linux_dsm_epyc7002/drivers/net/wireless/iwlwifi/iwl-power.c

969 lines
31 KiB
C

/******************************************************************************
*
* Copyright(c) 2007 - 2010 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <net/mac80211.h>
#include "iwl-eeprom.h"
#include "iwl-dev.h"
#include "iwl-core.h"
#include "iwl-io.h"
#include "iwl-commands.h"
#include "iwl-debug.h"
#include "iwl-power.h"
/*
* Setting power level allows the card to go to sleep when not busy.
*
* We calculate a sleep command based on the required latency, which
* we get from mac80211. In order to handle thermal throttling, we can
* also use pre-defined power levels.
*/
/*
* For now, keep using power level 1 instead of automatically
* adjusting ...
*/
bool no_sleep_autoadjust = true;
module_param(no_sleep_autoadjust, bool, S_IRUGO);
MODULE_PARM_DESC(no_sleep_autoadjust,
"don't automatically adjust sleep level "
"according to maximum network latency");
/*
* This defines the old power levels. They are still used by default
* (level 1) and for thermal throttle (levels 3 through 5)
*/
struct iwl_power_vec_entry {
struct iwl_powertable_cmd cmd;
u8 no_dtim; /* number of skip dtim */
};
#define IWL_DTIM_RANGE_0_MAX 2
#define IWL_DTIM_RANGE_1_MAX 10
#define NOSLP cpu_to_le16(0), 0, 0
#define SLP IWL_POWER_DRIVER_ALLOW_SLEEP_MSK, 0, 0
#define TU_TO_USEC 1024
#define SLP_TOUT(T) cpu_to_le32((T) * TU_TO_USEC)
#define SLP_VEC(X0, X1, X2, X3, X4) {cpu_to_le32(X0), \
cpu_to_le32(X1), \
cpu_to_le32(X2), \
cpu_to_le32(X3), \
cpu_to_le32(X4)}
/* default power management (not Tx power) table values */
/* for DTIM period 0 through IWL_DTIM_RANGE_0_MAX */
/* DTIM 0 - 2 */
static const struct iwl_power_vec_entry range_0[IWL_POWER_NUM] = {
{{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 1, 2, 2, 0xFF)}, 0},
{{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 2, 2, 0xFF)}, 0},
{{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 2, 2, 2, 0xFF)}, 0},
{{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 2, 4, 4, 0xFF)}, 1},
{{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 2, 4, 6, 0xFF)}, 2}
};
/* for DTIM period IWL_DTIM_RANGE_0_MAX + 1 through IWL_DTIM_RANGE_1_MAX */
/* DTIM 3 - 10 */
static const struct iwl_power_vec_entry range_1[IWL_POWER_NUM] = {
{{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 4)}, 0},
{{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(1, 2, 3, 4, 7)}, 0},
{{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 4, 6, 7, 9)}, 0},
{{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 4, 6, 9, 10)}, 1},
{{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(2, 4, 6, 10, 10)}, 2}
};
/* for DTIM period > IWL_DTIM_RANGE_1_MAX */
/* DTIM 11 - */
static const struct iwl_power_vec_entry range_2[IWL_POWER_NUM] = {
{{SLP, SLP_TOUT(200), SLP_TOUT(500), SLP_VEC(1, 2, 3, 4, 0xFF)}, 0},
{{SLP, SLP_TOUT(200), SLP_TOUT(300), SLP_VEC(2, 4, 6, 7, 0xFF)}, 0},
{{SLP, SLP_TOUT(50), SLP_TOUT(100), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
{{SLP, SLP_TOUT(50), SLP_TOUT(25), SLP_VEC(2, 7, 9, 9, 0xFF)}, 0},
{{SLP, SLP_TOUT(25), SLP_TOUT(25), SLP_VEC(4, 7, 10, 10, 0xFF)}, 0}
};
static void iwl_static_sleep_cmd(struct iwl_priv *priv,
struct iwl_powertable_cmd *cmd,
enum iwl_power_level lvl, int period)
{
const struct iwl_power_vec_entry *table;
int max_sleep[IWL_POWER_VEC_SIZE] = { 0 };
int i;
u8 skip;
u32 slp_itrvl;
table = range_2;
if (period <= IWL_DTIM_RANGE_1_MAX)
table = range_1;
if (period <= IWL_DTIM_RANGE_0_MAX)
table = range_0;
BUG_ON(lvl < 0 || lvl >= IWL_POWER_NUM);
*cmd = table[lvl].cmd;
if (period == 0) {
skip = 0;
period = 1;
for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
max_sleep[i] = 1;
} else {
skip = table[lvl].no_dtim;
for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
max_sleep[i] = le32_to_cpu(cmd->sleep_interval[i]);
max_sleep[IWL_POWER_VEC_SIZE - 1] = skip + 1;
}
slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
/* figure out the listen interval based on dtim period and skip */
if (slp_itrvl == 0xFF)
cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
cpu_to_le32(period * (skip + 1));
slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
if (slp_itrvl > period)
cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
cpu_to_le32((slp_itrvl / period) * period);
if (skip)
cmd->flags |= IWL_POWER_SLEEP_OVER_DTIM_MSK;
else
cmd->flags &= ~IWL_POWER_SLEEP_OVER_DTIM_MSK;
slp_itrvl = le32_to_cpu(cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1]);
if (slp_itrvl > IWL_CONN_MAX_LISTEN_INTERVAL)
cmd->sleep_interval[IWL_POWER_VEC_SIZE - 1] =
cpu_to_le32(IWL_CONN_MAX_LISTEN_INTERVAL);
/* enforce max sleep interval */
for (i = IWL_POWER_VEC_SIZE - 1; i >= 0 ; i--) {
if (le32_to_cpu(cmd->sleep_interval[i]) >
(max_sleep[i] * period))
cmd->sleep_interval[i] =
cpu_to_le32(max_sleep[i] * period);
if (i != (IWL_POWER_VEC_SIZE - 1)) {
if (le32_to_cpu(cmd->sleep_interval[i]) >
le32_to_cpu(cmd->sleep_interval[i+1]))
cmd->sleep_interval[i] =
cmd->sleep_interval[i+1];
}
}
if (priv->power_data.pci_pm)
cmd->flags |= IWL_POWER_PCI_PM_MSK;
else
cmd->flags &= ~IWL_POWER_PCI_PM_MSK;
IWL_DEBUG_POWER(priv, "numSkipDtim = %u, dtimPeriod = %d\n",
skip, period);
IWL_DEBUG_POWER(priv, "Sleep command for index %d\n", lvl + 1);
}
/* default Thermal Throttling transaction table
* Current state | Throttling Down | Throttling Up
*=============================================================================
* Condition Nxt State Condition Nxt State Condition Nxt State
*-----------------------------------------------------------------------------
* IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
* IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
* IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
* IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
*=============================================================================
*/
static const struct iwl_tt_trans tt_range_0[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_0, IWL_ABSOLUTE_ZERO, 104},
{IWL_TI_1, 105, CT_KILL_THRESHOLD - 1},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
};
static const struct iwl_tt_trans tt_range_1[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_0, IWL_ABSOLUTE_ZERO, 95},
{IWL_TI_2, 110, CT_KILL_THRESHOLD - 1},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
};
static const struct iwl_tt_trans tt_range_2[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_1, IWL_ABSOLUTE_ZERO, 100},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX},
{IWL_TI_CT_KILL, CT_KILL_THRESHOLD, IWL_ABSOLUTE_MAX}
};
static const struct iwl_tt_trans tt_range_3[IWL_TI_STATE_MAX - 1] = {
{IWL_TI_0, IWL_ABSOLUTE_ZERO, CT_KILL_EXIT_THRESHOLD},
{IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX},
{IWL_TI_CT_KILL, CT_KILL_EXIT_THRESHOLD + 1, IWL_ABSOLUTE_MAX}
};
/* Advance Thermal Throttling default restriction table */
static const struct iwl_tt_restriction restriction_range[IWL_TI_STATE_MAX] = {
{IWL_ANT_OK_MULTI, IWL_ANT_OK_MULTI, true },
{IWL_ANT_OK_SINGLE, IWL_ANT_OK_MULTI, true },
{IWL_ANT_OK_SINGLE, IWL_ANT_OK_SINGLE, false },
{IWL_ANT_OK_NONE, IWL_ANT_OK_NONE, false }
};
static void iwl_power_sleep_cam_cmd(struct iwl_priv *priv,
struct iwl_powertable_cmd *cmd)
{
memset(cmd, 0, sizeof(*cmd));
if (priv->power_data.pci_pm)
cmd->flags |= IWL_POWER_PCI_PM_MSK;
IWL_DEBUG_POWER(priv, "Sleep command for CAM\n");
}
static void iwl_power_fill_sleep_cmd(struct iwl_priv *priv,
struct iwl_powertable_cmd *cmd,
int dynps_ms, int wakeup_period)
{
/*
* These are the original power level 3 sleep successions. The
* device may behave better with such succession and was also
* only tested with that. Just like the original sleep commands,
* also adjust the succession here to the wakeup_period below.
* The ranges are the same as for the sleep commands, 0-2, 3-9
* and >10, which is selected based on the DTIM interval for
* the sleep index but here we use the wakeup period since that
* is what we need to do for the latency requirements.
*/
static const u8 slp_succ_r0[IWL_POWER_VEC_SIZE] = { 2, 2, 2, 2, 2 };
static const u8 slp_succ_r1[IWL_POWER_VEC_SIZE] = { 2, 4, 6, 7, 9 };
static const u8 slp_succ_r2[IWL_POWER_VEC_SIZE] = { 2, 7, 9, 9, 0xFF };
const u8 *slp_succ = slp_succ_r0;
int i;
if (wakeup_period > IWL_DTIM_RANGE_0_MAX)
slp_succ = slp_succ_r1;
if (wakeup_period > IWL_DTIM_RANGE_1_MAX)
slp_succ = slp_succ_r2;
memset(cmd, 0, sizeof(*cmd));
cmd->flags = IWL_POWER_DRIVER_ALLOW_SLEEP_MSK |
IWL_POWER_FAST_PD; /* no use seeing frames for others */
if (priv->power_data.pci_pm)
cmd->flags |= IWL_POWER_PCI_PM_MSK;
cmd->rx_data_timeout = cpu_to_le32(1000 * dynps_ms);
cmd->tx_data_timeout = cpu_to_le32(1000 * dynps_ms);
for (i = 0; i < IWL_POWER_VEC_SIZE; i++)
cmd->sleep_interval[i] =
cpu_to_le32(min_t(int, slp_succ[i], wakeup_period));
IWL_DEBUG_POWER(priv, "Automatic sleep command\n");
}
static int iwl_set_power(struct iwl_priv *priv, struct iwl_powertable_cmd *cmd)
{
IWL_DEBUG_POWER(priv, "Sending power/sleep command\n");
IWL_DEBUG_POWER(priv, "Flags value = 0x%08X\n", cmd->flags);
IWL_DEBUG_POWER(priv, "Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
IWL_DEBUG_POWER(priv, "Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
IWL_DEBUG_POWER(priv, "Sleep interval vector = { %d , %d , %d , %d , %d }\n",
le32_to_cpu(cmd->sleep_interval[0]),
le32_to_cpu(cmd->sleep_interval[1]),
le32_to_cpu(cmd->sleep_interval[2]),
le32_to_cpu(cmd->sleep_interval[3]),
le32_to_cpu(cmd->sleep_interval[4]));
return iwl_send_cmd_pdu(priv, POWER_TABLE_CMD,
sizeof(struct iwl_powertable_cmd), cmd);
}
/* priv->mutex must be held */
int iwl_power_update_mode(struct iwl_priv *priv, bool force)
{
int ret = 0;
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
bool enabled = priv->hw->conf.flags & IEEE80211_CONF_PS;
bool update_chains;
struct iwl_powertable_cmd cmd;
int dtimper;
/* Don't update the RX chain when chain noise calibration is running */
update_chains = priv->chain_noise_data.state == IWL_CHAIN_NOISE_DONE ||
priv->chain_noise_data.state == IWL_CHAIN_NOISE_ALIVE;
dtimper = priv->hw->conf.ps_dtim_period ?: 1;
if (priv->cfg->broken_powersave)
iwl_power_sleep_cam_cmd(priv, &cmd);
else if (priv->cfg->supports_idle &&
priv->hw->conf.flags & IEEE80211_CONF_IDLE)
iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_5, 20);
else if (tt->state >= IWL_TI_1)
iwl_static_sleep_cmd(priv, &cmd, tt->tt_power_mode, dtimper);
else if (!enabled)
iwl_power_sleep_cam_cmd(priv, &cmd);
else if (priv->power_data.debug_sleep_level_override >= 0)
iwl_static_sleep_cmd(priv, &cmd,
priv->power_data.debug_sleep_level_override,
dtimper);
else if (no_sleep_autoadjust)
iwl_static_sleep_cmd(priv, &cmd, IWL_POWER_INDEX_1, dtimper);
else
iwl_power_fill_sleep_cmd(priv, &cmd,
priv->hw->conf.dynamic_ps_timeout,
priv->hw->conf.max_sleep_period);
if (iwl_is_ready_rf(priv) &&
(memcmp(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd)) || force)) {
if (cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK)
set_bit(STATUS_POWER_PMI, &priv->status);
ret = iwl_set_power(priv, &cmd);
if (!ret) {
if (!(cmd.flags & IWL_POWER_DRIVER_ALLOW_SLEEP_MSK))
clear_bit(STATUS_POWER_PMI, &priv->status);
if (priv->cfg->ops->lib->update_chain_flags &&
update_chains)
priv->cfg->ops->lib->update_chain_flags(priv);
else if (priv->cfg->ops->lib->update_chain_flags)
IWL_DEBUG_POWER(priv,
"Cannot update the power, chain noise "
"calibration running: %d\n",
priv->chain_noise_data.state);
memcpy(&priv->power_data.sleep_cmd, &cmd, sizeof(cmd));
} else
IWL_ERR(priv, "set power fail, ret = %d", ret);
}
return ret;
}
EXPORT_SYMBOL(iwl_power_update_mode);
bool iwl_ht_enabled(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
struct iwl_tt_restriction *restriction;
if (!priv->thermal_throttle.advanced_tt)
return true;
restriction = tt->restriction + tt->state;
return restriction->is_ht;
}
EXPORT_SYMBOL(iwl_ht_enabled);
bool iwl_within_ct_kill_margin(struct iwl_priv *priv)
{
s32 temp = priv->temperature; /* degrees CELSIUS except specified */
bool within_margin = false;
if (priv->cfg->temperature_kelvin)
temp = KELVIN_TO_CELSIUS(priv->temperature);
if (!priv->thermal_throttle.advanced_tt)
within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >=
CT_KILL_THRESHOLD_LEGACY) ? true : false;
else
within_margin = ((temp + IWL_TT_CT_KILL_MARGIN) >=
CT_KILL_THRESHOLD) ? true : false;
return within_margin;
}
enum iwl_antenna_ok iwl_tx_ant_restriction(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
struct iwl_tt_restriction *restriction;
if (!priv->thermal_throttle.advanced_tt)
return IWL_ANT_OK_MULTI;
restriction = tt->restriction + tt->state;
return restriction->tx_stream;
}
EXPORT_SYMBOL(iwl_tx_ant_restriction);
enum iwl_antenna_ok iwl_rx_ant_restriction(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
struct iwl_tt_restriction *restriction;
if (!priv->thermal_throttle.advanced_tt)
return IWL_ANT_OK_MULTI;
restriction = tt->restriction + tt->state;
return restriction->rx_stream;
}
#define CT_KILL_EXIT_DURATION (5) /* 5 seconds duration */
#define CT_KILL_WAITING_DURATION (300) /* 300ms duration */
/*
* toggle the bit to wake up uCode and check the temperature
* if the temperature is below CT, uCode will stay awake and send card
* state notification with CT_KILL bit clear to inform Thermal Throttling
* Management to change state. Otherwise, uCode will go back to sleep
* without doing anything, driver should continue the 5 seconds timer
* to wake up uCode for temperature check until temperature drop below CT
*/
static void iwl_tt_check_exit_ct_kill(unsigned long data)
{
struct iwl_priv *priv = (struct iwl_priv *)data;
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
unsigned long flags;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (tt->state == IWL_TI_CT_KILL) {
if (priv->thermal_throttle.ct_kill_toggle) {
iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR,
CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
priv->thermal_throttle.ct_kill_toggle = false;
} else {
iwl_write32(priv, CSR_UCODE_DRV_GP1_SET,
CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
priv->thermal_throttle.ct_kill_toggle = true;
}
iwl_read32(priv, CSR_UCODE_DRV_GP1);
spin_lock_irqsave(&priv->reg_lock, flags);
if (!iwl_grab_nic_access(priv))
iwl_release_nic_access(priv);
spin_unlock_irqrestore(&priv->reg_lock, flags);
/* Reschedule the ct_kill timer to occur in
* CT_KILL_EXIT_DURATION seconds to ensure we get a
* thermal update */
IWL_DEBUG_POWER(priv, "schedule ct_kill exit timer\n");
mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies +
CT_KILL_EXIT_DURATION * HZ);
}
}
static void iwl_perform_ct_kill_task(struct iwl_priv *priv,
bool stop)
{
if (stop) {
IWL_DEBUG_POWER(priv, "Stop all queues\n");
if (priv->mac80211_registered)
ieee80211_stop_queues(priv->hw);
IWL_DEBUG_POWER(priv,
"Schedule 5 seconds CT_KILL Timer\n");
mod_timer(&priv->thermal_throttle.ct_kill_exit_tm, jiffies +
CT_KILL_EXIT_DURATION * HZ);
} else {
IWL_DEBUG_POWER(priv, "Wake all queues\n");
if (priv->mac80211_registered)
ieee80211_wake_queues(priv->hw);
}
}
static void iwl_tt_ready_for_ct_kill(unsigned long data)
{
struct iwl_priv *priv = (struct iwl_priv *)data;
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
/* temperature timer expired, ready to go into CT_KILL state */
if (tt->state != IWL_TI_CT_KILL) {
IWL_DEBUG_POWER(priv, "entering CT_KILL state when temperature timer expired\n");
tt->state = IWL_TI_CT_KILL;
set_bit(STATUS_CT_KILL, &priv->status);
iwl_perform_ct_kill_task(priv, true);
}
}
static void iwl_prepare_ct_kill_task(struct iwl_priv *priv)
{
IWL_DEBUG_POWER(priv, "Prepare to enter IWL_TI_CT_KILL\n");
/* make request to retrieve statistics information */
iwl_send_statistics_request(priv, CMD_SYNC, false);
/* Reschedule the ct_kill wait timer */
mod_timer(&priv->thermal_throttle.ct_kill_waiting_tm,
jiffies + msecs_to_jiffies(CT_KILL_WAITING_DURATION));
}
#define IWL_MINIMAL_POWER_THRESHOLD (CT_KILL_THRESHOLD_LEGACY)
#define IWL_REDUCED_PERFORMANCE_THRESHOLD_2 (100)
#define IWL_REDUCED_PERFORMANCE_THRESHOLD_1 (90)
/*
* Legacy thermal throttling
* 1) Avoid NIC destruction due to high temperatures
* Chip will identify dangerously high temperatures that can
* harm the device and will power down
* 2) Avoid the NIC power down due to high temperature
* Throttle early enough to lower the power consumption before
* drastic steps are needed
*/
static void iwl_legacy_tt_handler(struct iwl_priv *priv, s32 temp, bool force)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
enum iwl_tt_state old_state;
#ifdef CONFIG_IWLWIFI_DEBUG
if ((tt->tt_previous_temp) &&
(temp > tt->tt_previous_temp) &&
((temp - tt->tt_previous_temp) >
IWL_TT_INCREASE_MARGIN)) {
IWL_DEBUG_POWER(priv,
"Temperature increase %d degree Celsius\n",
(temp - tt->tt_previous_temp));
}
#endif
old_state = tt->state;
/* in Celsius */
if (temp >= IWL_MINIMAL_POWER_THRESHOLD)
tt->state = IWL_TI_CT_KILL;
else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_2)
tt->state = IWL_TI_2;
else if (temp >= IWL_REDUCED_PERFORMANCE_THRESHOLD_1)
tt->state = IWL_TI_1;
else
tt->state = IWL_TI_0;
#ifdef CONFIG_IWLWIFI_DEBUG
tt->tt_previous_temp = temp;
#endif
/* stop ct_kill_waiting_tm timer */
del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
if (tt->state != old_state) {
switch (tt->state) {
case IWL_TI_0:
/*
* When the system is ready to go back to IWL_TI_0
* we only have to call iwl_power_update_mode() to
* do so.
*/
break;
case IWL_TI_1:
tt->tt_power_mode = IWL_POWER_INDEX_3;
break;
case IWL_TI_2:
tt->tt_power_mode = IWL_POWER_INDEX_4;
break;
default:
tt->tt_power_mode = IWL_POWER_INDEX_5;
break;
}
mutex_lock(&priv->mutex);
if (old_state == IWL_TI_CT_KILL)
clear_bit(STATUS_CT_KILL, &priv->status);
if (tt->state != IWL_TI_CT_KILL &&
iwl_power_update_mode(priv, true)) {
/* TT state not updated
* try again during next temperature read
*/
if (old_state == IWL_TI_CT_KILL)
set_bit(STATUS_CT_KILL, &priv->status);
tt->state = old_state;
IWL_ERR(priv, "Cannot update power mode, "
"TT state not updated\n");
} else {
if (tt->state == IWL_TI_CT_KILL) {
if (force) {
set_bit(STATUS_CT_KILL, &priv->status);
iwl_perform_ct_kill_task(priv, true);
} else {
iwl_prepare_ct_kill_task(priv);
tt->state = old_state;
}
} else if (old_state == IWL_TI_CT_KILL &&
tt->state != IWL_TI_CT_KILL)
iwl_perform_ct_kill_task(priv, false);
IWL_DEBUG_POWER(priv, "Temperature state changed %u\n",
tt->state);
IWL_DEBUG_POWER(priv, "Power Index change to %u\n",
tt->tt_power_mode);
}
mutex_unlock(&priv->mutex);
}
}
/*
* Advance thermal throttling
* 1) Avoid NIC destruction due to high temperatures
* Chip will identify dangerously high temperatures that can
* harm the device and will power down
* 2) Avoid the NIC power down due to high temperature
* Throttle early enough to lower the power consumption before
* drastic steps are needed
* Actions include relaxing the power down sleep thresholds and
* decreasing the number of TX streams
* 3) Avoid throughput performance impact as much as possible
*
*=============================================================================
* Condition Nxt State Condition Nxt State Condition Nxt State
*-----------------------------------------------------------------------------
* IWL_TI_0 T >= 114 CT_KILL 114>T>=105 TI_1 N/A N/A
* IWL_TI_1 T >= 114 CT_KILL 114>T>=110 TI_2 T<=95 TI_0
* IWL_TI_2 T >= 114 CT_KILL T<=100 TI_1
* IWL_CT_KILL N/A N/A N/A N/A T<=95 TI_0
*=============================================================================
*/
static void iwl_advance_tt_handler(struct iwl_priv *priv, s32 temp, bool force)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
int i;
bool changed = false;
enum iwl_tt_state old_state;
struct iwl_tt_trans *transaction;
old_state = tt->state;
for (i = 0; i < IWL_TI_STATE_MAX - 1; i++) {
/* based on the current TT state,
* find the curresponding transaction table
* each table has (IWL_TI_STATE_MAX - 1) entries
* tt->transaction + ((old_state * (IWL_TI_STATE_MAX - 1))
* will advance to the correct table.
* then based on the current temperature
* find the next state need to transaction to
* go through all the possible (IWL_TI_STATE_MAX - 1) entries
* in the current table to see if transaction is needed
*/
transaction = tt->transaction +
((old_state * (IWL_TI_STATE_MAX - 1)) + i);
if (temp >= transaction->tt_low &&
temp <= transaction->tt_high) {
#ifdef CONFIG_IWLWIFI_DEBUG
if ((tt->tt_previous_temp) &&
(temp > tt->tt_previous_temp) &&
((temp - tt->tt_previous_temp) >
IWL_TT_INCREASE_MARGIN)) {
IWL_DEBUG_POWER(priv,
"Temperature increase %d "
"degree Celsius\n",
(temp - tt->tt_previous_temp));
}
tt->tt_previous_temp = temp;
#endif
if (old_state !=
transaction->next_state) {
changed = true;
tt->state =
transaction->next_state;
}
break;
}
}
/* stop ct_kill_waiting_tm timer */
del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
if (changed) {
struct iwl_rxon_cmd *rxon = &priv->staging_rxon;
if (tt->state >= IWL_TI_1) {
/* force PI = IWL_POWER_INDEX_5 in the case of TI > 0 */
tt->tt_power_mode = IWL_POWER_INDEX_5;
if (!iwl_ht_enabled(priv))
/* disable HT */
rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK |
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK |
RXON_FLG_HT40_PROT_MSK |
RXON_FLG_HT_PROT_MSK);
else {
/* check HT capability and set
* according to the system HT capability
* in case get disabled before */
iwl_set_rxon_ht(priv, &priv->current_ht_config);
}
} else {
/*
* restore system power setting -- it will be
* recalculated automatically.
*/
/* check HT capability and set
* according to the system HT capability
* in case get disabled before */
iwl_set_rxon_ht(priv, &priv->current_ht_config);
}
mutex_lock(&priv->mutex);
if (old_state == IWL_TI_CT_KILL)
clear_bit(STATUS_CT_KILL, &priv->status);
if (tt->state != IWL_TI_CT_KILL &&
iwl_power_update_mode(priv, true)) {
/* TT state not updated
* try again during next temperature read
*/
IWL_ERR(priv, "Cannot update power mode, "
"TT state not updated\n");
if (old_state == IWL_TI_CT_KILL)
set_bit(STATUS_CT_KILL, &priv->status);
tt->state = old_state;
} else {
IWL_DEBUG_POWER(priv,
"Thermal Throttling to new state: %u\n",
tt->state);
if (old_state != IWL_TI_CT_KILL &&
tt->state == IWL_TI_CT_KILL) {
if (force) {
IWL_DEBUG_POWER(priv,
"Enter IWL_TI_CT_KILL\n");
set_bit(STATUS_CT_KILL, &priv->status);
iwl_perform_ct_kill_task(priv, true);
} else {
iwl_prepare_ct_kill_task(priv);
tt->state = old_state;
}
} else if (old_state == IWL_TI_CT_KILL &&
tt->state != IWL_TI_CT_KILL) {
IWL_DEBUG_POWER(priv, "Exit IWL_TI_CT_KILL\n");
iwl_perform_ct_kill_task(priv, false);
}
}
mutex_unlock(&priv->mutex);
}
}
/* Card State Notification indicated reach critical temperature
* if PSP not enable, no Thermal Throttling function will be performed
* just set the GP1 bit to acknowledge the event
* otherwise, go into IWL_TI_CT_KILL state
* since Card State Notification will not provide any temperature reading
* for Legacy mode
* so just pass the CT_KILL temperature to iwl_legacy_tt_handler()
* for advance mode
* pass CT_KILL_THRESHOLD+1 to make sure move into IWL_TI_CT_KILL state
*/
static void iwl_bg_ct_enter(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_enter);
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (!iwl_is_ready(priv))
return;
if (tt->state != IWL_TI_CT_KILL) {
IWL_ERR(priv, "Device reached critical temperature "
"- ucode going to sleep!\n");
if (!priv->thermal_throttle.advanced_tt)
iwl_legacy_tt_handler(priv,
IWL_MINIMAL_POWER_THRESHOLD,
true);
else
iwl_advance_tt_handler(priv,
CT_KILL_THRESHOLD + 1, true);
}
}
/* Card State Notification indicated out of critical temperature
* since Card State Notification will not provide any temperature reading
* so pass the IWL_REDUCED_PERFORMANCE_THRESHOLD_2 temperature
* to iwl_legacy_tt_handler() to get out of IWL_CT_KILL state
*/
static void iwl_bg_ct_exit(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv, ct_exit);
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (!iwl_is_ready(priv))
return;
/* stop ct_kill_exit_tm timer */
del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
if (tt->state == IWL_TI_CT_KILL) {
IWL_ERR(priv,
"Device temperature below critical"
"- ucode awake!\n");
/*
* exit from CT_KILL state
* reset the current temperature reading
*/
priv->temperature = 0;
if (!priv->thermal_throttle.advanced_tt)
iwl_legacy_tt_handler(priv,
IWL_REDUCED_PERFORMANCE_THRESHOLD_2,
true);
else
iwl_advance_tt_handler(priv, CT_KILL_EXIT_THRESHOLD,
true);
}
}
void iwl_tt_enter_ct_kill(struct iwl_priv *priv)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
IWL_DEBUG_POWER(priv, "Queueing critical temperature enter.\n");
queue_work(priv->workqueue, &priv->ct_enter);
}
EXPORT_SYMBOL(iwl_tt_enter_ct_kill);
void iwl_tt_exit_ct_kill(struct iwl_priv *priv)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
IWL_DEBUG_POWER(priv, "Queueing critical temperature exit.\n");
queue_work(priv->workqueue, &priv->ct_exit);
}
EXPORT_SYMBOL(iwl_tt_exit_ct_kill);
static void iwl_bg_tt_work(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv, tt_work);
s32 temp = priv->temperature; /* degrees CELSIUS except specified */
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
if (priv->cfg->temperature_kelvin)
temp = KELVIN_TO_CELSIUS(priv->temperature);
if (!priv->thermal_throttle.advanced_tt)
iwl_legacy_tt_handler(priv, temp, false);
else
iwl_advance_tt_handler(priv, temp, false);
}
void iwl_tt_handler(struct iwl_priv *priv)
{
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
IWL_DEBUG_POWER(priv, "Queueing thermal throttling work.\n");
queue_work(priv->workqueue, &priv->tt_work);
}
EXPORT_SYMBOL(iwl_tt_handler);
/* Thermal throttling initialization
* For advance thermal throttling:
* Initialize Thermal Index and temperature threshold table
* Initialize thermal throttling restriction table
*/
void iwl_tt_initialize(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
int size = sizeof(struct iwl_tt_trans) * (IWL_TI_STATE_MAX - 1);
struct iwl_tt_trans *transaction;
IWL_DEBUG_POWER(priv, "Initialize Thermal Throttling\n");
memset(tt, 0, sizeof(struct iwl_tt_mgmt));
tt->state = IWL_TI_0;
init_timer(&priv->thermal_throttle.ct_kill_exit_tm);
priv->thermal_throttle.ct_kill_exit_tm.data = (unsigned long)priv;
priv->thermal_throttle.ct_kill_exit_tm.function =
iwl_tt_check_exit_ct_kill;
init_timer(&priv->thermal_throttle.ct_kill_waiting_tm);
priv->thermal_throttle.ct_kill_waiting_tm.data = (unsigned long)priv;
priv->thermal_throttle.ct_kill_waiting_tm.function =
iwl_tt_ready_for_ct_kill;
/* setup deferred ct kill work */
INIT_WORK(&priv->tt_work, iwl_bg_tt_work);
INIT_WORK(&priv->ct_enter, iwl_bg_ct_enter);
INIT_WORK(&priv->ct_exit, iwl_bg_ct_exit);
if (priv->cfg->adv_thermal_throttle) {
IWL_DEBUG_POWER(priv, "Advanced Thermal Throttling\n");
tt->restriction = kzalloc(sizeof(struct iwl_tt_restriction) *
IWL_TI_STATE_MAX, GFP_KERNEL);
tt->transaction = kzalloc(sizeof(struct iwl_tt_trans) *
IWL_TI_STATE_MAX * (IWL_TI_STATE_MAX - 1),
GFP_KERNEL);
if (!tt->restriction || !tt->transaction) {
IWL_ERR(priv, "Fallback to Legacy Throttling\n");
priv->thermal_throttle.advanced_tt = false;
kfree(tt->restriction);
tt->restriction = NULL;
kfree(tt->transaction);
tt->transaction = NULL;
} else {
transaction = tt->transaction +
(IWL_TI_0 * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_0[0], size);
transaction = tt->transaction +
(IWL_TI_1 * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_1[0], size);
transaction = tt->transaction +
(IWL_TI_2 * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_2[0], size);
transaction = tt->transaction +
(IWL_TI_CT_KILL * (IWL_TI_STATE_MAX - 1));
memcpy(transaction, &tt_range_3[0], size);
size = sizeof(struct iwl_tt_restriction) *
IWL_TI_STATE_MAX;
memcpy(tt->restriction,
&restriction_range[0], size);
priv->thermal_throttle.advanced_tt = true;
}
} else {
IWL_DEBUG_POWER(priv, "Legacy Thermal Throttling\n");
priv->thermal_throttle.advanced_tt = false;
}
}
EXPORT_SYMBOL(iwl_tt_initialize);
/* cleanup thermal throttling management related memory and timer */
void iwl_tt_exit(struct iwl_priv *priv)
{
struct iwl_tt_mgmt *tt = &priv->thermal_throttle;
/* stop ct_kill_exit_tm timer if activated */
del_timer_sync(&priv->thermal_throttle.ct_kill_exit_tm);
/* stop ct_kill_waiting_tm timer if activated */
del_timer_sync(&priv->thermal_throttle.ct_kill_waiting_tm);
cancel_work_sync(&priv->tt_work);
cancel_work_sync(&priv->ct_enter);
cancel_work_sync(&priv->ct_exit);
if (priv->thermal_throttle.advanced_tt) {
/* free advance thermal throttling memory */
kfree(tt->restriction);
tt->restriction = NULL;
kfree(tt->transaction);
tt->transaction = NULL;
}
}
EXPORT_SYMBOL(iwl_tt_exit);
/* initialize to default */
void iwl_power_initialize(struct iwl_priv *priv)
{
u16 lctl = iwl_pcie_link_ctl(priv);
priv->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN);
priv->power_data.debug_sleep_level_override = -1;
memset(&priv->power_data.sleep_cmd, 0,
sizeof(priv->power_data.sleep_cmd));
}
EXPORT_SYMBOL(iwl_power_initialize);