spin_unlock(&pgd_lock);
|
|
|
|
return pgd;
|
|
|
|
out_free_pmds:
|
|
free_pmds(mm, pmds);
|
|
out_free_pgd:
|
|
_pgd_free(pgd);
|
|
out:
|
|
return NULL;
|
|
}
|
|
|
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
pgd_dtor(pgd);
|
|
paravirt_pgd_free(mm, pgd);
|
|
_pgd_free(pgd);
|
|
}
|
|
|
|
/*
|
|
* Used to set accessed or dirty bits in the page table entries
|
|
* on other architectures. On x86, the accessed and dirty bits
|
|
* are tracked by hardware. However, do_wp_page calls this function
|
|
* to also make the pte writeable at the same time the dirty bit is
|
|
* set. In that case we do actually need to write the PTE.
|
|
*/
|
|
int ptep_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep,
|
|
pte_t entry, int dirty)
|
|
{
|
|
int changed = !pte_same(*ptep, entry);
|
|
|
|
if (changed && dirty) {
|
|
*ptep = entry;
|
|
pte_update(vma->vm_mm, address, ptep);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_set_access_flags(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp,
|
|
pmd_t entry, int dirty)
|
|
{
|
|
int changed = !pmd_same(*pmdp, entry);
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
if (changed && dirty) {
|
|
*pmdp = entry;
|
|
/*
|
|
* We had a write-protection fault here and changed the pmd
|
|
* to to more permissive. No need to flush the TLB for that,
|
|
* #PF is architecturally guaranteed to do that and in the
|
|
* worst-case we'll generate a spurious fault.
|
|
*/
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
|
|
pud_t *pudp, pud_t entry, int dirty)
|
|
{
|
|
int changed = !pud_same(*pudp, entry);
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PUD_MASK);
|
|
|
|
if (changed && dirty) {
|
|
*pudp = entry;
|
|
/*
|
|
* We had a write-protection fault here and changed the pud
|
|
* to to more permissive. No need to flush the TLB for that,
|
|
* #PF is architecturally guaranteed to do that and in the
|
|
* worst-case we'll generate a spurious fault.
|
|
*/
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
#endif
|
|
|
|
int ptep_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *ptep)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pte_young(*ptep))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *) &ptep->pte);
|
|
|
|
if (ret)
|
|
pte_update(vma->vm_mm, addr, ptep);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pmd_t *pmdp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pmd_young(*pmdp))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *)pmdp);
|
|
|
|
return ret;
|
|
}
|
|
int pudp_test_and_clear_young(struct vm_area_struct *vma,
|
|
unsigned long addr, pud_t *pudp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (pud_young(*pudp))
|
|
ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
|
|
(unsigned long *)pudp);
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
int ptep_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pte_t *ptep)
|
|
{
|
|
/*
|
|
* On x86 CPUs, clearing the accessed bit without a TLB flush
|
|
* doesn't cause data corruption. [ It could cause incorrect
|
|
* page aging and the (mistaken) reclaim of hot pages, but the
|
|
* chance of that should be relatively low. ]
|
|
*
|
|
* So as a performance optimization don't flush the TLB when
|
|
* clearing the accessed bit, it will eventually be flushed by
|
|
* a context switch or a VM operation anyway. [ In the rare
|
|
* event of it not getting flushed for a long time the delay
|
|
* shouldn't really matter because there's no real memory
|
|
* pressure for swapout to react to. ]
|
|
*/
|
|
return ptep_test_and_clear_young(vma, address, ptep);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int pmdp_clear_flush_young(struct vm_area_struct *vma,
|
|
unsigned long address, pmd_t *pmdp)
|
|
{
|
|
int young;
|
|
|
|
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
|
|
|
|
young = pmdp_test_and_clear_young(vma, address, pmdp);
|
|
if (young)
|
|
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
|
|
return young;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* reserve_top_address - reserves a hole in the top of kernel address space
|
|
* @reserve - size of hole to reserve
|
|
*
|
|
* Can be used to relocate the fixmap area and poke a hole in the top
|
|
* of kernel address space to make room for a hypervisor.
|
|
*/
|
|
void __init reserve_top_address(unsigned long reserve)
|
|
{
|
|
#ifdef CONFIG_X86_32
|
|
BUG_ON(fixmaps_set > 0);
|
|
__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
|
|
printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
|
|
-reserve, __FIXADDR_TOP + PAGE_SIZE);
|
|
#endif
|
|
}
|
|
|
|
int fixmaps_set;
|
|
|
|
void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
|
|
{
|
|
unsigned long address = __fix_to_virt(idx);
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
set_pte_vaddr(address, pte);
|
|
fixmaps_set++;
|
|
}
|
|
|
|
void native_set_fixmap(enum fixed_addresses idx, phys_addr_t phys,
|
|
pgprot_t flags)
|
|
{
|
|
__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
|
|
/**
|
|
* pud_set_huge - setup kernel PUD mapping
|
|
*
|
|
* MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
|
|
* function sets up a huge page only if any of the following conditions are met:
|
|
*
|
|
* - MTRRs are disabled, or
|
|
*
|
|
* - MTRRs are enabled and the range is completely covered by a single MTRR, or
|
|
*
|
|
* - MTRRs are enabled and the corresponding MTRR memory type is WB, which
|
|
* has no effect on the requested PAT memory type.
|
|
*
|
|
* Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
|
|
* page mapping attempt fails.
|
|
*
|
|
* Returns 1 on success and 0 on failure.
|
|
*/
|
|
int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
u8 mtrr, uniform;
|
|
|
|
mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
|
|
if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
|
|
(mtrr != MTRR_TYPE_WRBACK))
|
|
return 0;
|
|
|
|
prot = pgprot_4k_2_large(prot);
|
|
|
|
set_pte((pte_t *)pud, pfn_pte(
|
|
(u64)addr >> PAGE_SHIFT,
|
|
__pgprot(pgprot_val(prot) | _PAGE_PSE)));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* pmd_set_huge - setup kernel PMD mapping
|
|
*
|
|
* See text over pud_set_huge() above.
|
|
*
|
|
* Returns 1 on success and 0 on failure.
|
|
*/
|
|
int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
|
|
{
|
|
u8 mtrr, uniform;
|
|
|
|
mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
|
|
if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
|
|
(mtrr != MTRR_TYPE_WRBACK)) {
|
|
pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
|
|
__func__, addr, addr + PMD_SIZE);
|
|
return 0;
|
|
}
|
|
|
|
prot = pgprot_4k_2_large(prot);
|
|
|
|
set_pte((pte_t *)pmd, pfn_pte(
|
|
(u64)addr >> PAGE_SHIFT,
|
|
__pgprot(pgprot_val(prot) | _PAGE_PSE)));
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* pud_clear_huge - clear kernel PUD mapping when it is set
|
|
*
|
|
* Returns 1 on success and 0 on failure (no PUD map is found).
|
|
*/
|
|
int pud_clear_huge(pud_t *pud)
|
|
{
|
|
if (pud_large(*pud)) {
|
|
pud_clear(pud);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* pmd_clear_huge - clear kernel PMD mapping when it is set
|
|
*
|
|
* Returns 1 on success and 0 on failure (no PMD map is found).
|
|
*/
|
|
int pmd_clear_huge(pmd_t *pmd)
|
|
{
|
|
if (pmd_large(*pmd)) {
|
|
pmd_clear(pmd);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
|