mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 08:01:56 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
380 lines
10 KiB
C
380 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* prepare to run common code
|
|
*
|
|
* Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
|
|
*/
|
|
|
|
#define DISABLE_BRANCH_PROFILING
|
|
#include <linux/init.h>
|
|
#include <linux/linkage.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/start_kernel.h>
|
|
#include <linux/io.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mem_encrypt.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/kdebug.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/bios_ebda.h>
|
|
#include <asm/bootparam_utils.h>
|
|
#include <asm/microcode.h>
|
|
#include <asm/kasan.h>
|
|
|
|
/*
|
|
* Manage page tables very early on.
|
|
*/
|
|
extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
|
|
static unsigned int __initdata next_early_pgt;
|
|
pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
|
|
|
|
#define __head __section(.head.text)
|
|
|
|
static void __head *fixup_pointer(void *ptr, unsigned long physaddr)
|
|
{
|
|
return ptr - (void *)_text + (void *)physaddr;
|
|
}
|
|
|
|
unsigned long __head __startup_64(unsigned long physaddr,
|
|
struct boot_params *bp)
|
|
{
|
|
unsigned long load_delta, *p;
|
|
unsigned long pgtable_flags;
|
|
pgdval_t *pgd;
|
|
p4dval_t *p4d;
|
|
pudval_t *pud;
|
|
pmdval_t *pmd, pmd_entry;
|
|
int i;
|
|
unsigned int *next_pgt_ptr;
|
|
|
|
/* Is the address too large? */
|
|
if (physaddr >> MAX_PHYSMEM_BITS)
|
|
for (;;);
|
|
|
|
/*
|
|
* Compute the delta between the address I am compiled to run at
|
|
* and the address I am actually running at.
|
|
*/
|
|
load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map);
|
|
|
|
/* Is the address not 2M aligned? */
|
|
if (load_delta & ~PMD_PAGE_MASK)
|
|
for (;;);
|
|
|
|
/* Activate Secure Memory Encryption (SME) if supported and enabled */
|
|
sme_enable(bp);
|
|
|
|
/* Include the SME encryption mask in the fixup value */
|
|
load_delta += sme_get_me_mask();
|
|
|
|
/* Fixup the physical addresses in the page table */
|
|
|
|
pgd = fixup_pointer(&early_top_pgt, physaddr);
|
|
pgd[pgd_index(__START_KERNEL_map)] += load_delta;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
p4d = fixup_pointer(&level4_kernel_pgt, physaddr);
|
|
p4d[511] += load_delta;
|
|
}
|
|
|
|
pud = fixup_pointer(&level3_kernel_pgt, physaddr);
|
|
pud[510] += load_delta;
|
|
pud[511] += load_delta;
|
|
|
|
pmd = fixup_pointer(level2_fixmap_pgt, physaddr);
|
|
pmd[506] += load_delta;
|
|
|
|
/*
|
|
* Set up the identity mapping for the switchover. These
|
|
* entries should *NOT* have the global bit set! This also
|
|
* creates a bunch of nonsense entries but that is fine --
|
|
* it avoids problems around wraparound.
|
|
*/
|
|
|
|
next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr);
|
|
pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
|
|
pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
|
|
|
|
pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
|
|
|
|
if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
|
|
p4d = fixup_pointer(early_dynamic_pgts[next_early_pgt++], physaddr);
|
|
|
|
i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
|
|
pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
|
|
pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
|
|
|
|
i = (physaddr >> P4D_SHIFT) % PTRS_PER_P4D;
|
|
p4d[i + 0] = (pgdval_t)pud + pgtable_flags;
|
|
p4d[i + 1] = (pgdval_t)pud + pgtable_flags;
|
|
} else {
|
|
i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
|
|
pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
|
|
pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
|
|
}
|
|
|
|
i = (physaddr >> PUD_SHIFT) % PTRS_PER_PUD;
|
|
pud[i + 0] = (pudval_t)pmd + pgtable_flags;
|
|
pud[i + 1] = (pudval_t)pmd + pgtable_flags;
|
|
|
|
pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
|
|
pmd_entry += sme_get_me_mask();
|
|
pmd_entry += physaddr;
|
|
|
|
for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) {
|
|
int idx = i + (physaddr >> PMD_SHIFT) % PTRS_PER_PMD;
|
|
pmd[idx] = pmd_entry + i * PMD_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Fixup the kernel text+data virtual addresses. Note that
|
|
* we might write invalid pmds, when the kernel is relocated
|
|
* cleanup_highmap() fixes this up along with the mappings
|
|
* beyond _end.
|
|
*/
|
|
|
|
pmd = fixup_pointer(level2_kernel_pgt, physaddr);
|
|
for (i = 0; i < PTRS_PER_PMD; i++) {
|
|
if (pmd[i] & _PAGE_PRESENT)
|
|
pmd[i] += load_delta;
|
|
}
|
|
|
|
/*
|
|
* Fixup phys_base - remove the memory encryption mask to obtain
|
|
* the true physical address.
|
|
*/
|
|
p = fixup_pointer(&phys_base, physaddr);
|
|
*p += load_delta - sme_get_me_mask();
|
|
|
|
/* Encrypt the kernel (if SME is active) */
|
|
sme_encrypt_kernel();
|
|
|
|
/*
|
|
* Return the SME encryption mask (if SME is active) to be used as a
|
|
* modifier for the initial pgdir entry programmed into CR3.
|
|
*/
|
|
return sme_get_me_mask();
|
|
}
|
|
|
|
unsigned long __startup_secondary_64(void)
|
|
{
|
|
/*
|
|
* Return the SME encryption mask (if SME is active) to be used as a
|
|
* modifier for the initial pgdir entry programmed into CR3.
|
|
*/
|
|
return sme_get_me_mask();
|
|
}
|
|
|
|
/* Wipe all early page tables except for the kernel symbol map */
|
|
static void __init reset_early_page_tables(void)
|
|
{
|
|
memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
|
|
next_early_pgt = 0;
|
|
write_cr3(__sme_pa_nodebug(early_top_pgt));
|
|
}
|
|
|
|
/* Create a new PMD entry */
|
|
int __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
|
|
{
|
|
unsigned long physaddr = address - __PAGE_OFFSET;
|
|
pgdval_t pgd, *pgd_p;
|
|
p4dval_t p4d, *p4d_p;
|
|
pudval_t pud, *pud_p;
|
|
pmdval_t *pmd_p;
|
|
|
|
/* Invalid address or early pgt is done ? */
|
|
if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
|
|
return -1;
|
|
|
|
again:
|
|
pgd_p = &early_top_pgt[pgd_index(address)].pgd;
|
|
pgd = *pgd_p;
|
|
|
|
/*
|
|
* The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
|
|
* critical -- __PAGE_OFFSET would point us back into the dynamic
|
|
* range and we might end up looping forever...
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_X86_5LEVEL))
|
|
p4d_p = pgd_p;
|
|
else if (pgd)
|
|
p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
|
|
else {
|
|
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
|
|
reset_early_page_tables();
|
|
goto again;
|
|
}
|
|
|
|
p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
|
|
memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
|
|
*pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
|
|
}
|
|
p4d_p += p4d_index(address);
|
|
p4d = *p4d_p;
|
|
|
|
if (p4d)
|
|
pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
|
|
else {
|
|
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
|
|
reset_early_page_tables();
|
|
goto again;
|
|
}
|
|
|
|
pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
|
|
memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
|
|
*p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
|
|
}
|
|
pud_p += pud_index(address);
|
|
pud = *pud_p;
|
|
|
|
if (pud)
|
|
pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
|
|
else {
|
|
if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
|
|
reset_early_page_tables();
|
|
goto again;
|
|
}
|
|
|
|
pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
|
|
memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
|
|
*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
|
|
}
|
|
pmd_p[pmd_index(address)] = pmd;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init early_make_pgtable(unsigned long address)
|
|
{
|
|
unsigned long physaddr = address - __PAGE_OFFSET;
|
|
pmdval_t pmd;
|
|
|
|
pmd = (physaddr & PMD_MASK) + early_pmd_flags;
|
|
|
|
return __early_make_pgtable(address, pmd);
|
|
}
|
|
|
|
/* Don't add a printk in there. printk relies on the PDA which is not initialized
|
|
yet. */
|
|
static void __init clear_bss(void)
|
|
{
|
|
memset(__bss_start, 0,
|
|
(unsigned long) __bss_stop - (unsigned long) __bss_start);
|
|
}
|
|
|
|
static unsigned long get_cmd_line_ptr(void)
|
|
{
|
|
unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
|
|
|
|
cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
|
|
|
|
return cmd_line_ptr;
|
|
}
|
|
|
|
static void __init copy_bootdata(char *real_mode_data)
|
|
{
|
|
char * command_line;
|
|
unsigned long cmd_line_ptr;
|
|
|
|
/*
|
|
* If SME is active, this will create decrypted mappings of the
|
|
* boot data in advance of the copy operations.
|
|
*/
|
|
sme_map_bootdata(real_mode_data);
|
|
|
|
memcpy(&boot_params, real_mode_data, sizeof boot_params);
|
|
sanitize_boot_params(&boot_params);
|
|
cmd_line_ptr = get_cmd_line_ptr();
|
|
if (cmd_line_ptr) {
|
|
command_line = __va(cmd_line_ptr);
|
|
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* The old boot data is no longer needed and won't be reserved,
|
|
* freeing up that memory for use by the system. If SME is active,
|
|
* we need to remove the mappings that were created so that the
|
|
* memory doesn't remain mapped as decrypted.
|
|
*/
|
|
sme_unmap_bootdata(real_mode_data);
|
|
}
|
|
|
|
asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data)
|
|
{
|
|
/*
|
|
* Build-time sanity checks on the kernel image and module
|
|
* area mappings. (these are purely build-time and produce no code)
|
|
*/
|
|
BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
|
|
BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
|
|
BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
|
|
BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
|
|
BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
|
|
BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
|
|
BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
|
|
(__START_KERNEL & PGDIR_MASK)));
|
|
BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
|
|
|
|
cr4_init_shadow();
|
|
|
|
/* Kill off the identity-map trampoline */
|
|
reset_early_page_tables();
|
|
|
|
clear_bss();
|
|
|
|
clear_page(init_top_pgt);
|
|
|
|
/*
|
|
* SME support may update early_pmd_flags to include the memory
|
|
* encryption mask, so it needs to be called before anything
|
|
* that may generate a page fault.
|
|
*/
|
|
sme_early_init();
|
|
|
|
kasan_early_init();
|
|
|
|
idt_setup_early_handler();
|
|
|
|
copy_bootdata(__va(real_mode_data));
|
|
|
|
/*
|
|
* Load microcode early on BSP.
|
|
*/
|
|
load_ucode_bsp();
|
|
|
|
/* set init_top_pgt kernel high mapping*/
|
|
init_top_pgt[511] = early_top_pgt[511];
|
|
|
|
x86_64_start_reservations(real_mode_data);
|
|
}
|
|
|
|
void __init x86_64_start_reservations(char *real_mode_data)
|
|
{
|
|
/* version is always not zero if it is copied */
|
|
if (!boot_params.hdr.version)
|
|
copy_bootdata(__va(real_mode_data));
|
|
|
|
x86_early_init_platform_quirks();
|
|
|
|
switch (boot_params.hdr.hardware_subarch) {
|
|
case X86_SUBARCH_INTEL_MID:
|
|
x86_intel_mid_early_setup();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
start_kernel();
|
|
}
|